基于核糖体RNA高通量测序分析微生物群落结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物群落多样性是微生物生态学和环境学研究的重点之一。分子生物学方法应用于微生物群落结构分析使得对环境样品中占大多数的不可培养微生物的研究成为了可能。由于功能上高度保守,序列上的不同位置具有不同的变异速率,核糖体RNA (rRNA)是目前在微生物分子生态学上最为有用以及应用最广泛的分子标记,通过rRNA序列比对,可以分析不同分类水平的系统发育关系。目前,较为常用的分析微生物群落结构的方法大多是建立在对于小亚基(SSU) rRNA上的全长或某个片段进行PCR扩增的基础上的。
     然而,PCR过程中的偏差(bias)会引起结果并不能如实地再现原始的群落结构,随着多个宏基因组项目的研究,通过把现有的rRNA基因的“通用引物”与这些不依赖于PCR扩增得到的序列比对,发现所谓的“通用引物”并不能覆盖全部的微生物类型,即使可以添加简并碱基,也无法与通过宏基因组得到的rRNA序列完全匹配,这导致了在诸多研究中会忽略环境中的某些含量较少的微生物群落(rare biosphere)。因此,本研究采用了一种新的研究策略(sequencing of SSU rRNA without specific PCR amplification, SROP),对复杂环境样品提取总RNA,通过电泳使SSU rRNA和大亚基(LSU) rRNA分离,对含有SSU rRNA的部分割胶回收,对于富集的SSU rRNA使用随机引物合成cDNA并以cDNA为模板合成双链DNA,使用高通量焦磷酸测序对双链DNA直接测序,这一方法不使用特异性PCR扩增,避免了PCR过程中产生的诸多偏差,可以同时定量地分析细菌、古生菌、真核微生物的群落结构,从而真实、全面地反映环境样品中微生物群落结构的特征。由于通过SROP方法得到的序列是分布在rRNA上的不同位置并且较为集中地分布于16S rRNA的V3高变区,为了验证这一序列分布是否适合于微生物分类信息的确定以及群落结构的分析,从rRNA公共数据库(RDP和Silva)中抽取细菌、古生菌和真核生物的接近全长的SSU rRNA序列,模拟实验过程,形成了400bp的片段,通过与原始序列比较,确定了在任何一个分类水平,都能对99%以上的序列正确分类,并且不同分布的序列与这些序列中属于V3高变区的序列的所展现的群落结构是基本一致的,通过上述结论证明本研究中的得到的序列对于分类和表现群落结构是适合的。本研究通过SROP方法对两个复杂环境样品进行了分析,活性污泥样品中以细菌和真核微生物为主,厌氧颗粒污泥样品中以细菌和古生菌为主,这两个样品中的微生物包含了三个域,并且具有较高的多样性,具有一定的代表意义。其中,活性污泥样品中的细菌主要以Proteobacteria中的Rhodocyclaceae为主,真核生物主要以Metazoa和Alveolata两个门为主;厌氧颗粒污泥中细菌主要是Proteobacteria和Synergistetes两个门,其中Desulfovibrionaceae和Synergistaceae两个科所占比例最高,古生菌主要是Euryarchaeota中的Methanosaeta这个科,除此之外,还有大量的序列是不能确定分类信息甚至不能确定类型的,暗示了实际样品中更高的微生物多样性。通过将这些SROP方法得到的序列所展示的群落结构与经过PCR扩增的序列相比,发现了一定的差异,通过多样性指数分析,SROP方法得到的序列可以展现更高的多样性。将通过SROP方法得到的序列与PCR扩增时使用的引物进行比较,发现了这些“通用引物”中具有较多不匹配的情况,并且引物上没有一个位点是与所有的序列完全匹配的。本文提供了一种可以不依赖于PCR扩增的直接对复杂环境中具有活性的微生物进行定量的分析的方法,相信可以为更深入了解微生物世界提供更有利的工具。
     使用微生物分子生物学手段同样可以对生产过程中的微生物进行监测。通过在不同的样品的PCR引物上添加不同的标记(barcode)可以在一个高通量反应中同时分析多个样品,使得对生产过程中的微生物的动态监测成为了可能。本研究选择了中国清香型白酒中的代表汾酒作为研究对象,对其中大曲的一种红心曲的制作过程以及在地缸中的发酵过程进行了监测,针对不同的微生物类型设计了不同的实验方案,对于真菌使用了添加barcode的焦磷酸测序的方法,对于细菌使用了克隆文库的方法,并分别对两者进行了定量PCR。这是焦磷酸高通量测序第一次用于食品真菌群落分析。酒曲样品中的细菌主要的门为Firmicutes (89.2%),主要的科为Lactobacillaceae (35.4%)和Bacillaceae (28.1%),前者在生产过程中占优势,而后者在成曲后6个月样品中占优势。发酵过程中的细菌基本都是Lactobacillaceae (90.8%)。对于真菌,酒曲中主要存在的科是Saccharomycetaceae (96.9%),而发酵过程中主要的真菌则是Saccharomycetaceae (60.1%)和Saccharomycopsidaceae (28.8%)。通过对细菌和真菌的定量PCR分析,整个制曲过程中细菌16S rRNA基因和真菌ITS区域的整体趋势都是下降的,发酵过程前期,细菌16S rRNA基因的拷贝数增加,而真菌ITS区域的拷贝数基本保持稳定。
Microbial community diversity is an essential issue in both microbial ecology and environmental microbiology. The features and characteristics of uncultured microorganisms, also known as the majority population in environments, could be accomplished because of the introduction of molecular methods. Ribosomal RNA (rRNA), is the most widely used and useful molecular marker for molecular ecological researches, which caused by its highly functional conservation and diverse mutation rates in different positions. Phylogenetic analysis at different taxonomic level could be done by the comparison of rRNA sequences. Nowadays, PCR amplification of whole length or partial small subunit (SSU) rRNA is the most common used method for the investigation of microbial community diversity.
