非线性人工电磁媒质的电磁波传播特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十年来,人们对于电磁波在新型人工电磁媒质中的传播特性及其物理机制有了越来越清楚地认识,人工电磁媒质的相关理论和设计方法也已经得到了越来越多的实际应用,如电磁隐身衣、超透镜、左手传输线微波器件、电磁波吸波结构等等。但是,目前大部分关于人工电磁媒质研究都限于线性媒质,即其宏观等效电磁参数与外部入射场强或者传播场强的变化无关。最近的初步探索表明将材料的非线性引入人工电磁媒质的设计,实现非线性人工电磁媒质,将进一步拓展其对电磁波的调控作用,增加新型电磁功能器件的设计和开发空间。左手传输线是一类具有代表性的微波人工电磁媒质,其结构简单、尺寸紧凑、便于加工、损耗低而且工作频带宽,已经成为研究微波段人工电磁媒质特性及开发新型微波器件的一个重要研究平台。基于上述发展趋势,本文主要对基于传输线结构的非线性人工电磁媒质进行深入分析,探索非线性人工电磁媒质中电磁波传播的特异性质。除此之外还对新型人工电磁媒质的一些其他问题进行了有益的分析。论文的主要内容和贡献包括:
     (1)建立了一维非线性左手传输线模型,分析了电磁波在一维非线性左手传输线媒质中的色散关系和传播特性;采用背靠背微波变容二极管为非线性元件,替代左手传输线中的串联定值电容,在传输线型人工电磁媒质中引入了非线性;经过仔细的电路分析发现只要选择合适的电路参数,微波电路中的波包演绎方程就能简化为一维非线性薛定谔方程,这种一维非线性媒质将支持暗孤立子波。以连续波或高斯调制脉冲为输入信号进行微波电路的时域瞬态仿真分析,验证了暗孤立波的形成,而其频谱表明薛定谔类型孤立子的形成同时会导致传输线中三谐频的产生。另外,理论分析和仿真实验表明非线性人工媒质中的损耗有助于在较短距离就形成稳态暗孤立子。这一研究结果将有助于新型通信系统的建立。
     (2)建立了以串联非线性电容为基础的二维非线性左手传输线模型,从理论上分析了这种非线性人工电磁媒质的色散关系和传播特性;详细介绍了二维非线性左手传输线人工电磁媒质的设计和实现方法,分析了不同泵浦源功率下的非线性效应,以及基波、二次谐波、三次谐波的传播特性,通过对实际二维微波电路网络的仿真实验验证了相应的特异传播性质。研究表明非线性左手传输线人工电磁媒质的传播特性可由入射场的强度进行控制,实现其在左手媒质和右手媒质之间的切换。
     (3)通过二维非线性左手传输线人工电磁媒质实现了近场聚焦和超透镜平板成像。详细介绍了非线性在手传输线媒质和右手传输线媒质在谐频匹配的设计方法,仿真实验观察到左、右手传输线网络交界处有强烈的表面波,其结果与左手线性超透镜的理论分析一致。另外,设计了非线性左手传输线平板透镜,其对源的基频波不透明,却能够通过谐频场实现亚波长成像。
     (4)针对复杂各向异性光学人工电磁媒质,通过严格的数学分析得到了用复介电常数和复磁导率张量参数表示的赝布儒斯特角的显性计算公式;对该计算公式的有效性进行了验证;基于合理的物理近似,探讨了一些关于赝布儒斯特角的有趣特性和可能应用。
     (5)通过理论推导得到了单层高磁损耗吸波串联发生谐振吸收时的厚度要求,发现该厚度小于1/4介质内波长;通过已有实验数据进行了有效验证。
In the past ten years, people have come to know the propagation properties and the physical mechanism of the metamaterials, and the relevant theories and realizations of metamaterials have been utilized in many applications, such as electromagnetic invisibility cloaking, superlens that can overcome the diffraction limit, the left-handed microwave components and so on. So far, most research findings on metamaterials focused on the passive control and linear properties of these composite structures, i.e., the effective parameters of the structure do not depend on the intensity of the applied field or the propagating electromagnetic waves. However, recent preliminary explorations on nonlinear metamaterials have found the ability to dynamically control the material's properties in real time through nonlinear response, which expand the space on the design and development of new electromagnetic components.
