若干种典型白酒的荧光光谱特性及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文实验研究了几种典型白酒和白酒主要香味成分的荧光光谱,利用因子分析法探索香味成分对典型白酒荧光的影响范围和程度,基于荧光特征参量对白酒进行判别分析研究。
     实验测得洋河、茅台、五粮液、古井贡和红星二锅头酒的三维荧光光谱和三维同步荧光光谱,分析和讨论白酒两种荧光光谱的特性。结果表明,不同品牌白酒的三维荧光光谱和三维同步荧光光谱的形状和荧光强度基本不同;同一香型白酒的三维荧光光谱的形状基本相似,但三维同步荧光光谱的形状有较大差异;同一品牌不同品种白酒的三维荧光光谱和三维同步荧光光谱的形状基本相似,但荧光强度大多随酒度或品质的提高而增大,而最佳激发波长大多随酒度的增大而发生红移。
     实验测得白酒主要香味成分的三维同步荧光光谱,提取出发射与激发的波长差Δλ为30nm的二维同步荧光光谱,对三维和二维两种同步荧光光谱的特性进行分析。三维同步荧光光谱的特性分析结果表明,酯类中以己酸乙酯和乙酸乙酯的荧光较强,酸类中以己酸和乳酸的荧光较强,醛类中乙缩醛的荧光较乙醛和糠醛强,醇类中异戊醇的荧光较强。二维同步荧光光谱的特性分析结果表明,四种香味成分对白酒二维同步荧光光谱的影响不同,乙酸、丁酸、大部分醇类和醛类香味成分主要影响白酒260nm和290nm附近的荧光,乙酸乙酯、己酸和乳酸主要影响白酒344nm附近的荧光,己酸乙酯主要影响白酒376nm附近的荧光。
     在实验测量和分析香味成分同步荧光光谱的基础上,对典型白酒及主要香味成分在Δλ为30nm的同步荧光光谱进行公因子分析,分析结果表明,香味成分主要影响典型白酒250-320nm和330-400nm两个激发波长范围的荧光;乳酸乙酯、丁酸乙酯、丁酸、乙酸、乙缩醛和大部分醇类对红星二锅头以及40.6%vol、46%vol(846)、46%vol(946)三种古井贡酒的荧光起主导影响,影响范围为250-320nm;己酸乙酯、乙酸乙酯、己酸、乳酸对五粮液、洋河、茅台以及45%vol 5年古井贡酒的荧光起主导影响,影响范围为330-400nm。
     为了对白酒进行识别,在实验测量和分析白酒三维荧光光谱的基础上,提取出表征白酒三维荧光光谱的最佳激发波长、荧光峰值波长和主荧光峰的线宽参量。应用费舍尔判别分析法,基于该3个特征参量对五种品牌28个酒样进行判别分析,可以将其最大程度地分为25种。研究结果表明,应用最佳激发波长、荧光峰值波长和主荧光峰的线宽3个特征参量,不仅能区分不同品牌的白酒,而且还可以有效辨别同一品牌不同品种的白酒。
     本文研究工作,是白酒荧光光谱分析研究的深入和细化,可为快速识别白酒提供参考,也为白酒质量的稳定和提高提供帮助。
In this thesis, fluorescence spectra of some typical liquors and major aroma components were detected, and the fluorescence spectra characteristics were analyzed and induced. By factor analysis, the thesis probed into the extent and degree of the influence exerted by aroma components upon typical liquors fluorescence. In addition, this thesis made a study of liquors discrimination based on the fluorescence characteristic parameters.
