心率变异性的时间不可逆性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
健康人的心跳是一个典型的多输入的复杂系统,它在自发窦性节律的基础上,同时受自主神经系统——交感神经、副交感神经等多种因素的协调控制,因而呈现复杂的变异性,即心率变异性(heart rate variability, HRV)。作为评价自主神经系统的活动水平的一种无创性手段,对HRV的分析在评价心交感神经与迷走神经活动水平方面有着广泛的应用。
     由于产生HRV的心脏动力系统是非线性的,因此对HRV的分析应该采用非线性动力学分析法。目前在HRV的非线性分析方面,仍以幂律分析和熵分析为主;作为一种独特的非线性分析手段,时间不可逆性分析近来也被一些学者应用到HRV的分析中来,并且揭示了心脏动力系统的一些性质。但是这方面的研究仍停留在提出各种时间不可逆性测度并用其证明来自于健康个体的HRV具有时间不可逆性这一点上,即便是有些研究将其应用到了病理状态下,如充血性心力衰竭(congestive heart failure, CHF),却还有不一致的结论。本研究的目的就在于:寻找能恰当反映心脏动力系统在不同的生理病理状态下区别的时间不可逆性测度以揭示心脏动力系统本质,进而在临床应用中得到一致结论并形成诊断标准。为此,我们进行了如下工作:
     (1)基于多尺度思想,提出用(Pm%, Gm%)平面来直观地展示时间序列的不可逆性。我们称其为多尺度时间不可逆性(MSTI)分析法。通过数值仿真,我们确认该方法在重构具有时间延迟特性的动力系统的时间不可逆性时会更可靠,而心脏动力系统正是一个带有多级延迟、多级反馈控制模式的系统;当我们将(Pm%, Gm%)平面应用于健康人的HRV分析中时,替代数据检验的结果证明“健康人的RR间期序列普遍具有时间不可逆性”,这一点为“健康人的心率变异性是非线性的”的论点提供了有力的证据;同时发现一个值得深思的现象:这些点基本都落入第一象限并呈线性分布;当我们将MSTI法应用于人造序列时,该方法可以很明显地区分人造序列和真实生理序列,因此,该方法可以作为一个测试生理信号模型的工具;而当我们将其应用于来自于CHF患者的RR间期序列上时,我们找到了解释前人研究结果不一致的本质原因;最后,应用该方法对自行采集的11位健康年轻人的白天清醒和夜间睡眠时的RR间期序列分析的结果表明,健康年轻人HRV的时间不可逆性展现出了“夜间增强,日间减弱”的规律。
     (2)基于高维相空间重构的思想,提出将相空间重构图向多个2维平面投影,在每个投影平面上进行时间不可逆性分析,然后将多个平面上的分析结果综合考虑的方法。我们称之为高维的时间不可逆性(HDTI)分析法。相比于MSTI分析法,该方法同样能有效地区分人造序列和真实生理序列,以及展现健康人心脏动力系统特性的昼夜节律。而比MSTI分析法更具优势的是,在所分析的数据长度达到5000点时,HDTI方法还能揭示出年龄老化对健康人HRV的时间不可逆性的影响;且在较短的数据长度下(1000点),就能检测出疾病对HRV时间不可逆性的影响;而当我们将该方法应用于运动中和运动后的短时(约4-7分钟,数据长度为512点)的RR间期序列的分析中时,发现不可逆性测度值与心率的线性趋势项密切相关,其变化趋势正好反映了运动前、中、后交感迷走神经之间的这种从平衡态到非平衡态、再从非平衡态逐渐恢复到平衡态的过程。
     (3)鉴于符号动力学是非线性科学中一种重要而有效的理论方法,但目前鲜有对HRV进行符号化时间不可逆性分析的研究,因此,我们尝试利用符号动力学的原理与方法来探索HRV序列的时间不可逆性,目的在于从另一个角度来探索心脏动力系统的非线性特性及其复杂程度。为此我们做了如下一些工作:提出以序列概率分布的m等分位点作为符号划分依据的等概率符号化法;提出了5个衡量符号序列时间不可逆性的参数;利用仿真数据,比较了不同符号化方法与序列的时间不可逆研究结合的效果,结果表明等概率符号化的效果最优;利用基于等概率符号化的时间不可逆性测度来分析HRV,得到了与前述两种方法(MSTI和HDTI)一致的结论,即:来自于健康年轻人的RR间期序列最倾向于具有时间不可逆性,而随着年龄的老化以及疾病的出现,这种可能性会降低;健康年轻人的RR间期序列的时间不可逆性具有昼夜差异,夜间睡眠时不可逆性增强。等概率符号化时间不可逆性分析中的5个测度,在数据长度仅为500点的时,就都敏感地捕捉到了健康年轻人夜间睡眠和白天清醒时的心脏动力学特性的变化,而且,这些测度所反映出来的昼夜差异随着所考察的数据长度的增加变化很小;另外,其中的分布差异熵测度在区分健康人和CHF患者的RR间期序列时具有较强的敏感性。相比于前述两种方法,等概率符号化时间不可逆性方法在分析心率变异性信号上更显优势。
     (4)人工神经网络是由大量并行工作的神经元组成的智能仿生模型,它在模式识别领域已经展示出了广阔的应用前景。鉴于单一心率变异性指标所表达出来的信息具有片面性,很难用一个单一的指标来完全分类CHF患者和健康人的不足。因此,为了联合HRV的线性和非线性动力学分析方法,我们设计了多种指标组合来作为人工神经网络的输入特征向量。在网络的选择与训练过程中,我们以10次10折交叉验证的平均性能和平均迭代步数作为选择标准,确定了用于CHF诊断的智能模型的输入特征向量组合、网络结构和网络参数。当我们使用该模型对预留的16例样本数据(其中包括10例健康样本和6例CHF患者样本)和自行采集的11位健康年轻人的HRV序列进行分类时,仅有一例CHF患者没有被诊断出来,模型展现出了较好的泛化能力。需要指出的是,在最终确定的模型输入特征向量组合中,就有我们提出的符号化时间不可逆性指标,因此进一步证明了时间不可逆性分析在HRV的分析中起着不可忽视的作用。
The heart beat of healthy human is a typical multi-input complex system. On the basis of idiopathic sinus rhythm, it is also controlled harmoniously by autonomic nervous system which including sympathetic nervous, parasympathetic nervous and other aspects. Human heart rates fluctuate from beat to beat in a complex manner which is called HRV (heart rate variability). As a noninvasive diagnosis method, the analysis of HRV is widely used in the assessment of cardiac sympatho-vagal modulation activity.