     The left-handed transmission line structure is one of the most important approaches to microwave metamaterials for its compact size, low loss and broad band. Most of all, such TL version of left-handed metamaterial provide a simple and easy-to-realize system to investigate the EM wave propagation in left-handed media. Therefore, this dissertation focuses on the unusual electromagnetic characteristics in left-handed nonlinear transmission line (LH NLTL) media. The main contributions of this dissertation are listed below:
     1). We theoretically investigate the electromagnetic wave propagation in one-dimensional LH NLTL media. The nonlinear transmission line is periodically loaded with a nonlinear series capacitance composed of two back-to-back varactor diodes. By reducing the dispersion length and the nonlinear length, while increasing the dissipation of the transmission line, steady dark Schrodinger solitons are successfully realized in a short LH NLTL. The evolution of a Gaussian modulated pulse both in time and in frequency domain shows that increasing the dissipation in the metamaterials is helpful to attenuate the energy that prevents the steady soliton formation. The establishing of the Schrodinger solitons also results in harmonic generations in the transmission line, which may find potential applications in communication systems.
     2). we present the electromagnetic theory describing the generation and propagation of the fundamental wave and its high harmonics (the second harmonic and the third harmonic) in a two-dimensional nonlinear metamaterial. Then, we show the detailed design of the realizable two-dimensional LH NLTL metamaterial. We have found through microwave circuit simulations that due to its nonlinear performance, such NLTL metamaterial could switch between left-handed medium and right-handed medium by tuning the incident field intensity.
     3). we realize near-field focusing and near-perfect imaging at harmonic frequencies using the LH NLTL metamaterial. A detailed procedure is given to design LH NLTL and right-handed (RH) transmission line medium that matched at harmonic frequency. Then, with the aid of the microwave-circuit simulations we observe strong surface waves on the boundaries between RH and LH NLTL networks, which are consistent with the theoretical analysis of a LH linear superlens. We also show that the LH NLTL metamaterial can act as a flat nonlinear lens that can create, with a subwavelength resolution, an image of harmonic fields of the source being opaque for the fundamental frequency.
     4). By taking into account the loss and anisotropy of the metamaterials, we present the explicit expression of PBA in terms of complex permittivity and permeability through rigorous analysis. Based on the explicit expression and reasonalbe physical approximation, some interesting features and potential applications of the PBA are discussed.
     5). Films with high permeability, being thin and light, are very promising new microwave absorbers. We demonstrates analytically that the thickness of high-permeability thin films, which have the best absorption at certain frequencies, are less than a quarter dielectric wavelength. It also shows that the permeability of films has great impact on the bandwidth of absorption.
引文
[1]R. M. Walser, in:W. S. Weiglhofer and A. Lakhtakia (Eds.), "Introduction to Complex Mediums for Electromagnetics and Optics," SPIE Press, Bellingham, WA, USA, (2003).
    [2]D. R. Smith, Willie J. Padilla, D. C. Vier, S C. Nemat-Nasser, S. Schultz. "Composite medium with simultaneously negative permeability and permittivity". Phys. Rev. Lett.,84, 4184(2000).
    [3]J. B. Pendry, A. J. Holden, W. J. Stewart,I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett.76,4773 (1996).
    [4]J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech.47,2075 (1999).
    [5]R. A. Shelby, D. R. Smith, S. Schultz, "Experimental verification of a negative index of refraction," Science 292,77 (2001).
    [6]D. R. Smith, J. B. Pendry and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305788-792 (2004).
    [7]J. B. Pendry, "Negative refraction," contemp phys.45,191 (2004).
    [8]E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett.58,2059 (1987).
    [9]Sajeev John, "Strong Localization of Photons in Certain Disordered Dielectric Superlattices," Phys. Rev. Lett.58,2486 (1987).
    [10]D. V. Sivukhin, "The energy of electromagnetic waves in dispersive media," Opt. Spektrosk 3,308(1957).
    [11]V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp.10,509 (1968).
    [12]C. Caloz and T. Itoh, Electromagnetic metamaterials:transmission line theory and microwave applications, New York, Wiley (2004).