     The three-dimensional fluorescence spectra and three-dimensional synchronous fluorescence spectra of liquors such as Yanghe, Maotai, Wuliangye, Gujinggong and Hongxingerguotou, were obtained and the characteristics of the two kinds of fluorescence spectra were further analyzed. The results show that the outline of three-dimensional fluorescence spectra and three-dimensional synchronous fluorescence spectra differs according to the brand of the liquor. The outlines of three-dimensional fluorescence spectrum of the liquors of different varieties but the same flavor are basically the same. Moreover, the fluorescence intensity increases with the improvement of the alcohol content and quality. However, the outlines of three-dimensional synchronous fluorescence spectrum of the liquors of different varieties but the same flavor are different. The optimal excitation wavelength of three-dimensional synchronous fluorescence spectra increases with the alcohol content improved.
     The three-dimensional synchronous fluorescence spectra and two-dimensional synchronous fluorescence spectra ofΔλ=30nm (wavelength difference between emission and excitation) were measured and analyzed. Through the study of three-dimensional synchronous fluorescence spectra, the thesis find that the fluorescence intensity of ethyl caproate, ethyl acetate, caproic acid, lactic acid, acetal and isoamylol was greater than others. The research of two-dimensional synchronous fluorescence spectra shows that the four flavor components have different influence upon the fluorescence of two-dimensional synchronous fluorescence spectra. Acetic acid, butyric acid, and most of the alcohols and aldehydes influence the fluorescence of 260nm and 290nm upon two-dimensional synchronous fluorescence spectra of liquors. Ethyl acetate, caproic acid and lactic acid influence the fluorescence of 344nm upon two-dimensional synchronous fluorescence spectra of liquors. Ethyl caproate influence the fluorescence of 376nm upon two-dimensional synchronous fluorescence spectra of liquors.
     Through the factor analysis of the two-dimensional synchronous fluorescence spectra (Δλ=30nm) of liquors and aroma components, the thesis indicates that aroma components influence the fluorescence of 250-320nm and 330-400nm upon two-dimensional synchronous fluorescence spectra of liquors. Ethyl lactate, ethyl butyrate, butyric acid, acetic acid, acetal and most of the alcohols influence the fluorescence of 250-320nm upon two-dimensional synchronous fluorescence spectra of Hongxingerguotou and Gujinggong whose species were 40.6%vol, 46%vol(846) and 46%vol(946). Ethyl caproate, ethyl acetate, caproic acid, and lactic acid influence the fluorescence of 330-400nm upon two-dimensional synchronous fluorescence spectra of Wuliangye, Yanghe, Maotai and Gujinggong whose species is 45%vol-5-years.
     For the purpose of identifying the liquor, the thesis extracted the optimal excitation wavelength, wavelength at maximum fluorescence intensity and linewidth of maximum fluorescence emission spectra based on the three-dimensional fluorescence spectra characteristics. The twenty-eight typical liquors are divided into twenty-five categories by Fisher discriminant analysis based on the three fluorescence characteristics parameters. The results show that the three parameters could discriminate not only the brand but also the variety of the same brand.
     The results of the study are of great significance and importance for the further detailed research on the fluorescence spectra of liquor in the future. In addition, the thesis provide not only some help in the quality measurement and stability maintenance but also an effective way to identify the liquor.
引文
[1].沈才洪,许德富.弘扬传统白酒文化,推进白酒健康发展[J].酿酒科技, 2006, (12): 129-132.
    [2].彭全生,刘春连.固液结合法白酒的特点、发展趋势和目前面临的问题[J]. 2007, (3): 30-32.
    [3].邵长军,李刚,李亮等.白酒香型与香味成份探究[J].酿酒科技, 2005, 8(134): 92-93.
    [4].辛磊.白酒微量成分与酒体风格特征关系的探讨[J].食品与机械, 2004, 20(2): 49-50.
    [5]. L. F. Guido, J. R. Carneiro, J. R. Santos, et al. Simultaneous determination of E-2-nonenal andβ-damascenone in beer by reversed-phase liquid chromatography with UV detection [J]. Journal of Chromatography, 2004, 1032(1-2): 17-22.
