聚合酶链式反应—变性梯度电泳技术(PCR-DGGE)研究中国白酒大曲中微生物群落结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酒曲酿造是我国优势传统发酵食品白酒酿造的技术特征和关键技术。大曲以小麦等谷物为原料固态生料发酵而成,大曲作为白酒生产中微生物的主要来源,其质量直接关系到酒的出酒率及酒质。长期以来,由于研究技术手段的限制,对白酒大曲微生物区系的研究和认识还非常有限。
     为克服培养方法的局限性,采用建立在分子生物学技术基础上的未培养技术,从未培养角度探究大曲微生物群落结构组成对于深入白酒大曲微生物群落特征的认识,丰富我国传统酿造食品微生物学的机理的研究,具有实践和理论意义和价值。
     本文运用PCR-DGGE方法对国内具有代表性的不同工艺白酒大曲的微生物群落结构进行了研究。分别基于细菌的16S rRNA V3基因、酵母的26S rRNA D1基因和真菌的18S rRNA基因对大曲中的细菌、酵母和真菌的群落结构进行了分析。通过DGGE优势条带的切胶回收及测序鉴定获取了大曲微生物种群结构信息。
     研究结果表明:
     1)与传统分离培养方法研究相比,本研究首次基于细菌的16S rRNA V3基因DGGE揭示了白酒大曲中乳酸菌的种群多样性,多种乳酸菌存在于不同工艺大曲中。所鉴定出的乳酸菌包括Weissella cibaria、Lactobacillus panis、L. helveticus、L. fermentum、L. pontis。细菌是中国大曲最具特点的微生物。同时DGGE检测到了传统培养方法未检测到的嗜麦芽窄食单胞菌、假单胞菌、葡萄球菌及高温放线菌;
     2)在真菌的分析研究中,针对传统培养方法和已报道未培养方法研究多集中在细菌群落结构的状况,分布基于酵母的26S rRNA D1基因和真菌的18S rRNA基因对酵母和真菌群落结构进行了研究。酵母26S rRNA D1区基因的DGGE研究显示Saccharomycopsis fibuligera、Pichia anomala普遍存在于所有大曲中,且在整个酵母群落中处于优势地位,弥补了传统培养方法在反应优势菌群分布方面的缺陷。传统培养方法研究认为大曲酵母群落认为大曲中酵母主要为酿酒酵母、汉逊酵母、毕氏酵母、拟内孢霉四大类酵母,本研究使用DGGE方法均检测到了此四大类酵母,且还检测到了Trichosporon asahii、Debaryomyces hansenii、Hanseniaspora guilliermondii等酿酒工业中认为重要的非酿酒酵母。犁头霉及米根霉在真菌18S rRNA DGGE图谱中显示出明显的优势地位。除犁头霉、米曲霉及烟曲霉以外,利用18S rRNA引物还检测到了Candida tropicalis、Candida allociferrii、Saccharomyces bulderi等酵母。真菌18S rRNA DGGE图谱Shannon-Wiener多样性分析结果显示单粮曲真菌多样性均低于杂粮曲;
     3)地衣芽孢杆菌和枯草芽孢杆菌均为大曲中优势芽孢杆菌。PCR扩增的偏好性会引起细菌16S rRNA V3区引物很难将芽孢杆菌进行DGGE分离。通过利用巢式PCR获取芽孢杆菌专一性基因,将芽孢杆菌的16S rRNA V9区基因作为DGGE靶基因成功构建了大曲芽孢杆菌群落结构分析手段,该方法可较好的反应不同工艺大曲中芽孢杆菌群落信息。
     4)为进一步研究工艺因素对大曲细菌群落组成影响,分析了同一产地5种高温和中温白酒大曲细菌群落结构差异,通过优势条带切胶鉴定,确定了大曲中优势细菌种属信息。结果表明Weissella cibaria、L. helveticus、L. fermentum、L. panis等乳酸菌普遍存在于5种大曲中,Thermoactinomyces sanguinis仅存在于高温曲酱曲中。不同工艺大曲细菌群落结构存在明显差异,随着制曲温度的升高,大曲细菌多样性指数有下降趋势。
     综上,本研究从未培养角度较全面和系统地分析了不同工艺大曲微生物群落结构组成,获取了不同工艺大曲共有的优势种群信息,并研究了工艺因素对微生物种群结构的影响。运用PCR-DGGE基因指纹图谱技术分析白酒大曲的微生物群落结构,将其与传统的菌种分离鉴定、白酒风味组成分析等手段相结合,对判断和鉴定白酒生产中与特征风味物质相关的关键微生物、指导生产工艺改进,从而将传统的经验酿造提升到科学的水平具有重要的理论和实践意义。
Solid state fermentation based on starters (Daqu in Chinese) is a major characteristic of Chinese liquor which is well known Chinese traditional fermented food. Daqu is prepared by solid state fermentation with uncooked grain such as wheat and barley. As the main provider of microorganism, the quality of Daqu directly affects the yield and quality of liquor. For a long period, due to the disperse research condition and backward technologies, researchers know very limited about the microbial communities in Daqu.