    [13]N. Seddon, T. Bearpark, "Observation of the inverse Doppler effect," Science 302,1537 (2003).
    [14]J. Lu, T. M. Grzegorczyk, Y. Zhang, J. Pacheco Jr, B. I. Wu, J. A. Kong, and M. Chen, "Cerenkov radiation in materials with negative permittivity and permeability," Opt. Express 11,723(2003).
    [15]H. Liu, Jack Ng, S. B. Wang, Z. F. Lin, Z. H. Hang, C. T. Chan, and S. N. Zhu, "Strong Light-Induced Negative Optical Pressure Arising from Kinetic Energy of Conduction Electrons in Plasmon-Type Cavities," Phys. Rev. Lett.106,087401 (2011).
    [16]H. K. V. Lotsh, "Beam displacement at total reflection:the Goose-Hanchen effect,"I. Optik 32,116(1970).
    [17]F. Goos and H. Hanchen, "Ein neuer und fundamentaler Versuch zur Totalreflexion," Ann. Phys.Lpz,1,333(1947).
    [18]A. Lakhtakia, "Positive and negative Goos-Hanchen shifts and negative phase-velocity mediums (alias left-handed materials)," Int. J. Electron. Commun.58,229 (2004).
    [19]P. R. Berman, "Goos-Hanchen shift in negatively refractive media," Phys. Rev. E 66, 067603 (2002).
    [20]M C K Wiltshire, "Tuning Swiss roll metamaterials," J. Phys. D:Appl. Phys.42,205001 (2009).
    [21]D. Schurig, J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett.88,041109 (2006).
    [22]M. Silveirinha and N. Engheta, "Tunneling of electromagnetic energy through subwavelength channels and bend using ε-near-zero materials," Phys. Rev. Lett.97,157403 (2006).
    [23]R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer and D. R. Smith, "Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies," Phys. Rev. Lett.100,023903 (2008).
    [24]J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312,1780(2006).
    [25]M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photonics and Nanostructures,6,87 (2008).
    [26]D. Schurig, J. B. Pendry, D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Exp.,14,9794 (2006).
    [27]X. Xu, Y. Feng, and T. Jiang, "Electromagnetic beam modulation through transformation optical structures," New J. Phys.10,115027 (2008).
    [28]M. Rahm, D. A. Roberts, J. B. Pendry and D. R. Smith, "Transformation-optical design of adaptive beam bends and beam expanders," Opt. Exp,,16(15),11557 (2008).
    [29]J. Huangfu, S. Xi, F. Kong, J. Zhang, H. S. Chen, D. Wang, B.-I. Wu, L. Ran, and J. A. Kong, "Application of coordinate transformation in bent waveguides," J. Appl. Phys.104, 014502 (2008).
    [30]L. Lin, W. Wang, J. H. Cui, C. L. Du, Xi. G. Luo, "Design of electromagnetic refractor and phase transformer using coordinate transformation theory," Opt. Exp.,16(10),6815 (2008).
    [31]H. F. Ma, and T. J. Cui, "Three-dimensional broadband ground-plane cloak made of metamaterials," Nat. Commun.1(3),1 (2010).
    [32]D. Shurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314,977 (2006).
    [33]Y. Huang, Y. Feng, and T. Jiang, "Electromagnetic cloaking by layered structure of homogeneous isotropic materials," Opt. Express 15,11133 (2007).
    [34]J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin wire structures," J. Phys. Condens. Matter.,10, pp.4785-4809 (1998).
    [35]T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, X. Zhang,'Terahertz Magnetic Response from Artificial Materials," Science 303,1494 (2004).
    [36]S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C. M. Soukoulis, "Magnetic response of metamaterials at 100 Terahertz," Science,306,1351 (2005).
    [37]N. Liu, H. C. Guo, Li. W. Fu, S. Kaiser, H. Schweizer and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nature materials,7,31 (2008).
    [38]C. Caloz, H. Okabe, T. Iwai, et al., "Transmission line approach of left-handed (LH) materials," USNC/URSI National Radio Science Meeting, San Antonio,TX, Vol.1, pp.39 (2002).
    [39]C. Caloz and T. Itoh, "Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH transmission line," Antennas and Propagation Society International Symposium, IEEE, San Antonio, TX, Vol.1, pp.412 (2002).