     As the cardiac system which generates HRV is in nonlinearity, the methods deriving from nonlinear dynamic analysis should be adopted for HRV analysis. At present, in terms of nonlinear analysis of HRV signal, it is still dominated by power-law analysis and entropy analysis. As a unique method of nonlinear analysis, time-irreversibility test is introduced by some scholars into the HRV analysis recently, which reveals some characteristics of the cardiac dynamic systems.However, most of those researches are still limited to the exploration of irreversible measurements which is used to prove the opinion that "HRV signals derived from healthy subjects is time irreversible". Even though it is applied to HRV in pathological state (e.g. Congestive Heart Failure, CHF) by some researchers, it is hard to get consistent results. And the objective of our research is to find some time-irreversible measurements which are sensitive to different physiological and pathological states, in order to reveal the underlying features of cardiac system and achieve unanimous conclusion and diagnostic standard.
     In this paper, we mainly did the following works:
     (1) Base on the concept of multi-scale analysis, we presented a (Pm%, Gm%) space to indicate the irreversibility of time series. which is called MSTI method. It is concluded from numerical verification that the method will be more reliable than single-scale method when applied to the reconstruction of time-reversibility in dynamic systems including delays. And the cardiac dynamic system is actually such a system, in which regulations are usually per-formed via multiple feedback loops incorporating different delays. When the (Pm%, Gm%) space was applied to the HRV of healthy subjects, results from data surrogating test verified that time irreversibility is a general characteristic of RR intervals of healthy populations, which provides a strong evidence on the argument that heart rate variability is nonlinear. Furthermore, an obvious phenomenon can be observed that almost all the points are located in the region of Quadrant I of the (Pm%, Gm%) space and in linear distribution. When we applied the MSTI method to synthetic RR sequences, there is a significant difference from real signals. Therefore, we suggest that the method should be used as an evaluating tool in the modeling of physiologic series. And the reason for the explanation of the disagreements of previous studies was found while the method is used to analyze the RR intervals of CHF patients. Finally, we applied the MSTI method to the data collected from11healthy youth during daytime and nighttime respectively. The results show that irreversible dynamics detected in RR intervals of healthy population appeared in a tendency that stronger in nighttime than in daytime.
     (2) In consideration of embedding the series in a m-dimensional phase space (m>2), we proposed the high-dimensional time irreversibility (HDTI) analysis. Our test valuates m-dimensional irreversibility by checking the asymmetry of the distribution of points obtained by projecting the m-dimensional reconstructed dynamics onto multiple2-dimensional planes, and then integrating the results on all planes. Comparing with the MSTI method, the HDTI method is also an effective way to distinguish the synthetic series from the physiological ones and can reveal the circadian variations of irreversible dynamics in healthy human as well. Moreover, the influence of the aging on irreversible dynamics can be reflected by the HDTI method when the analyzed data length reaches5000, whereas the influence of the disease can be reflected with shorter data length (about1000). Furthermore, when the method was applied to the extreme short (about4-7minutes,512points) RR intervals of healthy human during and after exercise, we found that the measurement of irreversibility varies linearly with the tendency of heart rate, which reflects the changes of cardiac sympatho-vagal modulations from equilibrium to non-equilibrium, and then recovering from non-equilibrium to equilibrium gradually.
     (3) Symbolic dynamics is an important and effective method in nonlinear science and there is few research ever reported on symbolic irreversible analysis of HRV. In this paper, we introduced the theory of symbolic dynamics to study time irreversibility of HRV, aiming to explore the nonlinear characteristics and complexity of cardiac systems from another aspect. We proposed a method called equiprobable-symbollise, which produces symbols equiprobability according to probability distribution of the original series. Five indices were presented to measure the symbolic irreversible dynamics, and then we evaluated the performance of different symbolized methods by using these indices when applied to numerical data. As a result, equiprobable-symbollise method was proved to be the most effecitve one. The conclusions achieved from this method are consistent with the MSTI and HDTI method:the RR intervals of healthy youth are more likely to be irreversible, and such an irreversibility will decrease with aging or heart disease; for healthy population, irreversible dynamics exist a rhythm and vary for RR intervals in daytime and nighttime, and a stronger irreversibility was detected in nighttime.
     While equiprobable-symbollise method was applied to the circadian data, all of the above mentioned five indices was proved to be very sensitive to the changes of the characteristics of the cardiac dynamic systems from daytime to nighttime, even with the data length of only500. And the difference reflected by the measurements keep almost unchanged along with the increasing of data length. Furthermore, the measurement of the difference entropy seems to be much more sensitive than other indices in distinguishing CHF populations from the healthy. It is concluded from our researches that the symbolic-irreversibility analysis based on equiprobable-symbollise shows more superiority than the above mentioned methods.
     (4) Artificial neural network, inspired by biological nervous systems, is composed of simple elements operating in parallel and open up very broad vistas in the field of pattern recognition. Considering that the information delivered by any single HRV index is inadequate and it is very difficult to completely classify the CHF patients from healthy people by using a single index. In order to combine linear and nonlinear method together for HRV analysis, a variety of indices assembly was designed as the feature parameters of artificial neutral network. During the process of selecting the network and training, by using the mean performance and mean epochs of10-fold cross-validation over10times, the feature vector, architecture, as well as the weights and bias of the BP network were determined. When the selected model was applied to16samples (which include10healthy samples and6CHF ones) and11RR sequences of healthy youth, just one sample derived from a CHF patient can not been diagnosed. The results showed that the selected model exhibits perfect generalization ability. It is to be noted that, the symbolic irreversibility index is selected in the feature vector of the final model, which further proving the importance of time irreversibility method in the analysis of HRV.