     However, the PCR bias caused by PCR amplification especially by primer mismatches usually makes quantitative analysis of microbial communities inaccessible and hampered the analysis of "rare" biosphere even with massive sequencing. When compared with the rRNA received from the metagenomic projects, the "universal primers" cannot cover the majority organisms that comprise the "rare" biosphere especially when using the degenerate "universal" primers. Here, a new method is presented in this study, which achieved by sequencing SSU rRNA without specific PCR amplification. The three domains (Bacteria, Archaea and Eukaryota) microorganisms in the complex environmental samples can be quantificationally analyzed simultaneously without specific PCR amplification, so the microbial community can be reconstructed more integrally. The rRNA sequences from reverse transcription reaction by random primer distributed in different region and concentrated in V3 hypervariable region in the 16S rRNA sequences. To test if this sequences set is suitable to analyze the community diversity and taxonomic annotations, nearly full length of sequences from the rRNA database (RDP and Silva) are extracted and simulated the reverse transcription reaction to form a 400 bp sequences set. That 400 bp sequences are annotated the taxonomy information and compared with the nearly full length sequences and more than 99%of sequences can be annotated correctly at all taxonomic levels.This result showed that the sequences obtained by this method are appropriate for the community diversity and taxonomic annotations analysis. Two complex environmental samples (activated sludge and anaerobic sludge) are analyzed in this study. Most of the microorganisms in the activated sludge sample are Bacteria and Eukaryota while that in the anaerobic sludge sample are Bacteria and Archaea. The microbial community diversities in both samples are very high. In the activated sludge sample, the dominant Bacteria are from the family Rhodocyclaceae, the phylum Proteobacteria and the dominant Eukaryota are the phyla Metazoa and Alveolata. In the anaerobic sludge sample, the dominant Bacteria are the families Desulfovibrionaceae and Synergistaceae in the phyla Proteobacteria and Synergistetes and the dominant Archaea are the family Methanosaeta in the phylum Euryarchaeota. In addition, the sequences which cannot be assigned to any microorganisms are abundant, which suggests that the higher microbial community diversity. When compared the sequences obtained from PCR amplification and our methods, difference are detected in the communities. The diversity index calculated from the the PCR independent rRNA sequences and the PCR amplification sequences show that the PCR independent rRNA sequences is a powerful technique to determine more broad range of microbial populations. The primer sets used in this study are compared with the PCR independent rRNA sequences and many types of mismathches are detected. Remarkable, no site in the primers can match all the PCR independent rRNA sequences. The method in this study will contribute significantly to our understanding of the diversity of complex microbial communities and expand our knowledge of the "rare" biosphere.
     Microbial molecular methods have been widely used to monitor the microbial community diversity during the production process. The barcoded primers for pyrosequencing can be used to process many samples in a single pyrosequencing run making it possible to monitor the microbial community diversity in many samples. In this study, the starter production and the fermentation process of one of the most renowned "light-fragrance" liquors in China Fen liquor were analyzed using different strategies aiming at different microbial types. Bacterial diversity was analyzed using the 16S rRNA gene clone library and sequencing. Fungal diversity was analyzed using the ITS1 region via pyrosequencing. Quantitative real-time PCR (qPCR) helped us compare the quantity of bacteria and fungi during the starter production and fermentation process. To the best of our knowledge, this is the first report to reveal the fungal diversity within the food- fermentation process by using the pyrosequencing. In bacteria, the abundant families were Lactobacillaceae (35.4%) and Bacillaceae (28.1%) in the starter samples. However, during the fermentation process, Lactobacillaceae (90.8%) dominated nearly all the samples. As to fungi, Saccharomycetaceae (96.9%) dominated the starter samples while Saccharomycetaceae (60.1%) and Saccharomycopsidaceae (28.8%) coexisting in the fermentation process samples. The results of qPCR showed that the content of bacteria was increased while that of fungi was more stable in the fermentation process and both of bacteria and fungi decreased after the starters had produced.
引文
[1]Whittaker, R. New concepts of kingdoms of organisms [J]. Science,1969. 163(3863):150-160.
    [2]Woese, C. R. Bacterial evolution [J]. Microbiological Reviews,1987.51(2):221-271.
    [3]Pace, N. R. A molecular view of microbial diversity and the biosphere [J]. Science,1997.276(5313):734-740.
    [4]Kaeberlein, T., Lewis, K., and Epstein, S. S. Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment [J]. Science, 2002.296(5570):1127-1129.
    [5]Whitman, W. B., Coleman, D. C., and Wiebe, W. J. Prokaryotes:the unseen majority [J]. Proceedings of the National Academy of Sciences of the United States of America,1998.95(12):6578-6583.
    [6]Curtis, T. P., Sloan, W. T., and Scannell, J. W. Estimating prokaryotic diversity and its limits [J]. Proceedings of the National Academy of Sciences of the United States of America,2002.99(16):10494-10499.
    [7]Schloss, P. D., and Handelsman, J. Status of the microbial census [J]. Microbiology and Molecular Biology Reviews,2004.68(4):686-691.
    [8]Ferguson, R. L., Buckley, E. N., and Palumbo, A. V. Response of marine bacterioplankton to differential filtration and confinement [J]. Applied and Environmental Microbiology,1984.47(1):49-55.
    [9]Jones, J. G. The effect of environmental factors on estimated viable and total populations of planktonic bacteria in lakes and experimental enclosures [J]. Freshwater Biology,1977.7(1):67-91.
    [10]Wagner, M., Erhart, R., Manz, W., Amann, R., Lemmer, H., Wedi, D., and Schleifer, K. H. Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge [J]. Applied and Environmental Microbiology,1994.60(3):792-800.
    [11]Torsvik, V., and Φvreas, L. Microbial diversity and function in soil:from genes to ecosystems [J]. Current Opinion in Microbiology,2002.5(3):240-245.
    [12]Andersson, A. F., Lindberg, M., Jakobsson, H., Backhed, F., Nyren, P., and Engstrand, L. Comparative analysis of human gut microbiota by barcoded pyrosequencing [J]. PLoS ONE,2008.3(7):e2836.
    [13]Luna, G. M., Dell'Anno, A., and Danovaro, R. DNA extraction procedure:a critical issue for bacterial diversity assessment in marine sediments [J]. Environmental Microbiology,2006.8(2):308-320.
    [14]Fortin, N., Beaumier, D., Lee, K., and Greer, C. W. Soil washing improves the recovery of total community DNA from polluted and high organic content sediments [J]. Journal of Microbiological Methods,2004.56(2):181-191.
    [15]Ogram, A., Sayler, G. S., and Barkay, T. The extraction and purification of microbial DNA from sediments [J]. Journal of Microbiological Methods,1987. 7:57-66.
    [16]Nocker, A., and Camper, A. K. Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide [J]. Applied and Environmental Microbiology,2006.72(3):1997-2004.
    [17]Schmidt, T. M., Delong, E. F., and Pace, N. R. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing [J]. Journal of Bacteriology,1991.173(14):4371-4378.
    [18]Muyzer, G., Dewaal, E. C., and Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Applied and Environmental Microbiology,1993.59(3):695-700.
    [19]Glaeser, S. P., Grossart, H. P., and Glaeser, J. Singlet oxygen, a neglected but important environmental factor:short-term and long-term effects on bacterioplankton composition in a humic lake [J]. Environmental Microbiology, 2010.12(12):3124-3136.
    [20]Yergeau, E., Bezemer, T. M., Hedlund, K., Mortimer, S. R., Kowalchuk, G. A., and van der Putten, W. H. Influences of space, soil, nematodes and plants on microbial community composition of chalk grassland soils [J]. Environmental Microbiology,2010.12(8):2096-2106.
    [21]Noor, S. O., Ridgway, K., Scovell, L., Kemsley, E. K., Lund, E. K., Jamieson, C., Johnson, I. T., and Narbad, A. Ulcerative colitis and irritable bowel patients exhibit distinct abnormalities of the gut microbiota [J]. BMC Gastroenterology, 2010.10:134.