    [40]A. Lai, C. Caloz, and T. Itoh, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Mag.,24 (2004)
    [41]G. V. Eleftheriades, A. K. lyer, and P.C. Kremer," Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microwave Theory Tech.50, 2702 (2002).
    [42]M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B.,62,10096 (2000)
    [43]E. Cubukcu, K.Aydin, E. Ozbay, S. Foteinopoulou, C. M. Soukoulis, "Negative refraction by photonic crystals," Nature.423,604 (2003)
    [44]E. Cubukcu, K.Aydin, E. Ozbay, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Phys. Rev. Lett.91,207401 (2003)
    [45]C. Ciraci, E. Centeno," Focusing of second-harmonic signals with nonlinear metamaterial lenses:A biophotonic microscopy approach," Phys. Rev. Lett.103,063901 (2009).
    [46]G Dolling, M. Wegener, and S. Linden, "Realization of a three-functional-layer negative-index photonic metamaterials," Opt. Lett.32,551 (2007).
    [47]V. M. Shalaev, "Optical negative-index metamaterials," Nature Photon.1,41 (2006).Y. J. Feng, J. M. Zhao, X. H. Teng, Y. Chen, and T. Jiang, "Subwavelength imaging with compensated anisotropic bilayers realized by transmission-line metamaterials," Phys. Rev. B. 75,155107(2007).
    [48]D. Englund, D. Fattal, E. Waks, G. Solomon, B. Y. Zhang, T. Nakaoka, Y. Arakawa,Y.Yamamoto, and J. Vuckovic, " Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett.95,013904 (2005).
    [49]D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff & J. Vuckovic, "Controlling cavity reflectivity with a single quantum dot," Nature.450,857 (2007).
    [50]E. Centeno, C. Ciraci, "Theory of backward second-harmonic localization in nonlinear left-handed media," Phys. Rev. B 78,235101 (2008).
    [51]J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett.85,3966 (2000).
    [52]N. Fang, H. Lee, C. Sun, X. Zhang, "Sub-diffraction-Limited Optical Imaging with a Silver Superlens," Science,308,534-537 (2005).
    [53]A. Grbic and G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett.92,117403 (2004).
    [54]A. Grbic and G. Eleftheriades, "Growing evanescent waves in negative-refractive-index transmission-line media," Appl. Phys. Lett.82 (12),1815-1817 (2003).
    [55]A. Grbic and G. Eleftheriades, "Sub-wavelength focusing using a negative-refractive-index transmission-line lens," Antennas and Wireless Propagation Letters,2003.2:p.186-189
    [56]Y. Feng, J. Zhao, X. Teng, Y. Chen, and T. Jiang, "Subwavelength imaging with compensated anisotropic bilayers realized by transmission-line metamaterials," Phys. Rev. B 75,155107 (2007)
    [57]J. Li and J. B. Pendry, "Hiding under the Carpet:A New Strategy for Cloaking, " Phys. Rev. Lett.101,203901(2008).
    [58]R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, D. R. Smith, "Broadband Ground-Plane Cloak," Science.323,366 (2009).
    [59]J. Valentine, J. Li, T. Zentgraf, G. Bartal and X. Zhang, "An optical cloak made of dielectrics," Nature materials,8,568 (2009).
    [60]L. Liu, C. Caloz, and T. Itoh, "Dominant mode (DM) leaky-wave antenna with backfire-to-endfire scanning capability," Electron. Lett.38,1414 (2002).
    [61]R. Marques, F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge-and broadside-coupled split ring resonators for metamaterial design-Theory and experiments," IEEE Trans. Antennas Propag.51,2572 (2003).
    [62]C. Caloz and T. Itoh, "Novel microwave devices and structures based on the transmission line approach of meta-materials," IEEE MTT-S Int. Microw. Symp. Dig., Philadelphia, PA, 195 (2003).
    [63]M. Anionaiades and G V. Eleftheriades, "Compact linear lead/lag metamaterial phase shifters for broadband applications," IEEE Antennas Wireless Propag. Lett.2,103 (2003).