引文
1. 黄晓林。心率变异性的分析方法研究。南京大学博士学位论文,2009。
    2. 陆艳,武鸣,王临池等。江苏居民2003年~2005年心脏病死亡情况分析。江苏预防医学。2011,22(4):11-13。
    3. 李锦。短时HRV的熵分析。南京大学博士学位论文,2006。
    4. 宁新宝编著。生物医学电子学。湖南科学技术出版社,长沙,1988。
    5. Goldberger A L and Rigney D R. Theory of heart. Springer-Verlag, New York,1991.
    6. 卞春华。基于NAR模型的短时HRV非线性程度的研究。南京大学博士学位论文,2004。
    7. 郑思竞主编。系统解剖学。人民卫生出版社,第三版,1994。
    8. 周衍椒,张镜如主编。生理学。人民卫生出版社,1993。
    9. James B Wyngaarden and Lloyd H. Smith Jr. editor. Cecil Textbook of Medicine.18th edition, W.B.Saunders Company,1988.
    10. Plonsey, R. Bioelectric Phenomena, McGraw-Hill, New York,1969.
    11.姚泰主编。生理学(第五版)。人民卫生出版社,2001。
    12.庄建军。专业射击运动员心率变异性。南京大学博士学位论文,2008。
    13. Ivanov P C, Chen Z, Hu K, et al. Multiscale aspects of cardiac control. Physica A,2004.344: 685-704.
    14. Task Force. Heart rate variability:standard of measurement, physiological interpretation, and clinical use. European Heart Journal,1996.17(3):354-381.
    15.冯永生,冯胜红。抑郁患者的心率变异性分析。华西医学,2007,22(4):806-807。
    16. Nishioka Y, Sashika H, Andho N, et al. Relation between 24-h heart rate variability and blood pressure fluctuation during exercise in stroke patients. Circ. J.2005,69(6):717-721.
    17. Ewing D J, Martin C N, Young R J, et al. The value of cardiovascular autonomic function tests:10 years' experience in diabetes. Diabetes. Care.1985,8:491-498.
    18. Penzel T, Kantelhardt J W, Grote L, et al. Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea. IEEE Trans. Biomed. Eng. 2003,50:1143-1151.
    19. Evrengul H, Tanriverdi H, Dursunoglu D, et al. Time and frequency domain analyses of heart rate variability in patients with epilepsy. Epilepsy. Res.2005,63(2-3):131-139.
    20.杜坚、何九龙、王永东等。支气管哮喘患者心率变异性的观察。中华结核和呼吸杂志。2001,24(12):744-745.
    21.朱加加、张矛、许广实。甲亢病人的心率变异性及临床意义。中国临床医学。2004,11(3):315-316.
    22.李章勇、刘丽欣、任超世。多参数麻醉深度监测仪的设计。中国组织工程研究与临床康复。2008,12(9):1716-1718.
    23. Macor F, Fagard R, Amery A. Power spectral analysis of RR interval and blood pressure short-term variability at rest and during dynamic exercise:comparison between cyclists and controls. Int. J. Sports. Med.1996,17 (3):175-181.
    24. Pigozzi F, Alabiso A, Parisi A, et al. Effects of aerobic exercise training on 24 hr profile of heart rate variability in female athletes. J. Sports. Med. Phys. Fitness.2001,41 (1):101-107.
    25. Portier H, Louisy F, Laude D, et al. Intense endurance training on heart rate and blood pressure variability in runners. Med. Sci. Sports. Exerc.2001,33(7):1120-1125.
    26. Perini R, Veicsteinas A. Heart rate variability and autonomic activity at rest and during exercise in various physiological conditions. Eur. J. Appl. Physiol.2003,90 (3-4):317-325.
    27. Javorka M, Zila I, Balharek T, et al. On-and off-responses of heart rate to exercise-relations to heart rate variability. Clin. Physiol. Funct. Imaging.2003,23 (1):1-8.
    28. Banach T, Grandys M, Juszczak K, et al. Heart rate variability during incremental cycling exercise in healthy untrained young men. Folia. Med. Cracov.2004,45 (1-2):3-12.
    29. Mourot L, Bouhaddi M, Perrey S, et al. Quantitative Poincare plot analysis of heart rate variability:effect of endurance training. Eur. J. Appl. Physiol.2004,91 (1):79-87.
    30. Mourot L, Bouhaddi M. Perrey S. et al. Decrease in heart rate variability with overtraining: assessment by the Poincare plot analysis. Clin. Physiol. Funct. Imaging.2004,24 (1):10-18.
    31. Lucini D, Cerchiello M, Pagani M. Selective reductions of cardiac autonomic responses to light bicycle exercise with aging in healthy humans. Auton. Neurosci.2004,110 (1):55-63.
    32. Javorka M, Zila I, Balharek T, et al. Heart rate recovery after exercise:relations to heart rate variability and complexity. Braz. J. Med. Biol. Res.2002,35 (8):991-1000.
    33. Lewis M J, Short A L. Sample entropy of electrocardiographic RR and QT time-series data during rest and exercise. Physiol. Meas.2007,28 (6):731-744.
    34. Platisa M M, Mazic S, Nestorovic Z, et al. Complexity of heartbeat interval series in young healthy trained and untrained men. Physiol. Meas.2008,29 (4):439-450.
    35. Kleiger R E, Stein P K, Bigger J T. Heart rate variability:measurement and clinical utility. A. N. E.2005,10(1):88-101.
    36. Ning X B, Bian C H, Wang J, et al. Research progress in nonlinear analysis of heart electric activities. Chinese Science Bulletin.2006,51(4):385-393.
    37. Rich MW, Saini JS, Kleiger RE, et al. Correlation of heart rate variability with clinical and angiographic variables and late mortality after coronary angiography. Am J Cardiol 1988,62: 714-717.
    38. Van Hoogenhuyze D, Weinstein N, Martin GJ, et al. Reproducibility and relation to meanheart rate of heart rate variability in normal subjects and in patients with congestive heart failure secondary to coronary artery disease. Am J Cardiol 1991,68:1668-1676.
    39. Tuininga YS, van Veldhuisen DJ, Brouwer J, et al. Heart rate variability in left ventricular dysfunction and heart failure:effects and implications of drug treatment. Br Heart J 1994,72: 509-513.
    40. Szabo BM, van Veldhuisen DJ, van der Veer N, et al. Prognostic value of heart rate variability in chronic congestive heart failure secondary to idiopathic or ischemic dilated cardiomyopathy. Am J Cardiol 1997,79:978-980.
    41. Ponikowski P, Anker SD, Chua TP, et al. Depressed heart rate variability as an independent predictor of death in chronic congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 1997,79:1645-1650.
    42. Bigger JT Jr, Kleiger RE, Fleiss JL, et al. Components of heart rate variability measured during healing of acute myocardial infarction. Am J Cardiol 1988,61:208-215.