    [22]Liu, W. T., Marsh, T. L., Cheng, H., and Forney, L. J. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA [J]. Applied and Environmental Microbiology,1997.63(11):4516-4522.
    [23]Ye, L., and Zhang, T. Estimation of nitrifier abundances in a partial nitrification reactor treating ammonium-rich saline wastewater using DGGE, T-RFLP and mathematical modeling [J]. Applied Microbiology and Biotechnology,2010. 88(6):1403-1412.
    [24]Curlevski, N. J. A., Xu, Z. H., Anderson, I. C., and Cairney, J. W. G. Soil fungal communities differ in native mixed forest and adjacent Araucaria cunninghamii plantations in subtropical Australia [J]. Journal of Soils and Sediments,2010. 10(7):1278-1288.
    [25]Shrestha, M., Shrestha, P. M., Frenzel, P., and Conrad, R. Effect of nitrogen fertilization on methane oxidation, abundance, community structure, and gene expression of methanotrophs in the rice rhizosphere [J]. ISME Journal,2010. 4(12):1545-1556.
    [26]Heid, C. A., Stevens, J., Livak, K. J., and Williams, P. M. Real time quantitative PCR [J]. Genome Research,1996.6(10):986-994.
    [27]Noyer, C., Hamilton, A., Sacristan-Soriano, O., and Becerro, M. A. Quantitative comparison of bacterial communities in two Mediterranean sponges [J]. Symbiosis,2010.51(3):239-243.
    [28]Li, X., Upadhyaya, G., Yuen, W., Brown, J., Morgenroth, E., and Raskin, L. Changes in the structure and function of microbial communities in drinking water treatment bioreactors upon addition of phosphorus [J]. Applied and Environmental Microbiology,2010.76(22):7473-7481.
    [29]Talbot, G., Roy, C. S., Topp, E., Kalmokoff, M. L., Brooks, S. P. J., Beaulieu, C., Palin, M. F., and Masse, D. I. Spatial distribution of some microbial trophic groups in a plug-flow-type anaerobic bioreactor treating swine manure [J]. Water Science and Technology,2010.61(5):1147-1155.
    [30]Gibson, U. E. M., Heid, C. A., and Williams, P. M. A novel method for real time quantitative RT-PCR [J]. Genome Research,1996.6(10):995-1001.
    [31]Giovannoni, S. J., Delong, E. F., Olsen, G. J., and Pace, N. R. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells [J]. Journal of Bacteriology,1988.170(2):720-726.
    [32]Delong, E. F., Wickham, G. S., and Pace, N. R. Phylogenetic stains:ribosomal RNA-based probes for the identification of single cells [J]. Science,1989. 243(4896):1360-1363.
    [33]Tirodimos, I., Haidich, A. B., Dardavessis, T., and Arvanitidou, M. Diversity and seasonal variability of bacterial community structure in the river Aliakmon, Greece:analysis by the molecular technique FISH [J]. River Research and Applications,2010.26(7):887-893.
    [34]Lepere, C., Masquelier, S., Mangot, J. F., Debroas, D., and Domaizon, I. Vertical structure of small eukaryotes in three lakes that differ by their trophic status:a quantitative approach [J]. ISME Journal,2010.4(12):1509-1519.
    [35]Rusch, A., Hannides, A. K., and Gaidos, E. Diverse communities of active Bacteria and Archaea along oxygen gradients in coral reef sediments [J]. Coral Reefs,2009.28(1):15-26.
    [36]Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., and Goodman, R. M. Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products [J]. Chemistry & Biology,1998.5(10):R245-R249.
    [37]Tyson, G. W., Chapman, J., Hugenholtz, P., Allen, E. E., Ram, R. J., Richardson, P. M., Solovyev, V. V., Rubin, E. M., Rokhsar, D. S., and Banfield, J. F. Community structure and metabolism through reconstruction of microbial genomes from the environment [J]. Nature,2004.428(6978):37-43.
    [38]Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A., Wu, D. Y., Paulsen, I., Nelson, K. E., Nelson, W., Fouts, D. E., Levy, S., Knap, A. H., Lomas, M. W., Nealson, K., White, O., Peterson, J., Hoffman, J., Parsons, R., Baden-Tillson, H., Pfannkoch, C., Rogers, Y. H., and Smith, H. O. Environmental genome shotgun sequencing of the Sargasso Sea [J]. Science,2004. 304(5667):66-74.
    [39]Tringe, S. G., von Mering, C., Kobayashi, A., Salamov, A. A., Chen, K., Chang, H. W., Podar, M., Short, J. M., Mathur, E. J., Detter, J. C., Bork, P., Hugenholtz, P., and Rubin, E. M. Comparative metagenomics of microbial communities [J]. Science,2005.308(5721):554-557.
    [40]Broderick, N. A., Raffa, K. F., Goodman, R. M., and Handelsman, J. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods [J]. Applied and Environmental Microbiology,2004. 70(1):293-300.
    [41]Christner, B. C., Mosley-Thompson, E., Thompson, L. G., and Reeve, J. N. Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice [J]. Environmental Microbiology,2001.3(9):570-577.
    [42]Steven, B., Léveillé, R., Pollard, W. H., and Whyte, L. G. Microbial ecology and biodiversity in permafrost [J]. Extremophiles,2006.10(4):259-267.
    [43]Teske, A. P. The deep subsurface biosphere is alive and well [J]. Trends in Microbiology,2005.13(9):402-404.
    [44]Brodie, E. L., DeSantis, T. Z., Parker, J. P. M., Zubietta, I. X., Piceno, Y. M., and Andersen, G. L. Urban aerosols harbor diverse and dynamic bacterial populations [J]. Proceedings of the National Academy of Sciences of the United States of America,2007.104(1):299-304.
    [45]Dean, F. B., Nelson, J. R., Giesler, T. L., and Lasken, R. S. Rapid amplification of plasmid and phage DNA using phi29 DNA polymerase and multiply-primed rolling circle amplification [J]. Genome Research,2001.11 (6):1095-1099.
    [46]Raghunathan, A., Ferguson, H. R., Bornarth, C. J., Song, W. M., Driscoll, M., and Lasken, R. S. Genomic DNA amplification from a single bacterium [J]. Applied and Environmental Microbiology,2005.71 (6):3342-3347.
    [47]Yokouchi, H., Fukuoka, Y., Mukoyama, D., Calugay, R., Takeyama, H., and Matsunaga, T. Whole-metagenome amplification of a microbial community associated with scleractinian coral by multiple displacement amplification using phi 29 polymerase [J]. Environmental Microbiology,2006.8(7):1155-1163.
    [48]Poretsky, R. S., Bano, N., Buchan, A., LeCleir, G., Kleikemper, J., Pickering, M., Pate, W. M., Moran, M. A., and Hollibaugh, J. T. Analysis of microbial gene transcripts in environmental samples [J]. Applied and Environmental Microbiology,2005.71 (7):4121-4126.
