基于可视化仿生嗅觉系统的白酒检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白酒是中国的传统酒精饮料,有着悠久的酿造历史;在漫长的发展过程中形成了独特的酿造工艺和风格特征,被誉为世界六大蒸馏酒之一。近年来,随着白酒工业的迅速发展,白酒假冒产品日益严重,特别是年份酒和原产地标志方面表现的尤为突出。现今对白酒的检测主要是通过色谱、光谱等分析方法,这些方法虽能对白酒进行定量定性分析,但检测其过程需要大型仪器、费时费力,限制了其在流通领域的实地实时检测。针对现今白酒检测技术存在的不足,自主开发设计了用于白酒鉴别可视化仿生嗅觉系统;本文以浓香白酒作为主要研究对象,利用构建的可视化仿生嗅觉系统结合模式识别分析方法,开展了白酒年份和原产地鉴别的技术研究。本文所完成的主要工作如下:
     (1)设计开发了用于白酒鉴别的可视化传感系统。该系统由气体发生装置、气体检测装置、系统加热装置、系统动力系统和系统控制和数据处理系统组成。气体发生装置主要用于白酒液体的挥发,以便于可视化传感阵列的检测;气体检测装置主要由可视化传感阵列、图像采集系统和光源组成。系统控制和数据处理系统主要由电脑完成,其功能对整个系统的控制和对所得数据的处理。通过集成化的系统实现了采样、图像扫描、数据处理及样品鉴别的快速化。
     (2)利用GC-MS技术对白酒中12种微量成分含量进行了检测,并利用方差分析(ANOVA)、主成分分析(PCA)、线性判别分析(LDA)等分析方法对色谱数据进行分析,用以筛选能够区分不同品牌和不同年份白酒的特性香味成分。单因素方差分析表明:丁酸乙酯、乙酸乙酯、乳酸乙酯、己酸乙酯、正丙醇、仲丁醇、异丁醇、丁醇、己醇、甲醇等11种香味成分对不同年份有显著性影响。利用模式识别方法对不同年份白酒进行区分。结果表明:对不同年份白酒的识别能力和预测能力均为96.4%。结果表明这些物质能够表达年份酒的特征信息。
     (3)利用本文构建的可视化仿生嗅觉系统对白酒中醇、酸、酯、醛等香味物质进行了定量检测。结果分析表明,不同浓度的物质具有特异性的响应差谱图,通过响应差谱图可以直观的对不同浓度的物质进行区分。聚类分析结果显示本文所构建的可视化仿生嗅觉系统能对不同浓度的醇、酸、醛、酯等物质进行正确的区分;也显示出该系统具有好的重复性和重现性。此外,还对固态法白酒和用醇、酸、酯等物质和食用酒精勾兑的勾兑白酒进行了区分。通过对比响应后的可视化差谱图可以直观的对这两种不同白酒进行区分。这为可视化系统用于白酒质量控制、白酒年份和原产地鉴别奠定了基础。
     (4)利用分子对接方法研究了酒体中醇、酸、醛和酯与TPPS4和ZnTpp之间的相互作用机理。并通过得分函数、Polar值和最高得分结果下的构象分析可以得出,TPPS4主要通过分子间的氢键作用与醇、醛、酸和酯类分子发生相互作用。ZnTpp主要通过配位键与醇、酸和酯发生相互作用,而与糠醛间的相互作用主要是通过π-π作用。本文为研究卟啉分子与白酒微量物质间的作用机理,提供了新的参考。
     (5)利用本文构建的可视化传感系统对不同年份白酒进行了鉴别。通过对比不同年份酒响应差谱图可以发现,不同年份白酒具有特异性响应差谱图,此差谱图代表了该年份白酒的特征性指纹信息。此外,还利用模式识别分析方法对响应差谱图数据进行分析。主成分分析和聚类分析结果表明:可视化系统能对不同年份成品酒进行较好的区分,判别分析也能对不同年份成品酒进行100%的识别,对未知不同年份成品酒的预测能力为93.8%。在不同年份基酒鉴别中,不同年份基酒具有特性的响应差谱图,该图谱代表该年份基酒的特征性指纹图谱。不同年份基酒通过主成分分析和聚类分析被正确区分。聚类分析还表现出一定的规律性,这一规律性有助于对未知年份基酒进行正确的分类。判别分析能对不同年份基酒进行100%的区分和预测。结果表明,本文所构建的可视化系统在白酒年份鉴别检测中具有很强的实用价值;能做作为一种快速、简便的白酒检测方法。
     (6)利用本文构建的可视化传感系统对不同原产地浓香白酒和清香型白酒进行了鉴别。通过响应差谱图的研究发现,不同原产地白酒具有独特的差谱图,代表了该原产地白酒的特征性指纹信息。主成分分析和聚类分析能对不同原产地白酒进行正确的区分,判别分析能对不同原产地白酒进行100%的区分,对未知样本的预测能力为100%。结果表明本文所构建的可视化传感系统在对不同原产地白酒检测过程中能够对酒体中所含有的特性信息进行有效的捕捉和识别,并且以形象直观的方式表达出来,这为建立不同原产地白酒指纹图谱数据库提供了一个重要的参考。
As one Chinese traditional alcohol beverage, Chinese liquor has a long brewing history in China. In the long development of Chinese liquor, its unique brewing process and style characteristics has been formed. There are six top distilled liquors in the world, and Chinese liquor is among of them. In recent years, with the quick development of Chinese liquor industry, Chinese liquor adulteration in regard to aged liquor and geographic origin exists extensively. Chromatography, spectroscopy and other analytical methods can be used to qualitative and quantitative analysis of compounds of Chinese liquor. However, these methods need to use expensive and large-scale instruments, and detection procedure is time-consuming. So they cannot be applied in real-time detection in the field of circulation. Due to deficiency of liquor detection technology, visualization bionic olfactory system was designed to identify liquor. In this research, visualization bionic olfactory system combined with pattern recognition was applied to discriminate aged liquor and to classify Chinese liquor from different geographic origins. The main works were listed as follows:
     (1) Visualization bionic olfactory system was designed and manufactured to identify Chinese liquor. This system was composed of gas generator equipment, gad detection equipment, heating equipment, dynamical system, and control and date acquisition system. Gas generator equipment was used to generate volatile gas. Gas detection equipment included colorimetric sensor array, image acquisition system and light source. Control and date acquisition system was used to control system and processing data. This integration system realized the sampling, scanning images, processing data and samples of identification quickly.