    43. Kleiger RE, Miller JP, Bigger JT Jr, et al, Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 1987,59:256-262.
    44. Casolo GC, Stroder P, Signorini C, et al, Heart rate variability during the acute phase of myocardial infarction. Circulation 1992,85:2073-2079.
    45. Singh N, Mironov D, Armstrong PW, et al. Heart rate variability assessment early after acute myocardial infarction. Pathophysiological and prognostic correlates. GUSTO ECG Substudy Investigators. Global Utilization of Streptokinase and TPA for Occluded Arteries. Circulation 1996,93:1388-1395.
    46. Zuanettti G, Neilson JM, Latini R, et al. Prognostic significance of heart rate variability in post-myocardial infarction patients in the fibrinolytic ear. The GISSI-2 results. Gruppo italiano per lo Studio della Sopravvivenza nell' Infarto Miocardico. Circulation 1996,94: 432-436.
    47. Tsuji H, Venditti FJ Jr, Manders ES. et al. Reduced heart rate variability and mortality risk in an elderlycohort. The Framinggham Heart Study. Circulation 1994.90:878-883.
    48. Nieminen T, Kabonen M, Nikus K, et al. Heart rate variability is dependent on the level of heart rate. Am. Heart J.2007,153:e13.
    49. Yang A C C, Hseu S S, Yien H W, et al. Linguistic analysis of the human heartbeat using frequency and rank order statistics. Phys. Rev. Lett.2003,90:108103.
    50.阎克乐、张文彩、张月娟等。心率变异性在心身疾病和情绪障碍研究中的应用。心理科学进展。2006,14(2):261-265.
    51. Malik M, Camm A J. Heart rate variability and clinical cardiology. Br. Heart J.1994,71:3-6.
    52. Lombardi F, Sandrone G, Pempruner S, et al. Heart rate variability as an index of sympathovagal interaction after myocardial infarction. Am. J. Cardiol.1987,60:1239-1245.
    53. Lombardi F, Sandrone G, Motara A, et al. Circadian variation of spectral indices of heart-rate-variability after myocardial-infarction. Am. Heart J.1992,123:1521-1529.
    54. Bigger J T, Fleiss J L, Steinmen R C, et al. Frequency domain parameters of heart rate variability and mortality after myocardial infarction. Circulation.1992,85:164-171.
    55. Pagani M, Malfatto G, Pierini S, et al. Spectral-analysis of heart rate variability in the assessment of autonomic diabetic neuropathy. J. Auton. Nerv. System.1988,23:143-153.
    56. Freeman R, Saul J P, Roberts M S, et al. Spectral-analysis of heart rate in diabetic neuropathy-A comparison with standard-tests of autonomic function. Arch. Neurol.1991,48: 185-190.
    57. Inoue K, Miyake S, Kumashiro M, et al. Power spectral-analysis of heart-rate-variability in traumatic quadriplegic patient. Am. J. Physiol.1990,258:H1722-1726.
    58.胡海波,王林。幂律分布研究简史。物理。2005,34(12):889-896。
    59. Mandelbrot B. The fractal geometry of nature (French edition published 1975.) New York. Freeman.1983.
    60. Ivanov P C, Amaral L A N, Goldberger A L, et al. Multifractality in human heartbeat dynamics. Nature.1999,399:461-465.
    61. Kobayashi, M., Musha, T.1/f fluctuation of heart beat period. IEEE. Trans. Biomed. Eng., 1982,29:456-457.
    62. Pikkujamsa S M, Makikallio T H, Sourander L B, et al. Cardiac interbeat interval dynamics from childhood to senescence-Comparison of conventional and new measures based on fractals and chaos theory. Circulation 1999,100:393-399.
    63. Jokinen V, Syvanne M, Makikallio T H, et al. Temporal age-related changes in spectral, fractal and complexity characteristics of heart rate variability. Clin. Physiol.2001,21: 273-281.
    64. Peng C K, Buldyrev S V, Havlin S, et al. Mosaic organization of DNA nucleotides. Phys. Rev. E.1994,49:1685-1689.
    65. Ho K.K., Moody GB, Peng CK, et al. Predicting survival in heart failure case and control subjects by use of fully automated methods for deriving nonlinear and conventional indices of heart rate dynamics. Circulation 1997,96:842-848.
    66. Ashkenazy Y, Ivanov P C, Havlin S. Magnitude and Sign Correlations in Heartbeat Fluctuations. Phys. Rev. L.2001,86 (9):1900-1903.
    67. Baumert M, Javorka M, Seeck A, et al. Multiscale entropy and detrended fluctuation analysis of QT interval and heart rate variability during normal pregnancy. Comput. Biol. Med.2012, 42 (3):347-352.
    68. Makikallio TH, Koistinen J, Jordaens L, et al. Heart rate dynamics before spontaneous onset of ventricular fbrillation in patients with healed myocardial infarcts. Am J Cardiol 1999,83: 880-884.
    69. Penzel T, Kantelhardt JW, Grote L, et al. Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea. IEEE Trans Biomed Eng 2003,50:1143-1151.
    70. Tapanainen JM, Thomsen PE, Kober L, et al. Fractal analysis of heart rate variability and mortality after an acute myocardial infarction. Am J Cardiol 2002,90:347-352.
    71. Laitio TT, Huikuri HV, Kentala ES, et al. Correlation properties and complexity of perioperative RR-interval dynamics in coronary artery bypass surgery patients. Anesthesiology 2000,93:69-80.
    72. Willson K, Francis DP. A direct analysis demonstration of the essential equivalence of detrended fluctuation analysis and spectral analysis of RR interval variability. Physiol Meas 2003,24:N1-N7.
    73. Pincus S M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA.1991,88:2297-2301.
    74. Pincus S M, Goldberger A L. Physiological time-series analysis:what does regularity quantify? Am. J. Physiol.1994,266:H1643-H1656.
    75. Pincus S M, Singer B H. Randomness and degrees of irregularity. Proc Natl. Acad. Sci. USA. 1996,93:2083-2088.
    76. Ryan S M, Goldberger A L, Pincus S M, et al. Gender-and age-related differences in heart rate dynamics:are women more complex than men? J. Am. Coll. Cardiol.1994,24: 1700-1707.