    [49]Frias-Lopez, J., Shi, Y., Tyson, G. W., Coleman, M. L., Schuster, S. C., Chisholm, S. W., and DeLong, E. F. Microbial community gene expression in ocean surface waters [J]. Proceedings of the National Academy of Sciences of the United States of America,2008.105(10):3805-3810.
    [50]Urich, T., Lanzen, A., Qi, J., Huson, D. H., Schleper, C., and Schuster, S. C. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome [J]. PLoS ONE,2008.3(6):e2527.
    [51]Gosalbes, M. J., Durban, A., Pignatelli, M., Abellan, J. J., Jimenez-Hernandez, N.. Perez-Cobas, A. E., Latorre, A., and Moya, A. Metatranscriptomic Approach to Analyze the Functional Human Gut Microbiota [J]. PLoS ONE,2011. 6(3):e 17447.
    [52]Maxam, A. M., and Gilbert, W. A new method for sequencing DNA [J]. Proceedings of the National Academy of Sciences of the United States of America, 1977.74(2):560-564.
    [53]Sanger, F., Nicklen, S., and Coulson, A. R. DNA sequencing with chain-terminating inhibitors [J]. Proceedings of the National Academy of Sciences of the United States of America,1977.74(12):5463-5467.
    [54]Sanger, F., and Coulson, A. R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase [J]. Journal of Molecular Biology, 1975.94(3):441-446.
    [55]Wheeler, D. A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., He, W., Chen, Y. J., Makhijani, V., Roth, G. T., Gomes, X., Tartaro, K., Niazi, F., Turcotte, C. L., Irzyk, G. P., Lupski, J. R., Chinault, C., Song, X. Z., Liu, Y., Yuan, Y., Nazareth, L., Qin, X., Muzny, D. M., Margulies, M., Weinstock, G. M., Gibbs, R. A., and Rothberg, J. M. The complete genome of an individual by massively parallel DNA sequencing [J]. Nature,2008.452(7189):872-876.
    [56]Nyren, P., Pettersson, B., and Uhlen, M. Solid phase DNA minisequencing by an enzymatic luminometric inorganic pyrophosphate detection assay [J]. Analytical Biochemistry,1993.208(1):171-175.
    [57]Ronaghi, M., Uhlen, M., and Nyren, P. A sequencing method based on real-time pyrophosphate [J]. Science,1998.281(5375):363-365.
    [58]Ronaghi, M., Karamohamed, S., Pettersson, B., Uhlen, M., and Nyren, P. Real-time DNA sequencing using detection of pyrophosphate release [J]. Analytical Biochemistry,1996.242(1):84-89.
    [59]Voelkerding, K. V., Dames, S. A., and Durtschi, J. D. Next-generation sequencing: from basic research to diagnostics [J]. Clinical Chemistry,2009.55(4):641-658.
    [60]Edwards, R. A., Rodriguez-Brito, B., Wegley, L., Haynes, M., Breitbart, M., Peterson, D. M., Saar, M. O., Alexander, S., Alexander, E. C., and Rohwer, F. Using pyrosequencing to shed light on deep mine microbial ecology [J]. Bmc Genomics,2006.7.
    [61]Hamady, M., Walker, J. J., Harris, J. K., Gold, N. J., and Knight, R. Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex [J]. Nature Methods,2008.5(3):235-237.
    [62]Rousk, J., Baath, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., Knight, R., and Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil [J]. ISME Journal,2010.4(10):1340-1351.
    [63]Chao, A. Estimating the population size for capture-recapture data with unequal catchability [J]. Biometrics,1987.43(4):783-791.
    [64]Chao, A., and Lee, S. M. Estimating the number of classes via sample coverage [J]. Journal of the American Statistical Association,1992.87(417):210-217.
    [65]Chao, A., Hwang, W. H., Chen, Y. C., and Kuo, C. Y. Estimating the number of shared species in two communities [J]. Statistica Sinica,2000.10(1):227-246.
    [66]Gotelli, N. J., and Colwell, R. K. Quantifying biodiversity:procedures and pitfalls in the measurement and comparison of species richness [J]. Ecology Letters,2001. 4(4):379-391.
    [67]Schloss, P. D., and Handelsman, J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness [J]. Applied and Environmental Microbiology,2005.71(3):1501-1506.
    [68]Bond, P. L., Hugenholtz, P., Keller, J., and Blackall, L. L. Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors [J]. Applied and Environmental Microbiology, 1995.61(5):1910-1916.
    [69]Everett, K. D. E., Bush, R. M., and Andersen, A. A. Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms [J]. International Journal of Systematic Bacteriology,1999.49:415-440.
    [70]Hugenholtz, P., Goebel, B. M., and Pace, N. R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity [J]. Journal of Bacteriology,1998.180(18):4765-4774.
    [71]Stackebrandt, E., and Goebel, B. M. Taxonomic note:a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology [J]. International Journal of Systematic Bacteriology,1994. 44(4):846-849.
    [72]Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. Basic local alignment search tool [J]. Journal of Molecular Biology,1990.215(3):403-410.
    [73]Maidak, B. L., Cole, J. R., Lilburn, T. G., Parker, C. T., Saxman, P. R., Farris, R. J., Garrity, G. M., Olsen, G. J., Schmidt, T. M., and Tiedje, J. M. The RDP-Ⅱ (Ribosomal Database Project) [J]. Nucleic Acids Research,2001.29(1):173-174.
    [74]Maidak, B. L., Olsen, G. J., Larsen, N., Overbeek, R., McCaughey, M. J., and Woese, C. R. The RDP (Ribosomal Database Project) [J]. Nucleic Acids Research, 1997.25(1):109-110.
    [75]Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S., Jobb, G., Forster, W., Brettske, I., Gerber, S., Ginhart, A. W., Gross, O., Grumann, S., Hermann, S., Jost, R., Konig, A., Liss, T., LuBmann, R., May, M., Nonhoff, B., Reichel, B., Strehlow, R., Stamatakis, A., Stuckmann, N., Vilbig, A., Lenke, M., Ludwig, T., Bode, A., and Schleifer, K. H. ARB:a software environment for sequence data [J]. Nucleic Acids Research, 2004.32(4):1363-1371.
    [76]Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W. G., Peplies, J., and Glockner, F. O. SILVA:a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB [J]. Nucleic Acids Research,2007.35(21):7188-7196.
    [77]DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P., and Andersen, G. L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB [J]. Applied and Environmental Microbiology,2006.72(7):5069-5072.
    [78]DeSantis, T. Z.,Hugenholtz, P., Keller, K., Brodie, E. L., Larsen, N., Piceno, Y. M., Phan, R., and Andersen, G. L. NAST:a multiple sequence alignment server for comparative analysis of 16S rRNA genes [J]. Nucleic Acids Research,2006. 34:W394-W399.
    [79]Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., and Weber, C. F. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities [J]. Applied and Environmental Microbiology,2009.75(23):7537-7541.