     (2) Gas chromatography-mass spectrometry (GC-MS) was used to determine the 12 volatile compounds. One way analysis of variance (ANOVA), principal component analysis (PCA) and linear discriminant analysis (SLDA) were applied to process data obtained by GC-MS and to develop discriminant models. ANOVA showed that ethyl acetate, ethyl butyrate, ethyl lactate, ethyl caproate, 1-propanol, 2-butanol, 1-butanol, isopentanol, isobutanol, 1-hexanol, methanol were most correlated with aged liquor. The data was analyzed by pattern recognition (PCA, LDA). LDA showed that a 96.4% of recognition capability for aged liquor, and the prediction ability of aged liquor was 96.4%. The results suggested that volatile compounds express the characteristic information of aged liquor.
     (3) Visualization bionic olfactory system was used for quantitative detection of aroma compositions in Chinese liquor, such as alcohols, acids, esters and aldehyde. The results demonstrated that different concentrations of aroma composition provided special color change profiles. Difference between different concentrations could be observed by visual inspection of color change profiles. The digital date library generated was analyzed with Hierarchical cluster analysis (HCA). Using a HCA dendrogram, alcohols, acids, esters and aldehyde were correctly distinguished and this system showed a good reproducibility and repeatability. In addition, Visualization bionic olfactory system was succeeded to identify the adulterated liquor by observing color change profiles. The results showed the potential application of visualization bionic olfactory system for monitoring quality, discriminating aged liquor and geographic origins.
     (4) The interaction between porphyrin (TPPS4, ZnTpp) and alcohols, acids, esters, furfural was analyzed by molecular docking. Total-score, Crash, Polar and Cscore were used to describe results. Complex conformation showed that the interaction between TPPS4 and alcohols, acids, esters, furfural was via hydrogen bond. The interaction between ZnTpp and alcohols, acids, esters was via coordinate bond, while ZnTpp interacted with furfural was viaπ-πeffect. This paper provided a new method to study the interaction between porphyrin and aroma composition of Chinese liquor.
     (5) Visualization bionic olfactory system was applied to discriminate aged liquor. Comparing with color change profiles of aged liquor, it was found that different aged liquor provided special color change profiles as unique fingerprints for each one. The digital data library generated was analyzed with pattern recognition, including PCA, HCA and LDA. PCA and HCA analysis showed that visualization bionic olfactory system can distinguish different aged liquor. LDA model showed a 100% of recognition capability and 93.8% prediction ability for aged liquor. This system was also used in discriminating based liquor. The developed visualization bionic olfactory system showed a unique pattern of color change to different aged liquor. The RGB values of the colorimetric sensor array were analyzed by pattern recognition method, including HCA, PCA and LDA. HCA and PCA suggested different based liquor can be easily discriminated by visualization bionic olfactory system. Certain regularity showed in HCA, it was useful to distinguish based liquor of unknown year. LDA analysis showed a 100% recognition capability and prediction ability for based liquor. These results suggested that visualization bionic olfactory system might provide a rapid and practicable method for detection Chinese liquor.
     (6) Visualization bionic olfactory system was used to characterize and identify strong aroma style Chinese liquor and light aroma style Chinese liquor from different geographic origins. Colorimetric sensor array before and after exposure to Chinese liquor provided unique color change profiles as fingerprint characteristic information for Chinese liquor from different geographic origins. Data analysis was performed by pattern recognition: Hierarchical cluster analysis (HCA), principal component analysis (PCA) and linear discriminant analysis (LDA). LDA model showed a 100% of recognition capability and prediction ability for Chinese liquor. The results showed that visualization bionic olfactory system was able to classify Chinese liquors from different geographic origins. Differentiation between samples was observed by visual inspection of color change profile. This method provides an important reference for constructing of Chinese liquor fingerprint database.
引文
[1]秦含章.白酒春秋-中国蒸馏酒的演变及发展趋势(上)[J].酿酒科技,2000,5:24-30.
    [2]赖登燡.中国十种香型白酒工艺特点、香味特征及品评要点的研究[J].酿酒,2005,32(6):1-6.
    [3]王健.2010年,中国白酒拐点论[EB/OL].http://www.mie168. com/manage/2009-02/ 284231.htm, 2009-02-03/2011-09-10.
    [4]李秀中.去年我国白酒收入大增[EB/OL] .一财网, http://www.yicai. com/news/ 2011/03/714372.html,2010-03-23/2011-09-10.
    [5]周玲雨,王菲.年份酒潜规则:勾兑惨假成风[EB/OL].第一财经日报,http://www.yicai. com/ news/ 2010/03/320892.html,2010-03-12/2011-09-10.
    [6]吕丽.气相色谱法分析白酒中主要香味组分[J].酿酒,2008,35(2):88-89.
    [7]胡坷平,程劲松,杨屹等.快速毛细管气相色谱分析白酒中的香味成分[J].分析科学学报,2008,24(3):326.
    [8]陈颖.气相色谱法分析口子窖酒的主要呈香组分[J].酿酒科技,2010,7:107-108.