    77. Vikman S, Makikallio T H, Yli-Mayry S, et al. Altered complexity and correlation properties of RR interval dynamics before the spontaneous onset of paroxysmal atrial fibrillation. Circulation 1999,100:2079-2087.
    78. Hogue C W, Domitrovich P P, Stein P K, et al. RR interval dynamics before atrial fibrillation in patients in patients after coronary artery bypass graft surgery. Circulation 1998,98: 429-434.
    79. Schuckers S A C. Use of approximate entropy measurements to classify ventricular tachycardia and fibrillation. J. Electrocardiol.1998,31:101-105.
    80. Pincus S M, Cummins T R, Haddad G G. Heart rate control in normal and aborted SIDS infants. Am. J. Physiol.1993,264:R638-R646.
    81. Pincus S M. Assessing series irregularity and its implications for health. Population Health and Aging.2001,954:245-267.
    82. Richman J S, Moorman J R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol.,2000,278:2039-2049.
    83. Thireau J, Zhang B L, Poisson D, et al. Heart rate variability in mice:a theoretical and practical guide. Exp Physiol.2007,93(1):83-94.
    84. Costa M, Goldberger A L, Peng C K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett.2002,89,068102.
    85. Costa M, Goldberger A L, Peng C K. Multiscale entropy to distinguish physiologic and synthetic RR time series. Computers in Cardiology.2002,29:137-140.
    86. Costa M, Goldberger A L, Peng C K. Multiscale entropy analysis of biological signals. Phys. Rev. E.2005.71,021906.
    87. Gomez C. Hornero R, Abasolo D. et al. Analysis of MEG recordings from Alzheimer's disease patients with sample and multiscale entropies. Proceedings of the 29th Annual International Conference of the IEEE EMBS.2007 Aug 23-26, Lyon, France:6183-6186.
    88. Angenili L, Maestri R, Marinazzo D, et al. Multiscal analysis of short term heart beat interval, arterial blood pressure, and instantaneous lung volume time series. Artificial Intelligence in Medicine.2007,41:237-250.
    89. Ferrario M, Signorini M G, Magenes, G, et al. Comparison of entropy-based regularity estimators application to the fetal heart rate signal for the identification of fetal distress. IEEE Trans. Biomed. Eng.2006,53(1):119-125.
    90.沈跃春。耗散结构理论是如何创立的。原载《中国青年报》2002年12月8日。
    91. Weiss G. Time-reversibility of linear stochastic processes. J. Appl. Prob.1975,12:831-836.
    92. Diks C, Houwelingen JC van, Takens F, et al. Reversibility as a criterion for discriminating time series. Phys. Lett. A.1995,201:221-228.
    93. Porta A, Casali K R, Casali A G, et al. Temporal asymmetries of short-term heart period variability are linked to autonomic regulation. Am J Physiol Regul Integr Comp Physiol 2008, 295:550-557.
    94. Daw C S, Finney C E A, Kennel M B. Symbolic approach for measuring temporal "irreversibility". Phys. Rev. E.2000,62:1912-1921.
    95. Guzik P, Piskorski J, Krauze1 T, et al. Heart rate asymmetry by Poincare plots of RR intervals. Biomed Tech 2006,51:272-275.
    96. Schreiber T, Schmitz A. Surrogate time series. Phys D 2000,142:346-382.
    97. Schreiber T, Schmitz A. Improved Surrogate Data for Nonlinearity Tests. Phys. Rev. L,1996, 77(4):635-638.
    98. Theiler J, Eubank S, Longtin A, et al. Testing for non-linearity in time series:the method of surrogate data. Phys D 1992,58:77-94.
    99. Guzzetti S, Signorini M G, Cogliati C, et al. Non-linear dynamics and chaotic indices in heart rate variability of normal subjects and heart-transplanted patients. Cardiovascular Research 1996,31:441-446.
    100. Ocak H. Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Systems with Applications 2009,36:2027-2036.
    101. Faes L, Porta A, Nollo G. Surrogate data approaches to assess the significance of directed coherence:Application to EEG activity propagation.31st Annual International Conference of the IEEE EMBS,2009:6280-6283.
    102. LI C, DING G H, WU G Q, et al. Band-Phase-Randomized Surrogate Data Reveal High-Frequency Chaos in Heart Rate Variability.32nd Annual International Conference of the IEEE EMBS,2010:2804-2806.
    103. Faes L, Zhao H, Chon K H, et al. Time-Varying Surrogate Data to Assess Nonlinearity in Nonstationary Time Series:Application to Heart Rate Variability. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 2009,56(3):685-695.
    104.王立媛,刘玉萍,肖青,等。胎儿心率信号的替代数据分析。长春理工大学学报2007,30(1):72-76。
    105.陈文伟,阮炯,顾凡及.基于替代数据思想的复杂度归一化方法及其在心电信号分析中的应用。生物物理学报,2006,22(2):144-148。
    106. Rombouts S A R B, Keunen R W M, Stam C J. Investigation of nonlinear structure in multichannel EEG. Phys. Lett. A,1995,202:352-358.
    107.Costa M,Goldberger A L, Peng C K. Broken Asymmetry of the Human Heartbeat:Loss of Time Irreversibility in Aging and Disease. Phys. Rev. Lett 2005,95:198102.
    108. Piskorski J, Guzik P. Geometry of the Poincar'eplotof RR intervals and its asymmetry in healthy adults. Physiol. Meas.2007,28:287-300.
    109. Porta A, Guzzetti S, Montano N, et al. Time reversibility in short-term heart period variability. Computers in Cardiology 2006,33:77-80.
    110. Porta A, Daddio G, Bassani T, et al. Assessment of cardiovascular regulation through irreversibility a nalysis o f heart period variability:a 24 hours Holter study in healthy and chronic heart failure populations. Phil. Trans. R. Soc. A 2009,367:1359-1375.
    111. Cammarota C, Rogora E. Time reversal, symbolic series and irreversibility of human heartbeat. Chaos, Solitons and Fractals 2007,32:1649-1654.
    112.杜吟,李京诚。心率变异性在运动领域应用研究的现状。首都体育学院学报。2011,23(1):89-96。
    113. Voss A, Schulz S, Schroeder R, et al. Methods derived from nonlinear dynamics for analysing heart rate variability. Phil. Trans. R. Soc. A 2009,367:277-296.