    [80]Singleton, D. R., Furlong, M. A., Rathbun, S. L., and Whitman, W. B. Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples [J]. Applied and Environmental Microbiology,2001. 67(9):4374-4376.
    [81]Schloss, P. D., Larget, B. R., and Handelsman, J. Integration of microbial ecology and statistics:a test to compare gene libraries [J]. Applied and Environmental Microbiology,2004.70(9):5485-5492.
    [82]Lozupone, C., Hamady, M., and Knight, R. UniFrac-An online tool for comparing microbial community diversity in a phylogenetic context [J]. BMC Bioinformatics,2006.7:371.
    [83]Lozupone, C., and Knight, R. UniFrac:a new phylogenetic method for comparing microbial communities [J]. Applied and Environmental Microbiology,2005. 71(12):8228-8235.
    [84]Baker, G. C., Smith, J. J., and Cowan, D. A. Review and re-analysis of domain-specific 16S primers [J]. Journal of Microbiological Methods,2003.55(3):541-555.
    [85]Polz, M. F., and Cavanaugh, C. M. Bias in template-to-product ratios in multitemplate PCR [J]. Applied and Environmental Microbiology,1998. 64(10):3724-3730.
    [86]Suzuki, M. T., and Giovannoni, S. J. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR [J]. Applied and Environmental Microbiology,1996.62(2):625-630.
    [87]Mathieu-Daude, F., Welsh, J., Vogt, T., and McClelland, M. DNA rehybridization during PCR:the'Cot effect'and its consequences [J]. Nucleic Acids Research, 1996.24(11):2080-2086.
    [88]Carraway, M., and Marinus, M. G. Repair of heteroduplex DNA molecules with multibase loops in Escherichia coli [J]. Journal of Bacteriology,1993. 175(13):3972-3980.
    [89]Speksnijder, A., Kowalchuk, G. A., De Jong, S., Kline, E., Stephen, J. R., and Laanbroek, H. J. Microvariation artifacts introduced by PCR and cloning of closely related 16S rRNA gene sequences [J]. Applied and Environmental Microbiology,2001.67(1):469-472.
    [90]Thompson, J. R., Marcelino, L. A., and Polz, M. F. Heteroduplexes in mixed-template amplifications:formation, consequence and elimination by 'reconditioning PCR'[J]. Nucleic Acids Research,2002.30(9):2083-2088.
    [91]Paabo, S., Irwin, D. M., and Wilson, A. C. DNA damage promotes jumping between templates during enzymatic amplification [J]. Journal of Biological Chemistry,1990.265(8):4718-4721.
    [92]McIlroy, S. J., Tillett, D., Petrovski, S., and Seviour, R. J. Non-target sites with single nucleotide insertions or deletions are frequently found in 16S rRNA sequences and can lead to false positives in fluorescence in situ hybridization (FISH) [J]. Environmental Microbiology,2011.13(1):33-47.
    [93]Rusch, D. B., Halpern, A. L., Sutton, G., Heidelberg, K. B., Williamson, S., Yooseph, S., Wu, D. Y., Eisen, J. A., Hoffman, J. M, Remington, K., Beeson, K., Tran, B., Smith, H., Baden-Tillson, H., Stewart, C., Thorpe, J., Freeman, J., Andrews-Pfannkoch, C., Venter, J. E., Li, K., Kravitz, S., Heidelberg, J. F., Utterback, T., Rogers, Y. H., Faloon, L. I., Souza, V., Bonilla-Rosso, G., Eguiarte, L. E., Karl, D. M., Sathyendranath, S., Platt, T., Bermingham, E., Gallardo, V., Tamayo-Castillo, G., Ferrari, M. R., Strausberg, R. L., Nealson, K., Friedman, R., Frazier, M., and Venter, J. C. The Sorcerer Ⅱ Global Ocean Sampling expedition: Northwest Atlantic through Eastern Tropical Pacific [J]. PLoS Biology,2007. 5(3):398-431.
    [94]Buee, M., Reich, M., Murat, C., Morin, E., Nilsson, R. H., Uroz, S., and Martin, F. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity [J]. New Phytologist,2009.184(2):449-456.
    [95]von Wintzingerode, F., Gǒbel, U. B., and Stackebrandt, E. Determination of microbial diversity in environmental samples:pitfalls of PCR-based rRNA analysis [J]. FEMS Microbiology Reviews,1997.21(3):213-229.
    [96]Wang, Y., and Qian, P. Y. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies [J]. PLoS ONE,2009.4(10):e7401.
    [97]Hong, S. H., Bunge, J., Leslin, C., Jeon, S., and Epstein, S. S. Polymerase chain reaction primers miss half of rRNA microbial diversity [J]. ISME Journal,2009. 3(12):1365-1373.
    [1]Woese, C. R. Bacterial evolution [J]. Microbiological Reviews,1987.51(2):221-271.
    [2]Pace, N. R. A molecular view of microbial diversity and the biosphere [J]. Science,1997.276(5313):734-740.
    [3]Schmidt, T. M., Delong, E. F., and Pace, N. R. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing [J]. Journal of Bacteriology,1991.173(14):4371-4378.
    [4]Muyzer, G., Dewaal, E. C., and Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Applied and Environmental Microbiology,1993.59(3):695-700.
    [5]Liu, W. T., Marsh, T. L., Cheng, H., and Forney, L. J. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA [J]. Applied and Environmental Microbiology,1997.63(11):4516-4522.
    [6]Hong, S. H., Bunge, J., Leslin, C., Jeon, S., and Epstein, S. S. Polymerase chain reaction primers miss half of rRNA microbial diversity [J]. ISME Journal,2009. 3(12):1365-1373.
    [7]von Wintzingerode, F., Gobel, U. B., and Stackebrandt, E. Determination of microbial diversity in environmental samples:pitfalls of PCR-based rRNA analysis [J]. FEMS Microbiology Reviews,1997.21(3):213-229.
    [8]Wang, Y., and Qian, P. Y. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies [J]. PLoS ONE,2009.4(10):e7401.
    [9]Urich, T., Lanzen, A., Qi, J., Huson, D. H., Schleper, C., and Schuster, S. C. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome [J]. PLoS ONE,2008.3(6):e2527.
    [10]Zhou, J., Bruns, M. A., and Tiedje, J. M. DNA recovery from soils of diverse composition [J]. Applied Environmental Microbiology,1996.62:316-322.
    [11]Burgmann, H., Widmer, F., Sigler, W. V., and Zeyer, J. mRNA extraction and reverse transcription-PCR protocol for detection of nifH gene expression by Azotobacter vinelandii in soil [J]. Applied and Environmental Microbiology,2003. 69(4):1928-1935.
    [12]Hamady, M., Walker, J. J., Harris, J. K., Gold, N. J., and Knight, R. Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex [J]. Nature Methods,2008.5(3):235-237.
    [13]Dethlefsen, L., Huse, S., Sogin, M. L., and Relman, D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing [J]. PLoS Biology,2008.6(11):2383-2400.