    [9]吴卫宇.毛细管气相色谱法测定白酒中多种微量成分[J].酿酒科技,2011,5:108-109.
    [10]周围,周小平,赵国宏等.名优白酒质量指纹专家鉴别系统[J].分析化学,2004,32(6):735-740.
    [11]吴天祥,郑岩,汤庄莉.酱香型白酒GC指纹图谱的研究[J].酿酒科技,2008,10:30-36.
    [12]仝建波,刘淑玲,王东新等.清香型白酒香味成分贮存变化规律的研[J].酿酒科技,2004,2:35-36.
    [13]李家民.浓香型白酒贮存过程中主要酸、酯变化规律的研究[J].酿酒科技,2009,4:54-58.
    [14] S. Kallithraka I S,Arvanitoyannis P, Kefalas A,et al.Instrumental and sensory analysis of Greek wines; implementation of principal component analysis (PCA) for classification according to geographical origin [J].Food Chemistry,2001,73:501-514.
    [15] Díaz C,Conde J E, Juan J,et al.Volatile compounds of bottled wines with denomination of origin from the Canary Islands (Spain) [J]. Food Chemistry,2003,81:447–452.
    [16] Arapitsas P,Antonopoulos A,Stefanou E,et al.Artificial aging of wines using oak chips [J].Food Chemistry,2004,86:563–570..
    [17] Cabredo-Pinillos S, Cedrón-Fernández T, Sáenz-Barrio C.Differentiation of‘‘Claret’’, Rosé, Red and Blend wines based on the content of volatile compounds by headspace solid-phase microextraction and gas chromatography [J].European Food Research andTechnology,2008,226:1317–1323.
    [18] Jurado J M, Ballesteros O, Alcázar A,et al.Differentiation of certified brands of origins of Spanish white wines by HS-SPME-GC and chemometrics [J].Anal Bioanal Chem,2008,390:961–970.
    [19] Rodríguez-Nogales J M, Fernández-Fernándeza E, Vila-Crespo Josefina.Characterisation and classification of Spanish Verdejo young white wines by volatile and sensory analysis with chemometric tools [J].J Sci Food Agric,2009,89:1927–1935.
    [20] Pe?a-Neira A, Hernández T, García-Vallejo C,et al.A survey of phenolic compounds in Spanish wines of different geographical origin [J].European Food Research and Technology,2000,210:445–448.
    [21] Rodríguez-Delgado M,González-Hernández G,Conde-González J,et al.Principal component analysis of the polyphenol content in young red wines [J].Food Chemistry,2002,78:523–532.
    [22] Soufleros E H,Bouloumpasi E,Tsarchopoulos C,et al.Primary amino acid profiles of Greek white wines and their use in classification according to variety, origin and vintage [J].Food Chemistry,2003,80:261–273.
    [23] Monagas M,Gómez-Cordovés C,BartoloméB.Evolution of polyphenols in red wines from Vitis vinifera L. during aging in the bottle [J].European Food Research and Technology,2005,220:607–614.
    [24] Matějí?ek D,Mike? O,Klejdus B,et al.Changes in contents of phenolic compounds during maturing of barrique red wines [J].Food Chemistry,2005,90:791–800.
    [25] Fang F,Li J M,Pan Q H,et al.Determination of red wine flavonoids by HPLC and effect of aging [J].Food Chemistry,2007,101:423-433.
    [26] Mu?oz-Mu?oz A C,Grenier A C,Gutiérrez-Pulido H,et al.Development and validation of a high performance liquid chromatography-diode array detection method for the determination of aging markers in tequila [J].Journal of Chromatography A, 2008,1213:218-223.
    [27] Bellomarino S A,Parker R M,Conlan X A,et al.Partial least squares and principal components analysis of wine vintage by high performance liquid chromatography with chemiluminescence detection [J].Analytica Chimica Acta,2010,678:34-38.
    [28]杨景贤,唐毅锋.用气相色谱-质谱联用技术鉴别法国白兰地酒的真伪优劣[J].化学世界,2001,1:10-12.
    [29]张丽敏,胡永钢,史静霞等.清香型白酒陈酿过程中微量成分变化规律研究[J].山西大学学报(自然科学版),2002,25(4):334-337.
    [30]胡博然,李华.不同年份干红葡萄酒香气物质分析研究[J].食品科学,2006,27(10):487-492.
    [31]鲍忠定,孙培龙,许荣年.动态顶空进样GC/MS法测定不同酒龄绍兴酒的挥发性醛类化合物[J].酿酒科技,2007,1:97-98.
    [32]张宿义,张良,赵金松等.泸型酒贮存过程中微量成分变化规律研究[J].酿酒科技,2008,8:61-64.
    [33]江伟,兰玉倩,黄毅等.固相微萃取与气相色谱-质谱联用法对不同酒龄黄酒的微量风味分析与应用[J].食品与发酵工业,2011,37(2):144-150.
    [34] Riu-Aumatell M,Bosch-FustéJ,López-Tamames E,et al.Development of volatile compounds of cava (Spanish sparkling wine) during long ageing time in contact with lees [J]. Food Chemistry,2006,95:237–242.
    [35] Setkova L,Risticevic S,Pawliszyn J.Rapid headspace solid-phase microextraction-gas chromatographic– time-of-flight mass spectrometric method for qualitative profiling of ice wine volatile fractionII: Classification of Canadian and Czech ice wines using statistical evaluation of the data [J].Journal of Chromatography A, 2007,1147:224–240.
    [36] Aznar M , Arroyo T . Analysis of wine volatile profile by purge-and-trap–gas chromatography–mass spectrometry application to the analysis of red and white wines from different Spanish regions [J].Journal of Chromatography A,2007,1165:151–157.
    [37] FalquéE, Darriet P,Fernández E,et al.Volatile profile and differentiation between Albari?o wines from different origins [J].International Journal of Food Science and Technology,2008,43:464–475.