     To overcome the limitation of culture-dependent method and get the Daqu microbial community from a culture-independent method, the microbial diversity of Chinese liquor Daqu was investigated using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The investigation of Daqu microbial community based on culture independent method would have theory and practice sense in getting better understanding of Daqu microbial community structure and the mechanism of traditional brewing microbe.
     10 typical Daqu samples collected from different regions were analyzed for bacteria, yeast and fungi by PCR-DGGE as a culture independent method. Extracted DNA was used as a template for PCR to amplify 16S rRNA gene V3 region, 26S rRNA gene D1 region and 18S rRNA gene partial region using universal primers. The Daqu microbial community information was confirmed by sequencing of dominant bands cutting from DGGE gel.
     The result indicated that
     1)For bacteria, compared with culture-dependent method, the bacterial DGGE profile displayed high diversity. Lactic acid bacterias were one of the dominant bacterial groups in different Daqu samples. The LAB included Weissella cibaria, L. helveticus, L. fermentum, L. panis and L. pontis. Thermoactinomyces sanguinis, Pseudomonas spp., Staphylococcus xylosus, and Stenotrophomonas maltophilia were also detected in bacterial DGGE while they were not detected in.
     2)As for fungi, researches based on traditional culture dependent method and culture independent method published in recent years mainly focused on bacteria, so 26S rRNA gene D1 region and 18S rRNA gene partial region DGGE was proceeded in Daqu samples. The main yeast detected by traditional culture-dependent method were Saccharomyces cerevisiae, Hansenula spp., Pichia spp. and Endomycopsis spp.. Besides these yeast, the DGGE method also detected yeast such as Hanseniaspora guilliermondii, Debaryomyces hansenii, Trichosporon asahii and Issatchenkia orientalis. And the non-Saccharomyces yeasts revealed its high diversity in this study. The predominance of Saccharomycopsis fibuligera and Pichia anomala were proved in all the samples. The fungal 18S rRNA DGGE proved the dominance of Absidia spp. and Aspergillus spp. in Daqu. Saccharomycopsis fibuligera, Saccharomyces bulderi, Candida allociferrii and Candida tropicalis were identified as yeast in the fungal analysis. DGGE profiles of fungal 18S rRNA gene showed fewer bands than bacterial and yeast DGGE profiles. Daqu manufactured with only wheat showed lower Shannon-Wiener diversity than those manufactured with more than one variety of grains.
     3)Bacillus licheniformis and Bacillus subtilis were proved to be dominant in Daqu Bacillus species. Due to the limitation of PCR amplification by bacterial universal primer, 16S rRNA V3 DGGE failed to discriminate Bacillus species in the Daqu samples. A nested-PCR based DGGE method was established. The gene which was special for Bacillus species was obtained by first round PCR and the Bacillus 16S rRNA V9 gene was obtained by the second round PCR. The 16S rRNA V9 gene DGGE was proved to be effective in profiling Bacillus community in Daqu.