    [14]Roileke, S. S., Gurtner, C., Drewello, U., Drewello, R., Lubitz, W., and Weissmann, R. Analysis of bacterial communities on historical glass by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA [J]. Journal of Microbiological Methods,1999.36(1-2):107-114.
    [15]Demergasso, C. S., Galleguillos, P. A. P., Escudero, L. V. G., Zepeda, V. J. A., Castillo, D., and Casamayor, E. O. Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap [J]. Hydrometallurgy, 2005.80(4):241-253.
    [16]Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., and Weber, C. F. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities [J]. Applied and Environmental Microbiology,2009.75(23):7537-7541.
    [17]Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W. G., Peplies, J., and Glockner, F. O. SILVA:a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB [J]. Nucleic Acids Research,2007.35(21):7188-7196.
    [18]Ashelford, K. E., Chuzhanova, N. A., Fry, J. C, Jones, A. J., and Weightman, A. J. New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras [J]. Applied and Environmental Microbiology,2006. 72(9):5734-5741.
    [19]Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. Basic local alignment search tool [J]. Journal of Molecular Biology,1990.215(3):403-410.
    [20]Huson, D. H., Auch, A. F., Qi, J., and Schuster, S. C. MEGAN analysis of metagenomic data [J]. Genome Research,2007.17(3):377-386.
    [21]Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K. F., Itoh, M., Kawashima, S., Katayama, T., Araki, M., and Hirakawa, M. From genomics to chemical genomics:new developments in KEGG [J]. Nucleic Acids Research,2006. 34:D354-D357.
    [22]Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., and Hirakawa, M. KEGG for representation and analysis of molecular networks involving diseases and drugs [J]. Nucleic Acids Research,2010.38:D355-D360.
    [23]Kanehisa, M., and Goto, S. KEGG:Kyoto Encyclopedia of Genes and Genomes [J]. Nucleic Acids Research,2000.28(1):27-30.
    [24]Overbeek, R., Begley, T., Butler, R. M., Choudhuri, J. V., Chuang, H. Y., Cohoon, M., de Crecy-Lagard, V., Diaz, N., Disz, T., Edwards, R., Fonstein, M., Frank, E. D., Gerdes, S., Glass, E. M., Goesmann, A., Hanson, A., Iwata-Reuyl, D., Jensen, R., Jamshidi, N., Krause, L., Kubal, M., Larsen, N., Linke, B., McHardy, A. C., Meyer, F., Neuweger, H., Olsen, G., Olson, R., Osterman, A., Portnoy, V., Pusch, G. D., Rodionov, D. A., Ruckert, C., Steiner, J., Stevens, R., Thiele, I., Vassieva, O., Ye, Y., Zagnitko, O., and Vonstein, V. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes [J]. Nucleic Acids Research,2005.33(17):5691-5702.
    [25]Andersson, A. F., Lindberg, M., Jakobsson, H., Backhed, F., Nyren, P., and Engstrand, L. Comparative analysis of human gut microbiota by barcoded pyrosequencing [J]. PLoS ONE,2008.3(7):e2836.
    [26]Kwon, S., Kim, T. S., Yu, G. H., Jung, J. H., and Park, H. D. Bacterial community composition and diversity of a full-scale integrated fixed-film activated sludge system as investigated by pyrosequencing [J]. Journal of Microbiology and Biotechnology,2010.20(12):1717-1723.
    [27]Chung, J., Shin, S., and Oh, J. Characterization of a microbial community capable of reducing perchlorate and nitrate in high salinity [J]. Biotechnology Letters, 2009.31(7):959-966.
    [28]Adav, S. S., Lee, D. J., and Lai, J. Y. Microbial community of acetate utilizing denitrifiers in aerobic granules [J]. Applied Microbiology and Biotechnology, 2010.85(3):753-762.
    [29]Datta, T., and Goel, R. Evidence and long-term feasibility of enhanced biological phosphorus removal in oxidation-ditch type of aerated-anoxic activated sludge systems [J]. Journal of Environmental Engineering-Asce,2010.136(11):1237-1247.
    [30]Duan, L., Moreno-Andrade,Ⅰ., Huang, C. L., Xia, S. Q., and Hermanowicz, S. W. Effects of short solids retention time on microbial community in a membrane bioreactor [J]. Bioresource Technology,2009.100(14):3489-3496.
    [31]Purkhold, U., Pommerening-Roser, A., Juretschko, S., Schmid, M. C., Koops, H. P., and Wagner, M. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis:implications for molecular diversity surveys [J]. Applied and Environmental Microbiology,2000. 66(12):5368-5382.
    [32]Okabe, S., Satoh, H., and Watanabe, Y. In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes [J]. Applied and Environmental Microbiology,1999.65(7):3182-3191.
    [33]Moreno, A. M., Matz, C., Kjelleberg, S., and Manefield, M. Identification of ciliate grazers of autotrophic Bacteria in ammonia-oxidizing activated sludge by RNA stable isotope probing [J]. Applied and Environmental Microbiology,2010. 76(7):2203-2211.
    [34]Hong, X. A., Zhang, X. J., Liu, B. B., Mao, Y. J., Liu, Y. D., and Zhao, L. P. Structural differentiation of bacterial communities in indole-degrading bioreactors under denitrifying and sulfate-reducing conditions [J]. Research in Microbiology, 2010.161(8):687-693.
    [35]Fernandez, N., Diaz, E. E., Amils, R., and Sanz, J. L. Analysis of microbial community during biofilm development in an anaerobic wastewater treatment reactor [J]. Microbial Ecology,2008.56(1):121-132.
    [36]Paula, D. R., and Foresti, E. Sulfide toxicity kinetics of a UASB reactor [J]. Brazilian Journal of Chemical Engineering,2009.26(4):669-675.
    [37]Gallegos-Garcia, M., Celis, L. B., and Razo-Flores, E. Competition for substrate during the development of sulfate-reducing biomass from a methanogenic granular sludge in a UASB reactor [J]. Revista Internacional De Contaminacion Ambiental,2010.26(2):109-117.
    [38]Hirasawa, J. S., Sarti, A., Del Aguila, N. K. S., and Varesche, M. B. A. Application of molecular techniques to evaluate the methanogenic archaea and anaerobic bacteria in the presence of oxygen with different COD:sulfate ratios in a UASB reactor [J]. Anaerobe,2008.14(4):209-218.
    [39]Baena, S., Fardeau, M. L., Labat, M., Ollivier, B., Thomas, P., Garcia, J. L., and Patel, B. K. C. Aminobacterium colombiense gen. nov. sp. nov., an amino acid- degrading anaerobe isolated from anaerobic sludge [J]. Anaerobe,1998.4(5):241-250.
    [40]Molina, F., Garcia, C., Roca, E., and Lema, J. M. Characterization of anaerobic granular sludge developed in UASB reactors that treat ethanol, carbohydrates and hydrolyzed protein based wastewaters [J]. Water Science and Technology,2008. 57(6):837-842.