    [38] Oliveira J M, Oliveira P,Raymond L,et al.Changes in aromatic characteristics of Loureiro and Alvarinho wines during maturation [J].Journal of Food Composition and Analysis,2008,21:695–707.
    [39] García-Martín S, Herrero C,Pe?a R M,et al.Solid-phase microextraction gas chromatography–mass spectrometry (HS-SPME-GC– MS) determination of volatile compounds in orujo spirits: Multivariate chemometric characterization [J].Food Chemistry ,2010,118:456–461.
    [40] Pereira A C, Reis M S, Saraiva P M,et al.Aroma ageing trends in GC/MS profiles of liqueur wines [J].Analytica Chimica Acta,2010,659:93–101.
    [41] Pereira A C, Reis M S, Saraiva P M,et al.Analysis and assessment of Madeira wine ageing over an extended time period through GC–MS and chemometric analysis [J].Analytica Chimica Acta,2010,660:8-21.
    [42] Castro-Vázquez L,Ala?ón M E, Calvo E,et al.Volatile compounds as markers of ageingin Tempranillo red wines from La Mancha DO stored in oak wood barrels [J].Journal of chromatography A,2011,1218(30):4910-4917.
    [43] Guerrero E D, Cejudo Bastante M J,Mejías R C,et al.Characterization and Differentiation of Sherry Brandies Using Their Aromatic Profile [J].Journal of Agricultural and Food Chemistry,2011,59:2410–2415.
    [44] Perestrelo R, Barros A S,Camara J S,et al.In-Depth search focused on furans, lactones, volatile phenols, and acetals as potential age markers of Madeira wines by comprehensive Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometry combined with Solid Phase Microextraction [J].Journal of Agricultural and Food Chemistry,2011,59:3186–3204.
    [45] Barbaste M,Medina B,Sarabia L,et al.Analysis and comparison of SIMCA models for denominations of origin of wines from de Canary Islands (Spain) builds by means of their trace and ultratrace metals content [J].Analytica Chimica Acta,2002,472:161–174.
    [46] Marengo E,Aceto M.Statistical investigation of the differences in the distribution of metals in Nebbiolo-based wines [J].Food Chemistry,2003,81:621-630.
    [47] Taylor V F,Longerich H P,Greenough J D.Multielement analysis of Canadian wines by inductively coupled plasma mass spectrometry (ICP-MS) and multivariate statistics [J].Journal of Agricultural and Food Chemistry,2003,51:856?860.
    [48] Thiel G, Geisler G, Blechschmidt I,et al.Determination of trace elements in wines and classification according to their provenance [J].Anal Bioanal Chem,2004,378:1630–1636.
    [49] Casti?eira Gómez M Del M, Feldmann I, Jakubowski N,et al.Classification of German white wines with certified brand of origin by multielement quantitation and pattern recognition techniques[J].Journal of Agricultural and Food Chemistry,2004,52:2962?2974.
    [50] Coetzee P P,Steffens F E,Eiselen R J,et al.Multi-element analysis of south african wines by ICP?MS and their classification according to geographical origin [J].Journal of Agricultural and Food Chemistry,2005,53:5060?5066.
    [51] ?perkováJ,Suchánek M.Multivariate classification of wines from different Bohemian regions (Czech Republic) [J].Food Chemistry,2005,93:659–663.
    [52] Angus N S,O,Keeffe TJ,Stuart K R,et al.Regional classification of New Zealand red wines using inductively-coupled plasma-mass spectrometry (ICP-MS) [J].Australian Journal of Grape and Wine Research,2006,12:170-176.
    [53] Iglesias M, Besalu? E, Antico E.Internal Standardization?Atomic Spectrometry and geographical pattern recognition techniques for the multielement analysis and classification of Catalonian red wines [J].Journal of Agricultural and Food Chemistry,2007,55:219?225.
    [54] Van der Linde G,Fischer J L,Coetzee P P.Multi-element analysis of South African wines and their provenance soils by ICP-MS and their classification according to geographical origin using multivariate statistics [J].South African Journal for Enology & Viticulture,2010,31(2):143-153.
    [55] Bentlin F R S,Pulgati F H,Dressler V L,et al. Elemental analysis of wines from south america and their classification according to country [J]. Journal of the brazilian chemical society, 2011,22(2): 327-336.
    [56] Rodrigues S M,OteroM,Alves A A,et al.Coimbra, Eduarda Pereira, Armando C. Duarte. Elemental analysis for categorization of wines and authentication of their certified brand of origin [J].Journal of Food Composition and Analysis,2011,24:548–562.
    [57] Barbaste M,Halicz L,Galy A,et al.Evaluation of the accuracy of the determination of lead isotope ratios in wine by ICP MS using quadrupole, multicollector magnetic sector and time-of-fight analyzers [J].Talanta,2001,54:307-317.
    [58] Larcher R,Nicolini G, Pangrazzi P.Isotope ratios of Lead in Italian wines by Inductively Coupled Plasma Mass Spectrometry [J].Journal of Agricultural and Food Chemistry,2003,51:5956?5961.
    [59] Coetzee P P,Vanhaecke F.Classifying wine according to geographical origin via quadrupole-based ICP–mass spectrometry measurements of boron isotope ratios [J].Analytical and bioanalytical chemistry,2005,383:977–984.
    [60] Vorster C,Greeff L,Coetzee P P.The determination of 11B/10B and 87Sr/86Sr isotope ratios by quadrupole-Based ICP-MS for the fingerprinting of South African wine [J].South African Journal of Chemistry,2010,63:207-214.
    [61] Gómez-Plaza E,Gil-Mu?oz R,López-Roca J M,et al.Color and phenolic compounds of a young red wine as discriminanting variables of its ageing status [J].Food Research International,1999,32:503-507.