    1. 李锦。短时HRV的熵分析。南京大学博士学位论文,2006。
    2. 秦庆庆,庞家华,张敏等。1000例动态心电图的Lorenz散点图分析。临床心电学杂志,2010,9(5):357-360。
    3. Brennan M, Palaniswami M, Kamen P. Poincare plot interpretation using a physiological model of HRV based on a network of oscillators. Am J Physiol Heart Circ Physiol 2002,283: 1873-1886.
    4. 李方洁,杨新春,白净等。1153例Lorenz散点图与动态心电图诊断的对比研究。临床心电学杂志,2006,15(5):330-333。
    5. 徐征,葛霁光,徐秋萍等。心率的Poincar6散点图量化指标。生物医学工程学杂志,2000,17(4):433~436。
    6. Brennan M, Palaniswami M, Kamen P. Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng 2001, 48:1342-1347.
    7. Guzik P, Piskorski J, Krauze1 T, et al. Heart rate asymmetry by Poincare plots of RR intervals. Biomed Tech 2006,51:272-275.
    8. Piskorski J, Guzik P. Geometry of the Poincar'eplotof RR intervals and its asymmetry in healthy adults. Physiol. Meas.2007,28:287-300.
    9. Porta A, Guzzetti S, Montano N, et al. Time reversibility in short-term heart period variability. Computers in Cardiology 2006,33:77-80.
    10. Porta A, Daddio G, Bassani T, et al. Assessment of cardiovascular regulation through irreversibility a nalysis o f heart period variability:a 24 hours Holter study in healthy and chronic heart failure populations. Phil. Trans. R. Soc. A 2009,367:1359-1375.
    11. Porta A, Casali K R, Casali A G, et al. Temporal asymmetries of short-term heart period variability are linked to autonomic regulation. Am J Physiol Regul Integr Comp Physiol 2008, 295:550-557.
    12. Costa M, Goldberger A L, and Peng C K. Broken Asymmetry of the Human Heartbeat:Loss of Time Irreversibility in Aging and Disease. Phys. Rev. Lett 2005,95:198102
    13. Costa M, Goldberger A L, Peng C K. Multiscale entropy analysis of biological signals. Phys. Rev. E.2005,71,021906.
    14. Casali KR, Casali AG, Montano N, et al. Multiple testing strategy for the detection of temporal irreversibility in stationary time series. Phys Rev E 2008; 77; 066204.
    15.黄晓林。心率变异性的分析方法研究。南京大学博士学位论文,2009。
    16. Burykin A, Costa M, Peng C K, et al. Generating Signals with Multiscale Time Irreversibility: The Asymmetric Weierstrass Function. Complexity 2010,16 (4):29-37.
    17. http://www.physionet.org/challenge/2002/dataset/.
    18. http://www.physionet.org/physiobank/database/nsrdb/
    19. http://www.physionet.org/physiobank/database/nsr2db/
    20. http://www.physionet.org/physiobank/database/chfdb/
    21. http://www.physionet.org/physiobank/database/chf2db/
    22.张保敏,郭艺芳。心率变异性的昼夜节律及临床意义。中国心脏起搏与心电生理杂志,2004,18(3): 224-226。
    23. Malik M, Farrell T, Camm J. Circadian rhythm of heart rate variability after acute myocardial infarction and its influence on the prognostic value of heart rate variability. Am. J. Cardiol., 1990,66(15):1049-1054.
    24. Burger A J, Charlamb M, Sherman HB. Circadian pattern of heart rate variability in normals, chronic stable angina and diabetes mellitus. Intl. J. Cardil,1999,71(1):41-48.
    25. Adamopoulos S, Ponikowski P, Cerquetani E, et al. Circadian pattern of heart rate variability in chronic heart failure patients Effects of physical training. Eur. Heart J.,1995,16(10):1 380-1386.
    26. Kim S G, Yum M K. Decreased RR interval complexity and loss of circadian rhythm in patients with congestive heart failure. Jpn. Cir. J,2000,64(1):39-45.
    27. Ewing D J, Neilson J M M, Shapiro C M, et al. Twenty four hour heart rate variability: effects of posture, sleep, and time of day in healthy controls and comparison with bedside tests of autonomic function in diabetic patients. Br. Heart J.,1991,65(5):239-244.
    28. Korpelainen J T, Sotaniemi K A, Huikuri H V, et al. Circadian rhythm of heart rate variability is reversibly abolished in ischemic stroke. Stroke,1997,28(11):2150-2154.
    29. Kolasinska-Kloch W, Pitala A, Szumanska M, et al. Circadian rhythm of autonomic heart activity in patients with primary essential hypertension treated with angiotensin converting enzyme inhibitor. Przegl. Lek.,2000,57(1):15-18.
    30. Martinez-Lavin M, Hermosillo AG, Rosas M, et al. Circadian studies of autonomic nervous balance in patients with fibromyalgia:A heart rate variability analysis, Arthritis & Rheumatism,1998,41(11):1966-1971.
    31. Kashiwagi K, Tsumura T, Ishii H, et al. Circadian Rhythm of Autonomic Nervous Function in Patients With Normal-Tension Glaucoma Compared With Normal Subjects Using Ambulatory Electrocardiography. Journal of Glaucoma,2000,9(3):239-242.
    1. Casali KR, Casali AG, Montano N, et al. Multiple testing strategy for the detection of temporal irreversibility in stationary time series. Phys Rev E 2008; 77; 066204.
    2. Packard N H, Crutchfield J P, Farmer J D, et al. Geometry from a time series. Phys. Rev. Lett.1980,45:712-716.
    3. Porta A, Guzzetti S, Montano N, et al. Time reversibility in short-term heart period variability. Computers in Cardiology 2006,33:77-80.
    4. Guzik P, Piskorski J, Krauze1 T, et al. Heart rate asymmetry by Poincare plots of RR intervals..Biomed Tech 2006,51:272-275.
    5. http://www.physionet.org/challenge/2002/dataset/.
    6. http://www.physionet.org/physiobank/database/nsrdb/
    7. http://www.physionet.org/physiobank/database/nsr2db/
    8. http://www.physionet.org/physiobank/database/chfdb/
    9. http://www.physionet.org/physiobank/database/chf2db/
    10.黄晓林。心率变异性的分析方法研究。南京大学博士学位论文,2009。
    11. Macor F, Fagard R, Amery A. Power spectral analysis of RR interval and blood pressure short-term variability at rest and during dynamic exercise:comparison between cyclists and controls. Int. J. Sports. Med.1996,17 (3):175-181.