    [6]. Catherine Tessini, Claudia Mardones, Dietrich von Baer, et al. Alternatives for sample pre-treatment and HPLC determination of Ochratoxin A in red wine using fluorescence detection [J]. Analytica Chimica Acta, 2010, 660(1-2): 119-126.
    [7]. Claudia Mardones, Antonieta Hitschfeld, Alejandra Contreras, et al. Comparison of shikimic acid determination by capillary zone electrophoresis with direct and indirect detection with liquid chromatography for varietal differentiation of red wines [J]. Journal of Chromatography A, 2005, 1085(2): 285-292.
    [8]. J. R. Santos, J. R. Carneiro, L. F. Guido, et al. Determination of E-2-nonenal by high-performance liquid chromatography with UV detection: Assay for the evaluation of beer ageing [J]. Journal of Chromatography A, 2003, 985(1-2): 395-402.
    [9]. M. Aranzazu Goicolea, Zuri?e Gomez de Balugera, M. Jesús Portela, et al. Determination of N-nitrosopiperidine in beers by liquid chromatography with reductive amperometric detection at a hanging mercury drop electrode [J]. Analytica Chimica Acta, 1995, 305(1-3): 310-317.
    [10]. Rafael Llario, Fernando A. I?ón, Salvador Garrigues, et al. Determination of quality parameters of beers by the use of attenuated total reflectance-Fourier transform infrared spectroscopy [J]. Talanta, 2006, 69(2): 469-480.
    [11]. Rammohan V. Maikala. Modified Beer's Law– historical perspectives and relevance in near-infrared monitoring of optical properties of human tissue [J]. International Journal of Industrial Ergonomics, 2010, 40(2): 125-134.
    [12]. Fernando A. I?ón, Salvador Garrigues, Miguel de la Guardia. Combination of mid-and near-infrared spectroscopy for the determination of the quality properties of beers [J]. Analytica Chimica Acta, 2006, 571(2): 167-174.
    [13]. A. O?ate-jaén, D. Bellido-milla, M.P. Hernández-artiga. Spectrophotometric methods to differentiate beers and evaluate beer ageing [J]. Food Chemistry, 2006, 97(2): 361-369.
    [14]. Kyriakos A. Riganakos, Panayiotis G. Veltsistas. Comparative spectrophotometric determination of the total iron content in various white and red Greek wines [J]. Food Chemistry, 2003, 82(4): 637-643.
    [15]. Irena Kolouchová-Hanzlíková, Karel Melzoch, Vladimír Filip, et al. Rapid method for resveratrol determination by HPLC with electrochemical and UV detections in wines [J].Food Chemistry, 2004, 87(1): 151-158.
    [16]. Dirk W. Lachenmeier. Rapid quality control of spirit drinks and beer using multivariate data analysis of Fourier transform infrared spectra [J]. Food Chemistry, 2007, 101(2): 825-832.
    [17]. Lijuan Wang, Terence J. Cardwell, Robert W. Cattrall, et al. Determination of ammonia in beers by pervaporation flow injection analysis and spectrophotometric detection [J]. Talanta, 2003, 60(6): 1269-1275.
    [18]. Sonia Cortacero-Ramírez, David Arráez-Román, Antonio Segura-Carretero, et al. Determination of biogenic amines in beers and brewing-process samples by capillary electrophoresis coupled to laser-induced fluorescence detection [J]. Food Chemistry, 2007, 100(1): 383-389.
    [19]. R.G. Peres, E.P. Moraes, G.A. Micke, et al. Rodriguez-Amaya. Rapid method for the determination of organic acids in wine by capillary electrophoresis with indirect UV detection [J]. Food Control, 2009, 20(6): 548-552.
    [20]. Marijan ?eruga, Ivana Novak, Lidija Jakobek. Determination of polyphenols content and antioxidant activity of some red wines by differential pulse voltammetry, HPLC and spectrophotometric methods [J]. Food Chemistry, 2011, 124(3): 1208-1216.