    [62] Larrauri J A,Sánchez-Moreno C,Rupérez P,et al.Free radical scavenging capacity in the aging of selected red Spanish wines [J].Journal of Agricultural and Food Chemistry,1999,47:1603-1606.
    [63] RecamalesáF,Sayago A, Lourdes González-Miret M,et al.The effect of time and storage conditions on the phenolic composition and colour of white wine[J].Food Research International,2006,39:220-229.
    [64] Monagas M,Gómez-Cordovés C,BartoloméB.Evolution of the phenolic content of red wines from Vitis vinifera L. during ageing in bottle [J].Food Chemistry,2006,95:405-412.
    [65] Barbosa-Garcia O,Ramos-Ortiz G,Maldonado J L,et al.UV-vis absorption spectroscopyand multivariate analysis as a method to discriminate tequila [J].Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2007,66(1):129-134.
    [66] Chassaing S . Lefeuvre D , Jacquet R , et al . Physicochemical studies of new anthocyano-ellagitannin hybrid pigments : about the origin of the influence of Oak C-glycosidic ellagitannins on wine color[J].European Journal of Organic Chemistry(EUR J ORG CHEM),2010,1:55-63.
    [67] Saavedra J,Fuentealba C,Yá?ez L,et al.Chemometric approaches for the zoning of Pinot Noir wines from the Casablanca valley,Chile [J].Food Chemistry,2011,127:1842-1847.
    [68] Pereira A C,Reis M S,Saraiva P M,et al.Madeira wine ageing prediction based on different analytical techniques: UV–vis, GC-MS, HPLC-DAD [J].Chemometrics and Intelligent Laboratory Systems,2011,105:43–55.
    [69]董建平.原子吸收光谱法测定白酒中锰[J].理化检测-化学分册,2007,43(9):787.
    [70]郭金英,李丽,刘开永等.石墨炉原子吸收光谱直接进样法测定红葡萄酒中铅[J].食品科学,2007,30(18):233-236.
    [70]金茜,王明力.一次消解-原子吸收光谱法连续测定蒸馏酒中金属元素[J].光谱实验室,2011,28(1):98-100.
    [71]任凯,贾华丽,谢东坡等.原子吸收光谱法测定红酒中的微量金属元素周口师范学院学报[J].2011,28(2):75-77.
    [72] Frías S,Pérez Trujillo J P,Pe?a E,et al.Classification and differentiation of bottled sweet wines of Canary Islands (Spain) by their metallic content[J].European Food Research and Technology,2001,213:145-149.
    [73] Fr?a?s S,Conde J E,Rodr?g?uez-Bencomo J J,et al.Classification of commercial wines from the Canary Islands (Spain) by chemometric techniques using metallic contents[J].Talanta,2003,59(2):335-344.
    [74] Galgano F,Favati F,Caruso M,et al.Analysis of trace elements in southern Italian wines and their classification according to provenance [J].LWT-Food Science and Technology,2008,41:1808-1815.
    [75] Felipe L V,Villagra E,Tapia J,et al.Analysis of major metallic elements in Chilean wines by atomic absorption spectroscopy [J].Ciencia e Investigación Agraria,2010,37(2):77-85.
    [76]于海燕,应义斌,傅霞萍等.近红外投射光谱应用于黄酒酒龄的定性分析[J].光谱学与光谱分析,2007,27(5):920-923.
    [77]李长文,魏纪平,李燚等.运用FTIR分析不同酒龄基酒[J].酿酒科技,2008,12:70-72.
    [78]刘巍,战吉宬,黄卫东等.基于近红外光谱技术的葡萄酒原产地辨识方法[J].农业工程学报,2010,26(1):374-378.(增刊)
    [79]刘巍,李德美,刘国杰等.利用近红外光谱技术对葡萄酒原产地进行Fisher判别[J].酿酒科技,2010,7:65-69.
    [80]姜安,彭江涛,彭思龙等.基于SVM的白酒红外光谱分析方法研究[J].计算机与应用化学,2010,27(2):233-236.
    [81] Picque D,Cattenoz T,Corrieu G,et al.Discrimination of red wines according to their geographical origin and vintage year by the use of mid-infrared spectroscopy [J].Sciences des Aliments, 2005,25(3):207-220.
    [82] Picque D,Lieben P,Corrieu G,et al.Discrimination of Cognacs and other distilled drinks by Mid-infrared Spectropscopy [J].Journal of Agricultural and Food Chemistry,2006,54:5220-5226.
    [83] Liu L,Cozzolino D,Cynkar W U,et al.Geographic classification of Spanish and Australian tempranillo red wines by visible and near-infrared spectroscopy combined with multivariate analysis [J].Journal of Agricultural and Food Chemistry,2006,54(18):6754-6759.
    [84] Liu L,Cozzolino D,Cynkar W U,et al.Preliminary study on the application of visible–near infrared spectroscopy and chemometrics to classify Riesling wines from different countries [J].Food Chemistry,2008,106:781-786.
    [85] Yu H Y,Ying Y B,Fu X P,et al.Classification of Chinese rice wine with different marked ages based on near infrared spectroscopy [J].Journal of Food Quality,2006,29:339-352.
    [86] Yu H Y,Zhou Y,Fu X P,et al.Discrimination between Chinese rice wines of different geographical origins by NIRS and AAS [J].European Food Research and Technology,2007,225:313-320.
    [87] Yu H Y,Ying Y B,Sun T,et al.Vintage year determination of bottled Chinese rice wine by Vis-NIR Spectroscopy [J].Journal of Food Science,2007,72(3):E125-E129.
    [88] Lorenzo C,Garde-Cerdán T,Pedroza M A,et al.Determination of fermentative volatile compounds in aged red wines by near infrared spectroscopy[J].Food Research International,2009,42:1281-1286.