    12. Pigozzi F, Alabiso A, Parisi A, et al. Effects of aerobic exercise training on 24 hr profile of heart rate variability in female athletes. J. Sports. Med. Phys. Fitness.2001,41 (1):101-107.
    13. Portier H, Louisy F, Laude D, et al. Intense endurance training on heart rate and blood pressure variability in runners. Med. Sci. Sports. Exerc.2001,33(7):1120-1125.
    14. Perini R, Veicsteinas A. Heart rate variability and autonomic activity at rest and during exercise in various physiological conditions. Eur. J. Appl. Physiol.2003,90 (3-4):317-325.
    15. Javorka M, Zila I, Balharek T, et al. On-and off-responses of heart rate to exercise-relations to heart rate variability. Clin. Physiol. Funct. Imaging.2003,23 (1):1-8.
    16. Banach T, Grandys M, Juszczak K, et al. Heart rate variability during incremental cycling exercise in healthy untrained young men. Folia. Med. Cracov.2004,45 (1-2):3-12.
    17. Mourot L, Bouhaddi M, Perrey S, et al. Quantitative Poincare plot analysis of heart rate variability:effect of endurance training. Eur. J. Appl. Physiol.2004,91 (1):79-87.
    18. Mourot L, Bouhaddi M, Perrey S, et al. Decrease in heart rate variability with overtraining: assessment by the Poincare plot analysis. Clin. Physiol. Funct. Imaging.2004,24 (1):10-18.
    19. Lucini D, Cerchiello M, Pagani M. Selective reductions of cardiac autonomic responses to light bicycle exercise with aging in healthy humans. Auton. Neurosci.2004,110 (1):55-63.
    20. Lewis M J, Short A L. Sample entropy of electrocardiographic RR and QT time-series data during rest and exercise. Physiol. Meas.2007,28 (6):731-744.
    21. Platisa M M, Mazic S, Nestorovic Z, et al. Complexity of heartbeat interval series in young healthy trained and untrained men. Physiol. Meas.2008,29 (4):439-450.
    22. Sumi K, Suzuki S, Matsubara M, et al. Heart rate variability during high-intensity field exercise in female distance runners. Scand J Med S ci Sports 2006,16:314-320.
    23. Christopher R C. Eugene H B, Fredric J P, et al. Heart-rate recovery immediately after exercise as a predictor of mortality. N. Engl. J. Med.1999,341(18):1351-1357.
    24. Javorka M, Zila I, Balharek T, et al. Heart rate recovery after exercise:relations to heart rate variability and complexity. Braz. J. Med. Biol. Res.2002,35 (8):991-1000.
    25.宋淑华,刘坚,高春刚。心率变异性指标在体育研究领域中的应用(综述)。山西师大体育学院学报。2010,25(5):125-128。
    26.杜吟,李京诚。心率变异性在运动领域应用研究的现状。首都体育学院学报。2011,23(1):89-96。
    27. Cipryan L, Stejskal P, Bartakova O, et al. Autonomic nervous system observation through to use of spectral analysis of heart rate variabilityin ice hockey players. Acta Univ. Palacki. Olomuc., Gymn.,2007,37(4):17-21.
    28.庄建军。专业射击运动员心率变异性。南京大学博士学位论文,2008。
    29.张立。CONCONI测试对足球运动员有氧能力评定的可行性研究。武汉体育学院学报。 2001,35 (2):83-87。
    30. Buchheit M, Solano R, Millet G P. Heart-rate deflection point and the second heart-rate variability threshold during running exercise in trained boys. Pediatr. Exerc. Sci.,2007, 19(2):192-204.
    1. Hadamard J. Les surfaces a courbures opposees et leurs lignes geodesique. J. Math. Pures appl,1898,4:27-73.
    2. Morse M. Recurrent geodesics on a surface of negative curvature. Trans. Amer. Math. Soc.,1921,22:84-110.
    3. Morse M, Hedlund G A. Symbolic dynamics. American J. Math.,1938,60:815-866.
    4. Collet P, Eckmann J P. Iterated maps on the interval as dynamical systems. Birkhauser:Basel, 1980.
    5. 李锦。短时HRV的熵分析。南京大学博士学位论文,2006。
    6. Hao B L. Symbolic dynamics and characterization of complexity. Physica D 1991,51: 161-176.
    7. Kurths J, Voss A, Saparin P, et. al. Quantitative analysis of heart rate variability. Chaos 1995, 5(1):88-94.
    8. Wessel N, Ziehmann C, Kurths J, et al. Short-term forecasting of life-threatening cardiac arrhythmias based on symbolic dynamics and finite-time growth rates. Phys Rev E 2000,61: 733-739.
    9. Wessel N, Malberg H, Meyerfeldt U, et al. Classifying simulated and physiological heart rate variability signals. Computers in cardiology 2002,29:133-135.
    10. Wessel N, Riedl M, Kurths J. Is the normal heart rate "chaotic" due to respiration? Chaos, 2009,19:028508.
    11. Daw C S, Finney C E A, Tracy E R. A review of symbolic analysis of experimental data. Rev. Sci. Instrum 2003,74:915-933.
    12. Li J, Ning X B. Dynamic complexity detection in short-term physiologic series using base-scale entropy. Phys. Rev. E.2006,73:052902.
    13. Li J, Ning X B. The base-scale entropy analysis of short-term heart rate variability signal. Chinese Science Bulletin.2005,50 (12):1269-1273.
    14.黄晓林。心率变异性的分析方法研究。南京大学博士学位论文,2009。
    15.黄晓林,崔胜忠,宁新宝等。心率变异性基本尺度熵的多尺度化研究。物理学报,2009,58(12):8160~8165。
    16.崔胜忠,黄晓林,宁新宝。非平稳干扰还是系统固有低频节律——短时心率变异性的非平稳相关性研究。生物医学工程学杂志。2010,27(6):1206-1210。
    17. Lin J, Keogh E, Lonardi S, et al. A symbolic representation of time series, with implications for streaming algorithms. In proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. (2003).
    18. Lin J, Keogh E, Wei L. Experiencing SAX:a novel symbolic representation of time series. Data Min Knowl Disc 2007,15:107-144.