     4)To get a better understanding of correlation between craftwork and bacterial community structure in Daqu. The bacterial community structure of 5 high and medium temperature Chinese liquor Daqu from the same region were investigated using PCR-DGGE. DNA sequencing was proceeded to obtain the dominant bacterial population information. The result of DGGE profiles showed that Weissella cibaria, L. helveticus, L. fermentum and L. panis were commonly detected in all the five Daqu. Thermoactinomyces sanguinis was detected only in the Jiangqu sample. The correlation between the craftwork of Daqu and the bacterial community structure was obvious. The Daqu bacterial Shannon-Wiener index decreased as the craftwork temperature of Daqu increasing. PCR-DGGE was proved to be a powerful tool for gaining detailed insight into the bacterial diversity of the Chinese liquor Daqu.
     Microbial community of different Chinese liquor Daqu was investigated using culture-dependent method in this study and information of dominant species in Daqu was obtained and the affection of craftwork on microbial community structure was studied. The combined analysis of microorganism community structure in Daqu obtained by DNA fingerprint methods with interrelated results using other experiment means, such as traditional microbial identification based on culture and separation, detection of liquor solid-form fermentation and analysis of aroma components in liquor, will help to isolate and identify important microbes corresponding to the formation of characteristic key flavor components, and direct improvement of production techniques.
引文
1.沈怡方,白酒生产技术全书[M].北京:中国轻工业出版社,2007.10-11
    2.杨代永,范光先,汪地强,等.高温大曲中的微生物研究.酿酒科技[J]. 2007,(5):37-38
    3.惠丰立,柯涛,褚学英,等.大曲中酵母菌种群结构及多样性分析.食品与生物技术学报[J]. 2009, 28(1):102-106
    4.李大和,浓香型大曲酒生产技术.北京:轻工业出版社,1991.110-111
    5.花井四郎.中国の白酒と香气.日本酿造协会志[J].1994,89(1):53-59
    6.横山直行等.中国の曲微生物相と酵素活性.日本酿造协会志[J].1994,89(1):72-76
    7.王忠彦,彭追远.高温大曲微生物区系的初步研究.酿酒科技[J].1995,(3):66-67
    8.施安辉,王春荣.浓香型酒大曲中细菌的分布及主要产酸细菌的鉴定.山东食品发酵工业[J]. 1996,( 4):20-23
    9.施安辉,张文璞.徐坊大曲的微生物区系及其优势菌的鉴定.酿酒科技[J]. 2001,(6):26-28
    10.廖建民,姚万春.浓香型曲药细菌初步分类鉴定研究.酿酒[J].2001,28(5):42-43
    11.姚万春等.泸州老窖国窖曲曲坯层次间微生物差异研究.酿酒[J].2005,32(5):35-37
    12.杨代永,范光先,汪地强,等.高温大曲中的微生物研究.酿酒科[J].2007,(5):37-38
    13.罗志腾.大曲发酵酒醅微生物区系的初步研究.微生物学通报[J].1986,2:59-60
    14.熊昌绪.浓香型白酒酒醅发酵过程中微生物消长物质变化的研究.酿酒科技[J]. 1994,(2):25-25
    15. Zhang WX, Qiao ZW, Shigematsu T, et al. Analysis of the bacterial community in Zaopei during production of Chinese Luzhou-flavor liquor. Journal of the Institute of Brewing[J]. 2005, 111(2):215-222
    16. Zhang WX, Qiao ZW, Tang YQ, et al. Analysis of the fungal community in Zaopei during the production of Chinese Luzhou-flavour liquor. Journal of the Institute of Brewing[J]. 2007,
    113(1):21-27
    17.褚学英,惠丰立,李晓辉.大曲中主要酵母菌的分子鉴定.中国酿造[J].2008,(5):27-29
    18.张春辉,赵树欣,梁慧珍.高温大曲中细菌总DNA提取方法比较.酿酒科技[J]. 2008,(10):54-56
    19. Wang HY, Zhang XJ, Zhao LP, et al. Analysis and comparison of the bacterial community in fermented grains during the fermentation for two different styles of Chinese liquor. Journal of Industrial Microbiology & Biotechnology[J]. 2008, 35(6):603-609
    20.胡佳.利用免培养法对浓香型白酒曲药细菌菌群的解析研究[D]:[硕士论文].成都:四川大学,2007