    [89] Garde-Cerdán T,Lorenzo C,Alonso G L,et al.Employment of near infrared spectroscopy to determine oak volatile compounds and ethylphenols in aged red wines [J].Food Chemistry,2010,119:823-828.
    [90] Ioannou-Papayianni E,Kokkinofta R I,Theocharis C R.Authenticity of Cypriot sweet wine Commandaria using FT-IR and chemometrics [J].Journal of Food Science,2011,76(3):C420-C427.
    [91]尹春丽,丁春晖,李华.昌黎原产地干红葡萄酒的三维荧光光谱特征研究[J].分析测试学报,2008,27(6):641-643.
    [92]刘周忆,朱拓,顾恩东等.黄酒的荧光光谱研究[J].光谱学与光谱分析,2008,28(10):2409-2412.
    [93]杨建磊,朱拓,武浩.基于三维荧光光谱特性的白酒聚类分析研究[J].光电子·激光,2009,20(4):495-498.
    [94]陈燕清,颜流水,倪永年.基于料酒的三维同步荧光光谱模式识别研究[J].分析实验室,2011,30(4):10-14.
    [95] Dufouré,Letort A,Laguet A,et al.Investigation of variety, typicality and vintage of French and German wines using front-face fluorescence spectroscopy [J].Analytica Chimica Acta,2006,563:292-299.
    [96] SádeckáJ,TóthováJ,Májek P.Classification of brandies and wine distillates using front face fluorescence spectroscopy [J].Food Chemistry,2009,117:491-498.
    [97] TóThoVáJ,SádeCkáJ,MáJek P.Total luminescence spectroscopy for differentiating between brandies and wine distillates [J].Czech Journal of Food Sciences,2009,27(6):425-432.
    [98] Yin C L,Li H,Ding C H,et al.Preliminary investigation on variety, brewery and vintage of wines using three-dimensional fluorescence spectroscopy [J].Food science and technology research,2009,15(1):27-38.
    [99] Pí? ?,Májek P,SádeckáJ.Synchronous Fluorescence Spectroscopy for Differentiating Between Brandies and Wine Distillates [J].Acta Chimica Slovaca,2011,4(1):47-58.
    [100]史志存,李建平,马青等.电子鼻及其在白酒识别中的应用[J].仪表技术与传感器,2000,1:34-37.
    [101]秦树基,黄林.用于酒类识别的电子鼻研究[J],郑州轻工业学院学报(自然科学版),2000,15(4):17-19.
    [102]杨建华,侯宏,王磊等.基于集成气体传感器阵列的电子鼻系统动态响应特性分析[J].西北工业大学学报,2003,21(4):435-438.
    [103]杨建华,侯宏,王磊等.基于集成气体传感器阵列的电子鼻系统[J].传感技术学报,2003,22(8): 21-26.
    [104]王晗,杨建华,侯宏等.基于传感器温度动态响应信息和Kohonen算法的葡萄酒定性识别方法[J].传感技术学报,2004,2:185-188.
    [105]田先亮,殷勇,刘红俊.酒类鉴别的人工嗅觉技术研究[J].食品科学,2004,25(2): 29-32.
    [106]殷勇,田先亮,邱明.基于人工嗅觉的酒类质量稳定性判别方法研究[J].仪器仪表学报,2005,26(6):565-568.
    [107]殷勇,田先亮.基于PCA与Wilks准则的电子鼻酒类鉴别方法研究[J].仪器仪表学报,2007,28(5):849-952.
    [108]周海涛,殷勇,于慧春.劲酒电子鼻鉴别分析中传感器阵列优化方法研究[J].传感技术学报,2009,22(2):175-178.
    [109]石志标,黄胜全,范雪冰等.基于生物嗅觉的电子鼻研究[J].中国工程机械,2007,18(23):2810-2813.
    [110]高永梅,刘远方,李艳霞等.主要香型白酒的电子鼻指纹图谱[J].酿酒科技,2008,5:38-44.
    [111]王立川,张覃轶,黄伟.基于气体传感器阵列的白酒特征分析[J].传感技术学报,2010,23(12):1686-1689.
    [112] Guadarrama A,Fernández J A,í?iguez M,et al.Array of conducting polymer sensors for the characterisation of wines[J].Analytica Chimica Acta,2000,411:193-200.
    [113] Penza M,Cassano G.Chemometric characterization of Italian wines by thin-film multisensors array and artificial neural networks[J].Food Chemistry,2004,86:283-296.
    [114] García M,Aleixandre M,Gutiérrez J,et al.Electronic nose for wine discrimination[J].Sensors and Actuators B,2006,113:911–916.
    [115] García M,Fernández M J,Fontecha J L,et al.Differentiation of red wines using an electronic nose based on surface acoustic wave devices [J].Talanta,2006,68:1162–1165.
    [116] Lozano J,Fernández M J,Fontecha J L,et al.Wine classification with a zinc oxide SAW sensor array [J].Sensors and Actuators B,2006,120:166–171.
    [117] Lozano J,Arroyo T,Santos J P,et al.Electronic nose for wine ageing detection [J].Sensors and Actuators B,2008,133:180–186.
    [118] Beltrán N H,Duarte-Mermoud M A,Soto V A,et al.Chilean Wines Classification based only on Aroma Information [J].International Journal of Electrical and Computer Engineering,2006,1(5):378-383.
    [119] Beltrán N H,Duarte-Mermoud M A,Mu?oz RE.Geographical classification of Chilean wines by an electronic nose [J].International Journal of Wine Research,2009,1:209-219.
    [120] Berna A Z,Trowell S,Clifford D,et al.Geographical origin of Sauvignon Blanc wines predicted by mass spectrometry and metal oxide based electronic nose [J].Analytica Chimica Acta,2009,648:146-152.