    [64]C. Y. Cheng and R. W. Ziolkowski, "Tailoring double-negative metamaterial responses to achieve anomalous propagation effects along microstrip transmission lines," IEEE Trans. Microw. Theory Tech.51,2306 (2003).
    [65]A. Sanada, C. Caloz, and T. Itoh, "Characteristics of the composite right/left-handed transmission lines," IEEE Microw. Wireless Compon. Lett.14,68 (2004).
    [66]I. Lin, M. DeVincentis, C. Caloz, and T. Itoh, "Arbitrary dual-band components using composite right/left-handed transmission line," IEEE Trans. Microw. Theory Tech.52,1142 (2004).
    [67]H. Kim, A. B. Kozyrev, A. Karbassi, and D. W. VanderWeide, "Linear tunable phase shifter using a left-handed transmission line," IEEE Microw. Wirless Compon. Lett.15,366 (2005).
    [68]C. Caloz, A. Sanada, and T. Itoh, "A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth," IEEE Trans. Microw. Theory Tech.52,1142 (2004).
    [69]H. V. Nguyen and C. Caloz, "Broadband highly selective bandpass filter based on a tapered coupled-resonator (TCR) CRLH structure," Special issue Microwave Metamaterials: Theory, Fabrication and Applications, Proc. of the European Microwave Association, vol.2, pp.44-51 (2006).
    [70]I-H. Lin, K. M. K. H. Leong, C. Caloz, and T. Itoh, "Dual-band sub-harmonic quadrature mixer using composite right/left-handed transmission lines," IEEE Proc. Microwaves, Antennas and Propagation,153(4),365 (2006).
    [71]Nikolay I. Zheludev, "The Road Ahead for Metamaterials," Science.328,582 (2010).
    [72]J. B. Pendry, "A chiral route to negative refraction," Science.306,1353 (2004)
    [73]S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," J. Electromagn. Waves Appl.17,695 (2003)
    [74]T. G. Mackay and A. Lakhtakia, "Plane waves with negative phase velocity in Faraday chiral mediums," Phys. Rev. Lett.69,026602 (2004)
    [75]M. Cheng, "Forward-and backward-propagating Cerenkov radiation in strong chiral media," Opt. Express 15,9793 (2007)
    [76]Ilya Shadrivov, "Nonlinear metamaterials:a new degree of freedom," SPIE Newsroom, 10.1117/2.1200811.1390.
    [77]Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, "Electricallytunable negative permeability metamaterials based on nematic liquid crystals," Appl.Phys. Lett.90,011112 (2007)
    [78]F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, "Magnetic control of negative permeability metamaterials based on liquid crystals," Appl.Phys. Lett.92, 193104 (2008).
    [79]D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, and M. V. Gorkunov, "Self-tuning mechanisms of nonlinear split-ring resonators,".Appl. Phys. Lett.91,144107 (2007)
    [80]H. Thomas, C. Steven, "Characterization of tunable metamaterial elements using MEMS switches," IEEE Antennas and wireless propagation letters,6,401 (2007)
    [81]H. S. Chen, B. I. Wu, L. X. Ran,Grzegorczyk Tomasz M, and J. A. Kong, "Controllable Left-handed metamaterial and its apllication to a seerable antenna," Appl. Phys. Lett.89(5), 053509 (2006).
    [82]R. Melik, E.Unal, N. K. Perkgoz, C. Puttlitz, and H. V. Demir," Metamaterial-based wireless strain sensors," Appl. Phys. Lett.95,011106 (2009).
    [83]A. Ishimaru, S. Jaruwatanadilok, and Y. Kuga, "Generalized surface plasmon resonance sensors using metamaterials," Progress In Electromagnetics Research,51,139 (2005).
    [84]A. L. Rakhmanov, A. M. Zagoskin, Sergey Savel'ev, and Franco Noril, "Quantum metamaterials:Electromagnetic waves in a Josephson qubit line," Phys. Rev.B.77,144507 (2009).
    [85]J. Plumridge, E. Clarke, R. Murray and C. Phillips, "Strong Coupling Effects with Quantum Metamaterials." Cond Mat. condmat/0701775.