    21.罗惠波,黄治国,李浩,等.浓香型大曲原核微生物群落的PCR-SSCP解析.微生物学报[J].2009,36(9):1363-1367
    22. Amann RI, Krumholz L, Stahl D A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. Journal of Bacteriology[J]. 1990,172(2):762
    23. Nassar A, Darrasse A, Lemattre M, et al. Characterization of Erwinia chrysanthemi by pectinolytic isozyme polymorphism and restriction fragment length polymorphism analysis of PCR-amplified fragments of pel genes.Applied and Environmental Microbiology[J]. 1996,62(7):2228-2233
    24. Muyzer G, Dewaal EC, Uitterlinden AG. Profiling of Complex Microbial-Populations by Denaturing Gradient Gel-Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes-Coding for 16s Ribosomal-Rna. Applied and Environmental Microbiology[J]. 1993,59(3):695-700
    25. Myers RM, Fischer SG, Maniatis T, et al. Nearly All Single Base Substitutions in DNA Fragments Joined to a GC-Clamp Can Be Detected by Denaturing Gradient Gel-Electrophoresis. Nucleic Acids Research[J]. 1985,13(9):3131-3145
    26. Myers RM, Fischer SG, Maniatis T, et al. Modification of the Melting Properties of Duplex DNA by Attachment of a Gc-Rich DNA-Sequence as Determined by Denaturing Gradient Gel-Electrophoresis. Nucleic Acids Research[J]. 1985, 13(9):3111-3129
    27. Gomes NCM, Fagbola O, Costa R, et al. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Applied and Environmental Microbiology[J]. 2003, 69(7):3758-3766
    28. Heuer H, Krsek M, Baker P, et al. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Applied and Environmental Microbiology[J]. 1997, 63(8):3233-3241
    29. Simpson JM, McCracken VJ, White BA, et al. Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota. Journal of Microbiological Methods[J]. 1999, 36(3):167-179
    30. Teske A, Wawer C, Muyzer G, et al. Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Applied and Environmental Microbiology[J]. 1996, 62(4):1405-1415
    31. Sekiguchi H, Watanabe M, Nakahara T, et al. Succession of bacterial community structure along the Changjiang River determined by denaturing gradient gel electrophoresis and clone library analysis. Applied and Environmental Microbiology[J]. 2002, 68(10):5142-5150
    32. Watanabe K, Watanabe K, Kodama Y, et al. Molecular characterization of bacterial populations in petroleum-contaminated groundwater discharged from underground crude oil storage cavities. Applied and Environmental Microbiology[J]. 2000, 66(11):4803-4809
    33. Nicolaisen MH, Ramsing NB. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. Journal of Microbiological Methods[J]. 2002, 50(2):189-203
    34. Wawer C, Jetten MSM, Muyzer G. Genetic diversity and expression of the [NiFe] hydrogenase large-subunit gene of Desulfovibrio spp. in environmental samples. Applied and Environmental Microbiology[J]. 1997, 63(11):4360-4369
    35. Renouf V, Claisse O, Miot-Sertier C, et al. Lactic acid bacteria evolution during winemaking: Use of rpoB gene as a target for PCR-DGGE analysis. Food Microbiology[J]. 2006, 23(2):136-145
    36. Petersen SO, Debosz K, Schj P, et al. Phospholipid fatty acid profiles and C availability in wet-stable macro-aggregates from conventionally and organically farmed soils. Geoderma[J]. 1997, 78(34):181-196