    [121] Cynkar W,Dambergs R,Smith P,et al.Classification of Tempranillo wines according to geographic origin: Combination of mass spectrometry based electronic nose and chemometrics [J].Analytica Chimica Acta,2010,660:227-231.
    [122] Vera L,Ace?a L,Guasch J,et al.Characterization and classification of the aroma of beer samples by means of an MS e-nose and chemometric tools [J].Analytical and bioanalyticalchemistry,2011,399:2073-2081.
    [123] Antoce A O,Namolosanu I.Rapid and precise discrimination of wines by means of an electronic nose based on gas-chromatography [J].Rev Chim (Bucharest),2011,62(6):593-595.
    [124]田师一,邓少平.多频脉冲电子舌对酒类品种区分与辨识[J].酿酒科技,2006,11:24-26.
    [125]王茹,田师一,邓少平.智舌在白酒区分辨识中的应用研究[J].酿酒科技,2008,11:54-56.
    [126]张夏宾,王晓萍.基于调幅脉冲扫描法的电子舌及其在酒类识别中的应用[J].传感技术学报,2007,20(3):489-492.
    [127]李华,丁春晖,尹春丽等.电子舌对昌黎原产地干红葡萄酒的区分辨识[J].食品与发酵工业,2008,34(3):130-132.
    [128]鲁小利,王俊.基于遗传优化神经网络的电子舌在黄酒检测中的应用[J].测控技术与仪器仪表,2009,7:91-94.
    [129]王永维,王俊,朱晴虹.基于电子舌的白酒检测与区分研究[J].包装与食品机械,2009,29(5):57-61.
    [130]王俊,姚聪.基于电子舌技术的葡萄酒分类识别研究[J].传感技术学报,2009,22(8):1088-1093.
    [131] Parraa V,Hernandoa T,Rodríguez-Méndeza M L,et al.Electrochemical sensor array made from bisphthalocyanine modified carbon paste electrodes for discrimination of red wines [J].Electrochimica Acta,2004,49:5177-5185.
    [132] Burattia S,Benedettia S,Scampicchioa M,et al.Characterization and classification of Italian Barbera wines by using an electronic nose and an amperometric electronic tongue [J].Analytica Chimica Acta,2004,525:133-139.
    [133] Parra V,ArrietaáA,Fernández-Escudero J A,et al.Monitoring of the ageing of red wines in oak barrels by means of an hybrid electronic tongue[J].Analytica Chimica Acta,2006,563:229-237.
    [134] Parra V,ArrietaáA,Fernández-Escudero J A,et al.E-tongue based on a hybrid array of voltammetric sensors based on phthalocyanines, perylene derivatives and conducting polymers: Discrimination capability towards red wines elaborated with different varieties of grapes [J].Sensors and Actuators B,2006,115:54-61.
    [135] Rudnitskaya A,Delgadillo I,Legin A,et al.Prediction of the Port wine age using an electronic tongue[J].Chemometrics and Intelligent Laboratory Systems,2007,88:125-131.
    [136] Pigani L , Foca G , Ionescu K , et al . Amperometric sensors based on poly (3,4-ethylenedioxythiophene)- modified electrodes: Discrimination of white wines[J].Analytica chimica acta,2008,614:213-222.
    [137] Pigani L,Culet A,Ulrici A,et al.Pedot modified electrodes in amperometric sensing for analysis of red wine samples[J].Food Chemistry,2011,129:226-233.
    [138] Rudnitskaya A,Rocha S M,Legin A,et al.Evaluation of the feasibility of the electronic tongue as a rapid analytical tool for wine age prediction and quantification of the organic acids and phenolic compounds.The case-study of Madeira wine[J].Analytica Chimica Acta,2010,662:82-89.
    [139] Wei Z B,Wang J,Ye L S.Classification and prediction of rice wines with different marked ages by using a voltammetric electronic tongue[J].Biosensors and Bioelectronics,2011,26:4767-4773.
    [140] Zhang C,Bailey D P,Suslick K S.Colorimetric sensor arrays for the analysis of beers: a feasibility study[J].Journal of Agricultural and Food Chemistry,2006,54:4925-4931.
    [141] Suslick K S , Rakow N A , Sen A . Colorimetric sensor arrays for molecular recognition[J].Tetrahedron,2004,60:11133-11138.
    [142] Greene N T,Shimizu K D.Colorimetric Molecularly Imprinted Polymer Sensor Array using Dye Displacement[J].Journal of the american chemical society,2005,127:5695-5700.
    [143] Carofiglio T,Fregonese C,Mohr G J,et al.Optical sensor arrays: one-pot,multiparallel synthesis and cellulose immobilization of pH and metal ion sensitive azo-dyes[J].Tetrahedron,2006,62(7):1502-1507.
    [144] Schiller A,Wessling R A,Singaram B.A fluorescent sensor array for saccharides based on boronic acid appended bipyridinium salts[J].Angewandte Chemie International Edition,2007,46:6457-6459.
    [145] Schiller A,Vilozny B,Wessling R A,et al.Recognition of phospho sugars and nucleotides with an array of boronic acid appended bipyridinium salts[J].Analytica Chimica Acta,2008,627:203-211.
    [146] Bang J H,Lim S H,Park E,et al.Chemically Responsive Nanoporous Pigments: Colorimetric Sensor Arrays and the Identification of Aliphatic Amines[J].Langmuir,2008,24:13168-13172.
    [147] Lim S H,Musto C J,Park E,et al.A Colorimetric sensor array for detection and identification of sugars[J].Organic Letters,2008,10:4405-4408.
    [148] Musto C J,Lim S H,Suslick K S.Colorimetric detection and identification of natural and artificial sweeteners[J].Analytical Chemistry,2009,81(15):6526-6533.