    [21].é. Dufour, A. Letort, A. Laguet, et al. Investigation of variety, typicality and vintage of French and German wines using front-face fluorescence spectroscopy[J]. Analytica Chimica Acta, 2006, 563(1-2): 292-299.
    [22]. J. Sádecká, J. Tóthová, P. Májek. Classification of brandies and wine distillates using front face fluorescence spectroscopy[J]. Food Chemistry, 2009, 117(3): 491-498.
    [23].朱任群,王志卿,黄建春.气相色谱法测定酒中甲醇、杂醇油方法的改进[J].中国卫生工程学, 2005, 14(2): 90-91.
    [24].胡国栋,程劲松,朱叶.气相色谱法直接测定白酒中的游离有机酸[J].酿酒科技, 1994, 62(2): 11-15.
    [25].延鑫.气相色谱法测定地方白酒中乙酸乙酯、杂醇油含量[J].北京联合大学学报(自然科学版), 2009, 23(3): 53-56.
    [26].卢中明,张宿义,吴卫宇.气相色谱内标法测定浓香型白酒己酸乙酯含量的不确定度评定[J].酿酒, 2009, 36(5): 53-55.
    [27].冯向东.高效液相色谱法测定白酒中乳酸和乙酸含量[J].酿酒科技, 2009, (5): 115-116.
    [28].陈勇,樊科权,唐清兰.液相色谱对发酵酒中的糖、醇、酸类物质的测定[J].酿酒, 2006, 33(1): 73-74.
    [29].赵东,李阳华,向双全.气相色谱—质谱法测定酒糟、白酒中的芳香族香味成分[J].酿酒科技, 2006, (10): 92-94.
    [30].王勇,范文来,徐岩等.液液萃取和顶空固相微萃取结合气相色谱-质谱联用技术分析牛栏山二锅头酒中的挥发性物质[J].酿酒科技, 2008, (8): 99-103.
    [31].吴世嘉,王洪新,陶冠军.超高压液相色谱-质谱同时测定白酒中6种微量甜味剂的方法研究[J].食品与生物技术学报, 2010, 29(5): 670-375.
    [32].张玉霞,石君辉,刘国庆等.紫外分光光度法测定白酒中糠醛的含量[J].信阳师范学院学报(自然科学版), 2002, 15(1): 56-57.
    [33].申屠超,王芳权.平台石墨炉原子吸收光谱法直接测定酒中的锰[J].食品工业科技, 2003, 24(1): 92-93.
    [34].陈宇鸿,沈仁富,陈海红.石墨炉原子吸收光谱法测定白酒中的铅[J].中国卫生检验杂志, 2008, 18(9): 1778-1779.
    [35].许汉英.紫外吸收光谱快速鉴别白酒的方法研究[J].检验检疫科学, 2000, 10(5): 26-29.
    [36].彭帮柱,龙明华,岳田利等.傅立叶变换近红外光谱法检测白酒总酸和总酯[J].农业工程学报, 2006, 22(12): 216-219.
    [37].李长文,魏纪平,孙素琴等.运用红外光谱技术鉴别酱香型白酒[J].酿酒科技, 2006, (11): 56-58.
    [38].姜安,彭江涛,彭思龙等.酒香型光谱分析和模式识别计算分析[J].光谱学与光谱分析, 2010, 30(4): 920-923.
    [39].刘文涵,杨未,吴小琼.林振兴激光拉曼光谱内标法直接测定乙醇浓度[J].分析化学研究简报,2007, 35(3): 416-418.
    [40].吴正洁,黄耀熊,王成等.多种拉曼光谱归一化法对乙醇定量分析的研究[J].光谱学与光谱分析, 2010, 30(4): 971-974.
    [41].徐占成.剑南春微观非均相分布现象的研究[J].酿酒科技, 2001, (3): 17-18.
    [42].沈祖志.中国碱性酒的探讨[J].酿酒科技, 2008, (10): 120-121.