    [41]Narihiro, T., Terada, T., Ohashi, A., Wu, J. H., Liu, W. T., Araki, N., Kamagata, Y., Nakamura, K., and Sekiguchi, Y. Quantitative detection of culturable methanogenic archaea abundance in anaerobic treatment systems using the sequence-specific rRNA cleavage method [J]. ISME Journal,2009.3(5):522-535.
    [42]Song, M., Shin, S. G., and Hwang, S. Methanogenic population dynamics assessed by real-time quantitative PCR in sludge granule in upflow anaerobic sludge blanket treating swine wastewater [J]. Bioresource Technology,2010. 101:S23-S28.
    [43]Chou, H. H., Huang, J. S., Chen, W. G., and Ohara, R. Competitive reaction kinetics of sulfate-reducing bacteria and methanogenic bacteria in anaerobic filters [J]. Bioresource Technology,2008.99(17):8061-8067.
    [44]Sousa, D. Z., Alves, J. I., Alves, M. M., Smidt, H., and Stams, A. J. M. Effect of sulfate on methanogenic communities that degrade unsaturated and saturated long-chain fatty acids (LCFA) [J]. Environmental Microbiology,2009.11(1):68-80.
    [45]Frias-Lopez, J., Shi, Y., Tyson, G. W., Coleman, M. L., Schuster, S. C., Chisholm, S. W., and DeLong, E. F. Microbial community gene expression in ocean surface waters [J]. Proceedings of the National Academy of Sciences of the United States of America,2008.105(10):3805-3810.
    [46]McGrath, K. C., Thomas-Hall, S. R., Cheng, C. T., Leo, L., Alexa, A., Schmidt, S., and Schenk, P. M. Isolation and analysis of mRNA from environmental microbial communities [J]. Journal of Microbiological Methods,2008.75(2):172-176.
    [47]He, S. M., Wurtzel, O., Singh, K., Froula, J. L., Yilmaz, S., Tringe, S. G., Wang, Z., Chen, F., Lindquist, E. A., Sorek, R., and Hugenholtz, P. Validation of two ribosomal RNA removal methods for microbial metatranscriptomics [J]. Nature Methods,2010.7(10):807-U858.
    [48]Wu, D. Y., Wu, M., Halpern, A., Rusch, D. B., Yooseph, S., Frazier, M., Venter, J. C, and Eisen, J. A. Stalking the Fourth Domain in Metagenomic Data:Searching for, Discovering, and Interpreting Novel, Deep Branches in Marker Gene Phylogenetic Trees [J]. PLoS ONE,2011.6(3):e 18011.
    [49]Rusch, D. B., Halpern, A. L., Sutton, G., Heidelberg, K. B., Williamson, S., Yooseph, S., Wu, D. Y., Eisen, J. A., Hoffman, J. M., Remington, K., Beeson, K., Tran, B., Smith, H., Baden-Tillson, H., Stewart, C., Thorpe, J., Freeman, J., Andrews-Pfannkoch, C., Venter, J. E., Li, K., Kravitz, S., Heidelberg, J. F., Utterback, T., Rogers, Y. H., Falcon, L. I., Souza, V., Bonilla-Rosso, G., Eguiarte, L. E., Karl, D. M., Sathyendranath, S., Platt, T., Bermingham, E., Gallardo, V., Tamayo-Castillo, G., Ferrari, M. R., Strausberg, R. L., Nealson, K., Friedman, R., Frazier, M., and Venter, J. C. The Sorcerer Ⅱ Global Ocean Sampling expedition: Northwest Atlantic through Eastern Tropical Pacific [J]. PLoS Biology,2007. 5(3):398-431.
    [50]Gosalbes, M. J., Durban, A., Pignatelli, M., Abellan, J. J., Jimenez-Hernandez, N., Perez-Cobas, A. E., Latorre, A., and Moya, A. Metatranscriptomic Approach to Analyze the Functional Human Gut Microbiota [J]. PLoS ONE,2011. 6(3):e17447.
    [1]李仰松.对我国釀酒起源的探讨[J].考古,1962.01.
    [2]韩莎,雷振河,李琦,吕利华,and赵良启.汾酒酿造过程中可培养微生物的群落结构与代谢规律研究[J].食品与发酵工业,2009.35:9-13.
    [3]熊子书.中国三大香型白酒的研究(三)清香·杏花村篇[J].酿酒科技,2005.(2005):17-21.
    [4]Martin, K. J., and Rygiewicz, P. T. Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts [J]. BMC Microbiology, 2005.5:1-28.
    [5]Zhou, J., Bruns, M. A., and Tiedje, J. M. DNA recovery from soils of diverse composition [J]. Applied Environmental Microbiology,1996.62:316-322.
    [6]Schmidt, T. M., Delong, E. F., and Pace, N. R. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing [J]. Journal of Bacteriology,1991.173(14):4371-4378.
    [7]Isenbarger, T. A., Finney, M., Rios-Velazquez, C., Handelsman, J., and Ruvkun, G. Miniprimer PCR, a new lens for viewing the microbial world [J]. Applied and Environmental Microbiology,2008.74(3):840-849.
    [8]Lane, D. J. Nucleic acids techniques in bacterial systematics [M]. New York: John Wiley & Sons,1991:115-175.
    [9]Thompson, J. R., Marcelino, L. A., and Polz, M. F. Heteroduplexes in mixed-template amplifications:formation, consequence and elimination by 'reconditioning PCR'[J]. Nucleic Acids Research,2002.30(9):2083-2088.
    [10]Hamady, M., Walker, J. J., Harris, J. K., Gold, N. J., and Knight, R. Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex [J]. Nature Methods,2008.5(3):235-237.
    [11]Suzuki, M. T., Taylor, L. T., and DeLong, E. F. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5'-nuclease assays. [J]. Applied Environmental Microbiology,2000.66:4605-4614.
    [12]Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. Basic local alignment search tool [J]. Journal of Molecular Biology,1990.215(3):403-410.
    [13]Chun, J., Lee, J.-H., Jung, Y., Kim, M., Kim, S., Kim, B. K., and Lim, Y. W. EzTaxon:a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. [J]. International Journal of Systematic and Evolutionary Microbiology,2007.57:2259-2261.
    [14]Ashelford, K. E., Chuzhanova, N. A., Fry, J. C, Jones, A. J., and Weightman, A. J. New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras [J]. Applied and Environmental Microbiology,2006. 72(9):5734-5741.
    [15]Thompson, J., Gibson, T., Plewniak, F., Jeanmougin, F., and Higgins, D. The CLUSTALX windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. [J]. Nucleic Acids Research,1997. 25:4876-4882.
    [16]Kumar, S., Tamura, K., and Nei, M. MEGA3:an integrated software for molecular evolutionary genetics analysis and sequence alignment. [J]. Briefings in Bioinformatics,2004.5:150-163.
    [17]Saito, N., and Nei, M. The neighbor-joining method:a new method for reconstructing phylogenetic trees. [J]. Molecular Biology and Evolution,1987. 4:406-425.