    [86]A. K. Popov, and V. M. Shalaev, "Negative-index metamaterials:second-harmonic generation, Manley-Rowe relations and parametric amplication," Appl. Phys. B,84,131 (2006)
    [87]A. A. Zharov, I. V. Shadrivov, and Yu. S. Kivshar, "Nonlinear properties of lefthanded metamaterials, "Phys. Rev. Lett.91,037401 (2003).
    [88]I. V. Shadrivov, A. B. Kozyrev, D. W. van der Weide, and Y. S. Kivshar, "Tunable transmission and harmonic generation in nonlinear metamaterials," Appl. Phys. Lett.93, 161903 (2008).
    [89]D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, M. V. Gorkunov, "Self-tuning mechanisms of nonlinear split-ring resonators," Appl. Phys. Lett., Vol.91,144107 (2007).
    [90]D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar,"Tunable transmission and harmonic generation in nonlinear metamaterials," Appl. Phys. Lett., Vol.95,084102 (2009).
    [91]M. Lapine, M. Gorkunov, and K. H. Ringhofer, "Nonlinearity of a metamaterial arising from diode insertions into resonant conductive elements, " Phys. Rev. E 67,065601 (2003).
    [92]Z. Y. Wang, Y. Luo, P. Liang, J. T. Huangfu, D. X. Wang, H. S. Chen," Second-harmonic generation and spectrum modulation by an active nonlinear metamaterial" Appl. Phys. Lett. 94,134102 (2009).
    [93]S. Larouche, A. Rose, E. Poutrina, D. Huang, and D. R. Smith," Experimental determination of the quadratic nonlinear magnetic susceptibility of a varactor-loaded split ring resonator metamaterial," Appl. Phys. Lett.97,011109 (2010).
    [94]H. Li and Y. Zhang, "Tunable filters based on the varactor-loaded split-ring resonant structure coupled to microstrip line," ICMMT2008 3,1580 (2008).
    [95]M. C. Ricci, H. Xu, S. M. Anlage, R. Prozorov, A. Zhuravel, and A. V. Ustinov, "Tunability of superconducting metamaterials," Arxiv preprint cond-mat,0608737 (2006)
    [96]M. Lapine, M. Gorkunov, "Three-wave coupling of microwaves in metamaterial with nonlinear resonant conductive elements," Phys. Rev. E 70,066601 (2004).
    [97]S. C. Wen, Y. J. Xiang, X. Dai, Z. X. Tang, W. H. Su, and D. Y. Fan, "Theoretical models for ultroshort electromagnetic pulse propagation in nonlinear metamaterials," Phys. Rev. A 75,033815(2007).
    [98]Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, "Subwavelength Discrete Solitons in Nonlinear Metamaterials," Phys. Rev. Lett.99,153901 (2007).
    [99]C. Caloz, I. Lin, and T. Itoh, "Characteristics and potential applications of nonlinear left-handed transmission lines," Microwave and Optical Tech. Lett., Vol.40,471 (2004)
    [100]A. Shahvarpour, S. Gupta, and C. Caloz, "Schrodinger solitons in left-handed SiO2-Ag-Si O2 and Ag-SiO2-Ag plasmonic waveguides calculated with a nonlinear transmission line approach, "J. Appl. Phys.104,124510 (2008)
    [101]A. B. Kozyrev, H. Kim, A. Karbassi, and D. W. van der Weide," Wave propagation in nonlinear left-handed transmission line media," Appl. Phys. Lett.87,121109 (2005).
    [102]A. B. Kozyrev and D. W. van der Weide," Nonlinear wave propagation phenomena in left-handed transmission-line media," IEEE Trans. Microwave Theory Tech.53,238 (2005).
    [103]A. B. Kozyrev and D. W. van der Weide. "Pulse formation in nonlinear left-handed transmission line media," Appl. Phys. Lett.96,104106 (2010)
    [1]V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp.10,509 (1968)
    [2]D. R. Smith, J. B. Pendry and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305788-792 (2004)
    [3]A. A. Zharov, I. V. Shadrivov, and Yu. S. Kivshar, "Nonlinear properties of lefthanded metamaterials, " Phys. Rev. Lett.91,037401 (2003)
    [4]Z. Y. Li and L. L. Lin, "Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method," Phys. Rev. E.67,046607 (2003).