    19. Gaber M M, Zaslavsky A, Krishnaswamy S. Mining Data Streams:A Review. SIGMOD Record 2005,34(2):18-26.
    20. Lin J, Keogh E, Ada Fu. Approximations to magic:finding unusual medical time series. In proceedings of 18th IEEE Symposium on Computer-Based Medical Systems,2005. Page(s): 329-334.
    21. Chakrabarti K, Keogh E, Mehrotra S, et al. Locally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases. ACM Transactions on Database Systems 2002, 27(2):188-228.
    22. Xu J H, Liu Z R, Liu R. The measures of sequence complexity for EEG studies. Chaos,1994, 4 (11):2111-2119.
    23. Guzzetti S, Borroni E, Garbelli P E, et al. Symbolic dynamics of heart rate variability A probe to investigate cardiac autonomic modulation. Circulation 2005,112:465-470.
    24. Porta A, Tobaldini E, Guzzetti S, et al. Assessment of cardiac autonomic modulation during graded head-up tilt by symbolic analysis of heart rate variability. Am J Physiol Heart Circ Physiol 2007,293:702-708.
    25. Voss A, Schroeder R, Truebner S, et al. Comparison of nonlinear methods symbolic dynamics, detrended fluctuation, and Poincare plot analysis in risk stratification in patients with dilated cardiomyopathy. Chaos 2007,17,015120.
    26. Azarnoosh M, Nasrabadi A M, Mohammadi M R, et al. Investigation of mental fatigue through EEG signal processing based on nonlinear analysis:Symbolic dynamics. Chaos, Solitons & Fractals 2011,44:1054-1062.
    27. Voss A, Schulz S, Schroeder R, et al. Methods derived from nonlinear dynamics for analysing heart rate variability. Phil. Trans. R. Soc. A 2009,367:277-296.
    28. Cammarota C, Rogora E. Time reversal, symbolic series and irreversibility of human heartbeat. Chaos, Solitons and Fractals 2007,32:1649-1654.
    29.宋爱玲,黄晓林,司俊峰等。符号动力学在心率变异性分析中的参数选择。物理学报,2011,60(2):020509。
    30. Daw C S, Finney C E A, Kennel M B. Symbolic approach for measuring temporal "irreversibility". Phys. Rev. E.2000,62(2):1912-1921.
    1. 李锦。短时HRV的熵分析。南京大学博士学位论文,2006。
    2. Hon E H, Lee S T. Electronic evaluation of the fetal heart rate patterns preceding fetal death, further observations. Am J Obstet Gynecol,1965,87:814-826.
    3. Wolf M W, Varigos G A, Hunt D, Sloman J G, Sinus arrhythmia in acute myocardial infarction, Med J Austral,1978,2:52-53.
    4. Malik M, Farrell T, Camm A J. Circadian rhythm of heart rate variability after acute myocardial infarction and its influence on the prognostic value of heart rate variability. Am J Cardiol,1990,66:1049-1054.
    5. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation.1991,84:482-492.
    6. Yeragani, V K. Heart rate and blood pressure variability:implications for psychiatric research. Neuropsychobiology,1995,32:182-191.
    7. Kleiger R E, Miller J P, Bigger J T, et al. Decreased Heart Rate Variability and its Association with Increased Mortality After Acute Myocardial Infarction. Am J Cardiol,1987, 59:256-262.
    8. M Malik, T Farell, and A J Camm. Circadian rhythm of heart rate variability after acute myocardial infarction and its influence on the prognostic value of heart rate variability. Am J Cardiol.1990,66:1049-1054.
    9. 王瑞,李杰平,卢志刚等。基于人工神经网络遥感图像分类的应用研究。科技情报开发与经济,2011,21(3):108-111。
    10. Simon Haykin著,叶世伟,史忠植译。神经网络原理。机械工业出版社.2004。
    11.黄晓林。心率变异性的分析方法研究。南京大学博士学位论文,2009。
    12. Wessel N, Riedl M, Kurths J. Is the normal heart rate "chaotic" due to respiration? Chaos, 2009,19:028508.
    13.颜虹。医学统计学。北京:人民卫生出版社,2005。
    14.宁新宝,黄晓林,徐寅林。神经网络分析方法用于心脏病诊断的研究。中国生物医学工程学杂志,2004,21(2):284-287。
    15.宁新宝,徐寅林,黄晓林。基于高频心电波形的心脏疾病早期诊断的方法及装置。发明专利申请书,中国国家知识产权局,申请号:200310106129.2。
    16.张德丰等编著。MATLAB神经网络应用设计。机械工业出版社,2009年。
    17. Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors. Nature,1986,323(9):533-536.
    18. Maglaveras N, Stamkopoulos T, Pappas C, et al. An adaptive backpropagation neural network for real-time ischemic episodes detection:development and performance analysis using the Europe ST2T database. IEEE Transactions on Biomedical Engineering,1998,45 (7):805-813.
    19.张立明。人工神经网络的模型及其应用。复旦大学出版社,1993。
    20. Mastorocostas P A. Resilient back propagation learning algorithm for recurrent fuzzy neural networks. Electronics Letters,40(1):57-58.
    21.戴荣,李仲奎。三维地应力场BP反分析的改进。岩石力学与工程学报,2005,24(1):83-88。
    22.袁骏,张明敏,孙进才。水下目标识别中的特征优化选择。应用声学,2005,24(4):239-243。
    23.叶圣永,王晓茹,刘志刚等。电力系统暂态稳定概率评估方法。电网技术,2009,33(6):19-23。
    24. Amari S, Murata N, Muller K-R, et al. Asymptotic statistical theory of overtraining and cross-validation. IEEE Transactions on Neural Networks,8(5),985-996,1997.
    25. Prechelt L. Early stopping-But when? In:Orr G B, and Mueller K R(Eds.):Neural Networks:Tricks of the Trade. Berlin:Springer,55-69,1998.
    26. Geoffrey J M, Do K A, Ambroise C. Analyzing microarray gene expression data. Wiley. 2004.
    27. Witten I H, Frank E著,董琳等译。数据挖掘实用机器学习技术,机械工业出版社,2006。
    28. Wang W, Gelder P H A J M, Van, Vrijling J K. Some Issues About the Generalization of Neural Networks for Time Series Prediction. W. Duch et al. (Eds.):ICANN 2005, LNCS 3697,2005:559-564,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700