    [18]Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., and Weber, C. F. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities [J]. Applied and Environmental Microbiology,2009.75(23):7537-7541.
    [19]曹云刚,胡永钢,马燕红,杜小威,and张生万.汾酒酒醅发酵过程中香气成分变化规律的研究[J].食品科学,2010.31:367-371.
    [20]曹云刚,马丽,杜小威,and张生万.汾酒酒醅发酵过程中有机酸的变化规律[J].食品科学,(In press).
    [21]Chang, H. W., Kim, K. H., Nam, Y. D., Roh, S. W., Kim, M. S., Jeon, C. O., Oh, H. M., and Bae, J. W. Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis [J]. International Journal of Food Microbiology,2008.126(1-2):159-166.
    [22]Chao, S. H., Wu, R. J., Watanabe, K., and Tsai, Y. C. Diversity of lactic acid bacteria in suan-tsai and fu-tsai, traditional fermented mustard products of Taiwan [J]. International Journal of Food Microbiology,2009.135(3):203-210.
    [23]Thanh, V. N., Mai, L. T., and Tuan, D. A. Microbial diversity of traditional Vietnamese alcohol fermentation starters(banh men) as determined by PCR-mediated DGGE [J]. International Journal of Food Microbiology,2008. 128(2):268-273.
    [24]Wang, C. L., Shi, D. J., and Gong, G. L. Microorganisms in Daqu:a starter culture of Chinese Maotai-flavor liquor [J]. World Journal of Microbiology & Biotechnology,2008.24(10):2183-2190.
    [25]Wang, H. Y., Zhang, X. J., Zhao, L. P., and Xu, Y. Analysis and comparison of the bacterial community in fermented grains during the fermentation for two different styles of Chinese liquor [J]. Journal of Industrial Microbiology & Biotechnology,2008.35(6):603-609.
    [26]Zhang, W. X., Qiao, Z. W., Shigematsu, T., Tang, Y. Q., Hu, C., Morimura, S., and Kida, K. Analysis of the bacterial community in Zaopei during production of Chinese Luzhou-flavor liquor [J]. Journal of the Institute of Brewing,2005. 111(2):215-222.
    [27]Zhang, W. X., Qiao, Z. W., Tang, Y. Q., Hu, C., Sun, Q., Morimura, S., and Kida, K. Analysis of the fungal community in Zaopei during the production of Chinese Luzhou-flavour liquor [J]. Journal of the Institute of Brewing,2007.113(1):21-27.
    [28]Shi, J. H., Xiao, Y. P., Li, X. R., Ma, E. B., Du, X. W., and Quan, Z. X. Analyses of microbial consortia in the starter of Fen Liquor [J]. Letters in Applied Microbiology,2009.48(4):478-485.
    [29]Nakayama, J., Hoshiko, H., Fukuda, M., Tanaka, H., Sakamoto, N., Tanaka, S., Ohue, K., Sakai, K., and Sonomoto, K. Molecular monitoring of bacterial community structure in long-aged nukadoko:pickling bed of fermented rice bran dominated by slow-growing lactobacilli [J]. Journal of Bioscience and Bioengineering,2007.104(6):481-489.
    [30]Germond, J. E., Lapierre, L., Delley, M., Mollet, B., Felis, G. E., and Dellaglio, F. Evolution of the bacterial species Lactobacillus delbrueckii:a partial genomic study with reflections on prokaryotic species concept [J]. Molecular Biology and Evolution,2003.20(1):93-104.
    [31]Ennahar, S., Cai, Y. M., and Fujita, Y. Phylogenetic diversity of lactic acid bacteria associated with paddy rice silage as determined by 16S ribosomal DNA analysis [J]. Applied and Environmental Microbiology,2003.69(1):444-451.
    [32]Jeon, E., Hyeon, J. E., Eun, L. S., Park, B. S., Kim, S. W., Lee, J., and Han, S. O. Cellulosic alcoholic fermentation using recombinant Saccharomyces cerevisiae engineered for the production of Clostridium cellulovorans endoglucanase and Saccharomycopsisfibuligera beta-glucosidase [J]. FEMS Microbiology Letters, 2009.301(1):130-136.
    [33]Valachova, K., and Horvathova, V. Starch degradation by glucoamylase Glm from Saccharomycopsis fibuligera IFO 0111 in the presence and absence of a commercial pullulanase [J]. Chemistry & Biodiversity,2007.4(5):874-880.
    [34]Chi, Z. M., Chi, Z., Liu, G. L., Wang, F., Ju, L., and Zhang, T. Saccharomycopsis fibuligera and its applications in biotechnology [J]. Biotechnology Advances, 2009.27(4):423-431.
    [35]N'Guessan, F. K., N'Dri, D. Y., Camara, F., and Dje, M. K. Saccharomyces cerevisiae and Candida tropicalis as starter cultures for the alcoholic fermentation of tchapalo, a traditional sorghum beer [J]. World Journal of Microbiology & Biotechnology,2010.26(4):693-699.
    [36]Hultman, J., Ritari, J., Romantschuk, M., Paulin, L., and Auvinen, P. Universal ligation-detection-reaction microarray applied for compost microbes [J]. BMC Microbiology,2008.8:ARTN 237
    [37]Daniel, H. M., Vrancken, G., Takrama, J. F., Camu, N., De Vos, P., and De Vuyst, L. Yeast diversity of Ghanaian cocoa bean heap fermentations [J]. FEMS Yeast Research,2009.9(5):774-783.
    [38]Hong, S. K., Lee, H. J., Park, H. J., Hong, Y. A., Rhee, I. K., Lee, W. H., Choi, S. W., Lee, O. S., and Park, H. D. Degradation of malic acid in wine by immobilized Issatchenkia orientalis cells with oriental oak charcoal and alginate [J]. Letters in Applied Microbiology,2010.50(5):522-529.
    [39]Seiler, H., and Busse, M. The yeasts of cheese brines [J]. International Journal of Food Microbiology,1990.11(3-4):289-304.
    [40]Masoud, W., Cesar, L. B., Jespersen, L., and Jakobsen, M. Yeast involved in fermentation of Coffea arabica in East Africa determined by genotyping and by direct denaturating gradient gel electrophoresis [J]. Yeast,2004.21(7):549-556.
    [41]Zaldivar, J., Nielsen, J., and Olsson, L. Fuel ethanol production from lignocellulose:a challenge for metabolic engineering and process integration [J]. Applied Microbiology and Biotechnology,2001.56(1-2):17-34.
    [42]Kotter, P., and Ciriacy, M. Xylose fermentation by Saccharomyces-Cerevisiae [J]. Applied Microbiology and Biotechnology,1993.38(6):776-783.
    [43]Giudici, P., Masini, G., and Caggia, C. The role of galactose fermenting yeast in plain yogurt spoilage [J]. Annali Di Microbiologia Ed Enzimologia,1996.46:11-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700