    [5]A. K. Popov, and V. M. Shalaev, "Negative-index metamaterials:second-harmonic generation, Manley-Rowe relations and parametric ampliation," Appl. Phys. B,84,131 (2006)
    [6]A. A. Zharov, N. A. Zharova, I. V. Shadrivov, and Yu. S. Kivshar, "Subwavelength imaging with opaque nonlinear left-handed lenses," Appl. Phys. Lett.87,091104 (2005);
    [7]A. B. Kozyrev, D. W. van der Weide, "Nonlinear wave propagation phenomena in left-handed transmission-line media," IEEE Trans. Microwave Theory and Tech.53,238 (2005).
    [8]A. B. Kozyrev, H. Kim, A. Karbassi, and D. W. van der Weide, "Wave propagation in nonlinear left-handed transmission line media," Appl. Phys. Letts.87,121109(2005).
    [9]A. B. Kozyrev, and D. W. van der Weide, "Nonlinear left-handed transmission line metamaterials," J. Phys. D:Appl. Phys.41,173001 (2008).
    [10]D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, "Tunable transmission and harmonic generation in nonlinear metamaterials," Appl. Phys. Lett., Vol.95,084102 (2009)
    [11]A. Shahvarpour, S. Gupta, and C. Caloz, "Schrodinger solitons in left-handed SiO2-Ag-Si O2 and Ag-SiO2-Ag plasmonic waveguides calculated with a nonlinear transmission line approach," J. Appl. Phys.104,124510 (2008)
    [12]S. Gupta and C. Caloz, "Dark and bright solitions in left-handed nonlinear transmission line Metamaterials," IEEE MTT-S Int. Microwave Symp. Dig.1,979 (2007).
    [13]K. Narahara, T. Nakamichi, etc., "Development of solitons in composite right- and left-handed transmission lines periodically loaded with Schottky varactors," J. Appl. Phys. 102,024501 (2007).
    [14]A. B. Kozyreva, and D. W. van der Weide,"Trains of envelope solitons in nonlinear left-handed transmission line media," Appl. Phys. Lett.91,254111 (2007).
    [15]G. V. Eleftheriades, A. K. Iyer, and P.C. Kremer," Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microwave Theory Tech.50, 2702 (2002).
    [16]A. Grbic, G. V. Eleftheriades, "Dispersion Analysis of a Microstrip-Based Negative Refractive Index Periodic Structure," IEEE Microwave and wireless components letters. 13(4),155(2003).
    [17]D. J. Korteweg and G. devries, "On the change of form of long waves advanang in a rectangular canal, and a new type of long stationary waves," Phil. Mag.,39,422 (1895).
    [18]J. S. Russell, "Report on waves," Roy. Soc. Edin.,319,(1848).
    [19]G. P. Agarwal. Nonlinear fiber optics, Academic Press, Boston,2007.
    [20]A. Lai, C. Caloz, and T. Itoh, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Mag.,24 (2004).
    [21]C. Caloz, T. Itoh. Electromagnetic metamaterials:transmission line theory and microwave applications, John Wiley & Sons, Inc., Hoboken, New Jersey,2006.
    [22]A. Kafaratzis, Z. Hu, "Envelope solitons in nonlinear left handed transmission lines," IET Seminar on Metamaterials for Microwave and (Sub) Millimeter wave Applications, London-UK,121-124(2006).
    [23]Z. B. Wang, Y. J. Feng, B. Zhu, J. M. Zhao and T. Jiang. "Dark Schrodinger solitons and harmonic generation in left-handed nonlinear transmission line," J. Appl. Phys,107, 094907(2010).
    [1]. J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett.76,4773 (1996).
    [2]. D. R. Smith, J. B. Pendry and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science.305,788-792 (2004).
    [3]. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, "Second-Harmonic Generation from Magnetic Metamaterials," Science.313,502 (2006).
    [4]. A. A. Zharov, N. A. Zharova, I. V. Shadrivov and Y. S. Kivshar, "Subwavelength imaging with opaque nonlinear left-handed lenses," Appl. Phys. Lett.87,091104 (2005)
    [5]. Z. Y. Wang, Y. Luo, P. Liang, J. T. Huangfu, D. X. Wang, H. S. Chen, " Second-harmonic generation and spectrum modulation by an active nonlinear metamaterial," Appl. Phys. Lett. 94,134102(2009)
    [6]. A. A. Zharov, I. V. Shadrivov, and Yu. S. Kivshar, "Nonlinear properties of lefthanded metamaterials," Phys. Rev. Lett.91,037401 (2003).