    37. Ampe F, Omar NB, Moizan C, et al. Polyphasic study of the spatial distribution of microorganisms in Mexican pozol, a fermented maize dough, demonstrates the need for cultivation-independent methods to investigate traditional fermentations. Applied and Environmental Microbiology[J]. 1999, 65(12):5464-5473
    38. Cocolin L, Manzano M, Cantoni C, et al. Denaturing gradient gel electrophoresis analysis of the 16S rRNA gene V1 region to monitor dynamic changes in the bacterial population during fermentation of Italian sausages. Applied and Environmental Microbiology[J]. 2001, 67(11):5113-5121
    39. Ercolini D, Hill PJ, Dodd CER. Bacterial community structure and location in Stilton cheese. Applied and Environmental Microbiology[J]. 2003, 69(6):3540-3548
    40. Lee JS, Heo GY, Lee JW, et al. Analysis of kimchi microflora using denaturing gradient gel electrophoresis. International Journal of Food Microbiology[J]. 2005, 102(2):143-150
    41. Cocolin L, Bisson LF, Mills DA. Direct profiling of the yeast dynamics in wine fermentations. Fems Microbiology Letters[J]. 2000, 189(1):81-87
    42. Cocolin L, Heisey A, Mills DA. Direct identification of the indigenous yeasts in commercial wine fermentations. American Journal of Enology and Viticulture[J]. 2001,
    52(1):49-53
    43. Endo A, Okada S. Monitoring the lactic acid bacterial diversity during Shochu fermentation by PCR-denaturing gradient gel electrophoresis. Journal of Bioscience and Bioengineering[J]. 2005, 99(3):216-221
    44. Cocolin L, Aggio D, Manzano M, et al. An application of PCR-DGGE analysis to profile the yeast populations in raw milk. International Dairy Journal[J]. 2002, 12(5):407-411
    45. White TJ, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications. 1990, New York: Academic Press. 315–322
    46. May LA, Smiley B, Schmidt MG. Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage. Canadian Journal of Microbiology[J]. 2001, 47(9):829-841
    47. De Clerck E, Gevers D, De Ridder K, et al. Screening of bacterial contamination during gelatine production by means of denaturing gradient gel electrophoresis, focussed on Bacillus and related endospore-forming genera. Journal of Applied Microbiology[J]. 2004, 96(6):1333-1341
    48. Kim TW, Lee JH, Kim SE, et al. Analysis of microbial communities in doenjang, a Korean fermented soybean paste, using nested PCR-denaturing gradient gel electrophoresis. International Journal of Food Microbiology[J]. 2009, 131(2-3):265-271
    49.吴鑫.DGGE指纹图谱分析太湖富营养化水体中细菌群落结构的变化[D]:[硕士学位论文].上海:上海交通大学,2007
    50.刑鹏,孔繁祥,曹焕生,张民.太湖浮游细菌与春末浮游藻类群落结构演替的相关分析.生态学报[J]. 2007, 27:31
    51. Krsek M, Wellington EMH. Comparison of different methods for the isolation and purification of total community DNA from soil. Journal of Microbiological Methods[J]. 1999, 39(1):1-16
    52. Frostegard A, Courtois S, Ramisse V, et al. Quantification of bias related to the extraction of DNA directly from soils. Applied and Environmental Microbiology[J]. 1999, 65(12):5409-5420
    53. Watanabe K, Kodama Y, Harayama S. Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. Journal of Microbiological Methods[J]. 2001, 44(3):253-262
    54. Zhang XL, Yan X, Gao PP, et al. Optimized sequence retrieval from single bands of temperature gradient gel electrophoresis profiles of the amplified 16S rDNA fragments from an activated sludge system. Journal of Microbiological Methods[J]. 2005, 60(1):1-11