    [43].张晓静,张惠平,余亦华.多个(重)强峰压制与白酒的核磁共振分析[J].分析化学研究简报, 2005, 33(11): 1631-1634.
    [44].邹小波,赵杰文,殷晓平等.嗅觉可视化技术在白酒识别中的应用[J].农业机械学报, 2009, 40(1): 110-113.
    [45].许金钩,王尊本.荧光分析法[M].北京:科学出版社, 2006.
    [46]. Konstantina I. Poulli, George A. Mousdis, Constantinos A. Georgiou. Rapid synchronous fluorescence method for virgin olive oil adulteration assessment [J]. Food Chemistry, 2007, (105): 369-375.
    [47].崔凤灵,闫迎华,张强斋等.同步荧光法测定生物样品中蛋白含量的研究[J].光谱学与光谱分析, 2009, 29(9): 2531-2534.
    [48].杨成方,李雷,张枫等.奶粉-三聚氰胺的荧光光谱特性研究[J].激光技术, 2010, 34(2): 193-196.
    [49]. O. Divya, Ashok K. Mishra. Combining synchronous fluorescence spectroscopy with multivariate methods for the analysis of petrol–kerosene mixtures [J]. Talanta, 2007, 72(1): 43-48.
    [50]. Hanh Nguyen-Ngoc, Claude Durrieu, Canh Tran-Minh. Synchronous-scan fluorescence of algal cells for toxicity assessment of heavy metals and herbicides [J]. Ecotoxicology and Environmental Safety, 2009, (72): 316-320.
    [51]. Ewa Sikorska, Tomasz Górecki, Igor V. Khmelinskii, et al. Monitoring beer duringnstorage by fluorescence spectroscopy [J]. Food Chemistry, 2006, (96): 632-639.
    [52]. Madel Pilar Godoy-Caballero, Diego Airado-Rodríguez, Isabel Durán-Merás, et al. Sensitized synchronous fluorimetric determination of trans-resveratrol and trans-piceid in red wine based on their immobilization on nylon membranes [J].Talanta, 2010, 82(5): 1733-1741.
    [53].朱拓,陈国庆,虞锐鹏等.醇类溶液的紫外吸收和荧光光谱研究[J].光谱学与光谱分析, 2006, 26(2): 291-294.
    [54].徐辉,朱拓,虞锐鹏.乙二醇和丙三醇的吸收光谱和荧光光谱研究[J].光谱学与光谱分析, 2007, 27(7): 1381-1384.
    [55].陈国庆,朱拓,虞锐鹏等.甲醇溶液的荧光光谱特性[J].光电工程, 2005, 32(6): 31-34.
    [56].徐辉,朱拓,史爱敏等.荧光法辨别丙二醇和二甘醇[J].光谱实验室, 2006, 23(6): 1150.
    [57].顾恩东,史爱敏,朱拓等.洋河蓝色经典系列酒的三维荧光光谱研究[J].光谱学与光谱分析, 2008, 28(12): 2516-2520.
    [58].杨建磊.基于三维荧光光谱的白酒分类鉴别系统研究[D]:[硕士学位论文].江苏:江南大学, 2009.
    [59].陈国庆.荧光光谱技术在食品安全监控中的应用研究[D]:[博士学位论文].无锡:江南大学, 2010.
    [60].郑磊,朱拓,陈国庆等.中高端苏酒的紫外荧光特性对比研究[J].光谱学与光谱分析, 2010, 30(7): 1806-1810.
    [61].李廷钧.发射光谱分析[M].北京:原子能出版社, 1983.
    [62].夏锦尧.实用荧光分析法[M].北京:中国人民公安大学出版社, 1991.
    [63].尚丽萍,杨仁杰.现场荧光光谱技术及其应用[M].北京:科学出版社, 2009.