    [149] Thete A R,Henkel T,Gockeritz R,et al.A hydrogel based fluorescent micro array used for the characterization of liquid analytes[J].Analytica Chimica Acta,2009,633:81-89.
    [150] Kong H,Zhang S,Na N,et al.Recognition of organic compounds in aqueous solutions by chemiluminescence on an array of catalytic nanoparticles [J].Analyst,2009,134:2441-2446.
    [151] Wu Y Y,Na N,Zhang S,et al.Discrimination and Identification of Flavors with Catalytic Nanomaterial-Based Optical Chemosensor Array[J].Analytical Chemistry,2009,81:961-966.
    [152] Montes-Navajas P,Baumes L A,Corma A,et al.Dual-response colorimetric sensor array for the identification of amines in water based on supramolecular host-guest complexation[J].Tetrahedron Letters,2009,50:2301-2304.
    [153] Baumes L A,Sogo M B,Montes-Navajas P,et al.A colorimetric sensor array for the detection of the date-rape drug gamma-hydroxybutyric acid (GHB): a supramolecular approach [J].Chemistry-a European Journal,2010,16:4489-4495.
    [154] Jiang H,Wang Y L,Ye Q,et al.Polydiacetylene-based colorimetric sensor microarray for volatile organic compounds[J].Sensors and Actuators B,2010,143:789-794.
    [155] Natale C D,Paolesse R,Burgio M,et al.Application of metalloporphyrins-based gas and liquid sensor arrays to the analysis of red wine[J].Analytica Chimica Acta,2004,513:49-56.
    [156] Lvova L,Paolesse R,Natale C D,et al.Detection of alcohols in beverages: an application of porphyrin-based Electronic tongue[J].Sensors and Actuators B,2006,118:439-447.
    [157] Verrelli G,Lvova L,Paolesse R,et al.Metalloporphyrin-Based Electronic Tongue: an Application for the Analysis of Italian White Wines[J].Sensors,2007,7:2750-2762.
    [158] Natale C D,Mignani A G,Paolesse R,et al.Array of Opto-Chemical Sensors Based on Fiber-Optic Spectroscopy [J].IEEE Sensors Journal,2005,5(6):1165-1174.
    [159] Macagnanoa A,Sgreccia E,Paolesse R,et al.Sorption and condensation phenomena of volatile compounds on solid-state metalloporphyrin films[J].Sensors and Actuators B,2007,124:260-268.
    [160] Podbielska H,Ulatowska-Jarza A,Muller G,et al.Silica sol-gel matrix doped with Photolon molecules for sensing and medical therapy purposes[J].Biomolecular Engineering,2007,24:425-443.
    [161] Bozkurt S S,Merdivan E,Benibol Y.A fluorescent chemical sensor for ethanol determination in alcoholic beverages[J].Microchim Acta,2010,168:141-145.
    [162] Paske A C,Earl L D,O’Donnell J L.Interfacially polymerized metalloporphyrin thin films for colorimetric sensing of organic vapors[J].Sensors and Actuators B,2011,155:687-691.
    [163] Rakow N A,Suslick K S.A colorimetric sensor array for odour visualization[J].Nature,2000,406:710-713.
    [164] Zhang C,Suslick K S.A colorimetric sensor array for organics in water[J].Journal of theAmerican Chemical Society,2005,127:11548-11549.
    [165] Zhang C,Bailey D P,Suslick K S.Colorimetric sensor arrays for the analysis of beers: A feasibility study[J].Journal of Agricultural and Food Chemistry,2006,54(14):4925-4931.
    [166] Zhang C,Suslick K S.Colorimetric sensor array for soft drink analysis[J].Journal of Agricultural and Food Chemistry,2007,55(2):237-242.
    [167] Suslick B A,Feng L,Suslick K S.Discrimination of complex mixtures by a colorimetric sensor array: coffee aromas[J].Analytical Chemistry,2010,82(5):2067-2073.
    [168]季克良,郭坤亮,朱书奎等.全二维气相色谱/飞行时间质谱用于白酒微量成分的分析[J].酿酒科技,2007,3:100-102.
    [169]赵东,李阳华,向双全.气相色谱-质谱法测定酒糟、白酒中的芳香族香味成分[J].酿酒科技,2006,10:92-94.
    [170]吴兆征,范志勇,左国营等.GC- MS直接进样定性定量分析白酒的探讨[J].酿酒,2009,36(6):88-90.
    [171]黄艳梅,卢建春,李安军等.采用气相色谱-质谱分析古井贡酒中的风味物质[J].酿酒科技,2006,7:91-94.
    [172]王勇,范文来,徐岩等.液液萃取和顶空固相微萃取结合气相色谱-质谱联用技术分析牛栏山二锅头酒中的挥发性物质[J].酿酒科技,2008,8:99-103.
    [173] Fan W , Qian M C . Headspace solid phase microextraction (HS-SPME) and gas chromatography- olfactometry dilution analysis of young and aged Chinese“Yanghe Daqu”liquors[J].Journal of Agricultural and Food Chemistry,2005,53(20):7931-7938.
    [174]李维青.雏议白酒中微量成分的分类[J].酿酒,2006,33(3):29-31.
    [175]沈怡方.白酒中四大乙酯在酿造发酵中形成的探讨[J].酿酒科技,,2003,5:28-31.
    [176]李大和、刘沛龙、陈功、文先琼、杨坤琪、杨婷、张杰、陈蓉、陈建莉.低度曲酒贮存过程中质量变化的研究[J].酿酒科技,1997,1:29-32
    [177] Janzen M C,Ponder J B,Bailey D P,et al.Colorimetric Sensor Arrays for Volatile Organic Compounds[J].Analytical Chemistry,2006,78:3591-3600.
    [178] Kireeva I.How to register geographical indications in the European Community[J].World Patent Information,2011,33:72-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700