    55.康明官.清香型白酒生产技术[M].北京:化学工业出版社.2005,83-85
    56.谢玉球,钟雨,谢旭,等.乳酸菌在固态法白酒生产中的地位与作用.酿酒科技[J]. 2008,(11):83-86
    57. Temmerman R, Huys G, Swings J. Identification of lactic acid bacteria: culture-dependent and culture-independent methods. Trends in Food Science & Technology[J]. 2004, 15(78):348-359
    58. Stiles ME, Holzapfel WH. Lactic acid bacteria of foods and their current taxonomy. International Journal of Food Microbiology[J]. 1997, 36(1):1-9
    59. Srionnual S, Yanagida F, Lin LH, et al. Weissellicin 110, a newly discovered bacteriocin from Weissella cibaria 110, isolated from plaa-som, a fermented fish product from Thailand. Applied and Environmental Microbiology[J]. 2007, 73(7):2247-2252
    60.周恒刚.关于乳酸与乳酸菌(上).酿酒科技[J].1995,(5):11-14
    61.周恒刚.关于乳酸与乳酸菌(下).酿酒科技[J].1995,(6):11-13
    62. Yoon JH, Park YH. Phylogenetic analysis of the genus Thermoactinomyces based on 16S rDNA sequences. International Journal of Systematic and Evolutionary Microbiology[J]. 2000, 50:1081-1086
    63.吴衍庸.白酒工业微生物资源的发掘与应用.酿酒科技[J].2006(11):111-112
    64.罗俊成,胡佳,马莉,等.酒醅中芽孢杆属细菌的16S rDNA全序列系统学分析.酿酒科技[J]. 2007, 2:17-19
    65. Kurtzman CP, Robnett CJ. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek[J]. 1998, 73(4):331-371
    66.罗海峰,齐鸿雁,薛凯,等.PCR-DGGE技术在农田土壤微生物多样性研究中的应用.生态学报[J]. 2003, 23(8):1570-1575
    67.高秀芝,王小芬,李献梅,等.传统发酵豆酱发酵过程中养分动态及细菌多样性.微生物学通报[J].2008, 35(5):748-753
    68. Cocolin L, Urso R, Rantsiou K, et al. Dynamics and characterization of yeasts during natural fermentation of Italian sausages. Fems Yeast Research[J]. 2006, 6(5):692-701
    69. Combina M, Elia A, Mercado L, et al. Dynamics of indigenous yeast populations during spontaneous fermentation of wines from Mendoza, Argentina. International Journal of Food Microbiology[J]. 2005, 99(3):237-243
    70. Machida M, Ohtsuki I, Fuku Si, et al. Nucleotide Sequences of Saccharomycopsis Fibuligera Genes for Extracellular Beta-Glucosidases as Expressed in Saccharomyces Cerevisiae. Applied and Environmental Microbiology[J]. 1988, 54(12):3147-3155
    71. Hierro N, Gonzalez A, Mas A, et al. Diversity and evolution of non-Saccharomyces yeast populations during wine fermentation: effect of grape ripeness and cold maceration. Fems Yeast Research[J]. 2006, 6(1):102-111
    72. Teixeira RM, Cavalheiro D, Ninow JL, et al. Optimization of acetoin production by Hanseniaspora guilliermondii using experimental design. Brazilian Journal of Chemical Engineering[J]. 2002, 19(2):181-186
    73. Gobbetti M, Corsetti A, Rossi J. Interactions between lactic acid bacteria and yeasts: metabolism of carbohydrates. Applied Microbiology and Biotechnology [J]. 1994, 41(4):456-460
    74. Boel E, Hugejensen B, Christensen M, et al. Rhizomucor Miehei Triglyceride Lipase Is Synthesized as a Precursor. Lipids[J]. 1988, 23(7):701-706
    75. Stahnke LH. Aroma components from dried sausages fermented with Staphylococcus xylosus. Meat Science[J]. 1994, 38(1):39-53
    76. Cakmakci ML, Evans HJ, Seidler RJ. Characteristics of nitrogen-fixingKlebsiella oxytoca isolated from wheat roots. Plant and Soil[J]. 1981, 61(1):53-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700