    [64].刘周忆.基于荧光光谱检测的食品安全研究—黄酒、酸性橙Ⅱ、柠檬黄的研究[D]:[硕士学位论文].无锡:江南大学,2007.
    [65].曾伟.白酒溶液论[J].酿酒科技, 2005, (5): 123-124.
    [66].王凤丽.关于低度浓香型白酒几个问题的探讨[J].酿酒科技, 2007, (8): 105-108.
    [67].黄芳.低度酒生产中关键工序的控制[J].酿酒科技, 2008, (1): 77-79.
    [68].海超.白酒中微量成分的变化及其利用[J].酿酒科技, 2010, (5): 72-77.
    [69].曾祖训.试论白酒香味成分与质量风格的关系[J].酿酒,2002, 29(1): 8-10.
    [70].谭忠辉,高吕文.白酒组分与质量的关系[J].酿酒科技, 2002, (4): 96-97.
    [71].兰秀风,刘莹,高淑梅等.乙醇溶液的荧光光谱及其特性的研究[J].激光技术, 2003, 27(5): 477-483.
    [72].刘莹,彭长德,兰秀风等.乙醇和水分子形成配合物与荧光光谱特性研究[J].物理学报, 2005, 54(11): 5455-5461.
    [73].吴斌,刘莹,韩彩芹等.乙醇-水溶液中团簇分子的基元荧光光谱研究[J].光谱学与光谱分析, 2010, 30(5): 1285-1289.
    [74].马庆华,李永红,梁丽松等.冬枣优良单株果实品质的因子分析与综合评价[J].中国农业科学, 2010, 43(12): 2491-2499.
    [75].罗振堂,郭连云,谢卫东.三江源区高寒草地牧草产量主要影响因子分析[J].干旱区资源与环境, 2011, 25(6): 122-126.
    [76].甘露,罗力强,吴晓军.因子分析在X射线荧光光谱重叠谱峰识别中的应用[J].光谱学与光谱分析, 2000, 20(1): 91-94.
    [77].钟玉叶,崔如生,滕抗“.洋河蓝色经典"绵柔型质量风格成因初探[J].酿酒, 2008, 35(4): 26-35.
    [78].范文来,徐岩.从微量成分分析浓香型大曲酒的流派[J].酿酒科技, 2000, (5): 92-94.
    [79].赵国敢,陈城.从产品分析看苏鲁豫皖与四川浓香型白酒的差异[J].酿酒科技, 2008, (1): 88-93.
    [80].熊子书.中国三大香型白酒的研究(二)酱香·茅台篇[J].酿酒科技, 2005, (4): 25-30.
    [81].王元太.清香型白酒的主要微量成分及其量比关系对感官质量的影响[J].酿酒科技,2004, (3): 27-29.
    [82].郭文杰,卢建春.古井贡酒特征香味成分的研究[J].酿酒科技, 2001, (5): 83-85.
    [83].周子立,蒋璐璐,谈黎虹等.基于光谱技术鉴别机油品种的新方法[J].光学学报, 2009, 29(8): 2203-2207.
    [84].马本学,饶秀勤,应义斌等.基于近红外漫反射光谱的香梨类别定性分析[J].光谱学与光谱分析, 2009, 29(12): 3288-3290.
    [85].李亮,丁武.掺有植物性填充物牛奶的近红外光谱判别分析[J].光谱学与光谱分析, 2010, 30(5): 1238-1242.
    [86].周菊玲.关于判别分析方法的讨论[J].新疆师范大学学报(自然科学版), 2010, 29(2): 49-51.
    [87].胡汉华,刘征,李孜军等.硫化矿石自燃倾向性等级分类的Fisher判别分析法[J].煤炭学报, 2010, 35(10): 1674-1679.
    [88].周正礼,李峰,李静文.20种中药糖含量与寒热药性关系的Fisher判别分析[J].世界科学技术—中医药现代化, 2010, 12(4): 558-561.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700