    [7]. Z. B. Wang, Y. J. Feng, B. Zhu, J. M. Zhao and T. Jiang. "Dark Schrodinger solitons and harmonic generation in left-handed nonlinear transmission line," J. Appl. Phys,107, 094907 (2010).
    [8]. M. Lapine, M. Gorkunov, and K. H. Ringhofer, "Nonlinearity of a metamaterial arising from diode insertions into resonant conductive elements, " Phys. Rev. E.67,065601 (2003).
    [9]. A. A. Zharov, I. V. Shadrivov, and Yu. S. Kivshar, "Nonlinear properties of lefthanded metamaterials," Phys. Rev. Lett.91,037401 (2003).
    [10].S. O'Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, "Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials," Phys. Rev. B.69,241101 (R) (2004).
    [11].G. V. Eleftheriades, A. K. Iyer, and P.C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microwave Theory Tech.50, 2702 (2002).
    [12].A. Grbic, G. V, Eleftheriades, "Periodic analysis of a 2-D negative refractive index transmission-line structure," IEEE Trans. Antennas Propag.51,2604 (2003).
    [13]. A. Lai, C. Caloz, and T. Itoh, "Composite right/left-handed transmission line metamaterials, " IEEE Microw. Mag.,35 (2004).
    [14]. A. Shahvarpour, S. Gupta, and C. Caloz, "Schrodinger solitons in left-handed SiO2-Ag-Si O2 and Ag-SiO2-Ag plasmonic waveguides calculated with a nonlinear transmission line approach, "J. Appl. Phys.104,124510 (2008).
    [15].A. B. Kozyrev, H. Kim, A. Karbassi, and D. W. van der Weide, "Wave propagation in nonlinear left-handed transmission line media," Appl. Phys. Lett.87,121109 (2005).
    [16].A. B. Kozyrev and D. W. van der Weide, "Nonlinear wave propagation phenomena in left-handed transmission-line media, " IEEE Trans. Microwave Theory Tech.53,238 (2005).
    [17].A. B. Kozyrev and D. W. van der Weide. "Pulse formation in nonlinear left-handed transmission line media," Appl. Phys. Lett.96,104106 (2010).
    [18].E. Centeno, C. Ciraci, "Theory of backward second-harmonic localization in nonlinear left-handed media," Phys. Rev. B.78,235101 (2008).
    [19].C. Ciraci, E. Centeno, "Focusing of Second-Harmonic Signals with Nonlinear Metamaterial Lenses:A Biphotonic Microscopy Approach," Phys.Rev. Lett.103,063901 (2009).
    [20]. I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, "Second-harmonic generation in nonlinear left-handed metamaterials," J. Opt. Soc. Am. B.23,529 (2003).
    [1]. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett.85,3966 (2000)
    [2]. A. A. Zharov, N. A. Zharova, I. V. Shadrivov and Y. S. Kivshar, "Subwavelength imaging with opaque nonlinear left-handed lenses," Appl. Phys. Lett.87,091104 (2005)
    [3]. C. Ciraci, E. Centeno, "Focusing of Second-Harmonic Signals with Nonlinear Metamaterial Lenses:A Biphotonic Microscopy Approach," Phys.Rev. Lett.103,063901 (2009).
    [4]. D. R. Smith, J. B. Pendry and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305788-792 (2004)
    [5]. A. Grbic, G. V, Eleftheriades, "Periodic analysis of a 2-D negative refractive index transmission-line structure," IEEE Trans. Antennas Propag.51,2604 (2003).
    [6]. A. Grbic, G. V, Eleftheriades, "Subwavelength Focusing Using a Negative-Refractive-Index Trans-mission Line Lens," IEEE Antennas Wireless Propagat. Lett.,2,186 (2003)
    [7]. T. J. Cui, Q. Cheng, Z. Z. Huang, and Y. J. Feng. "Electromagnetic wave localization using a left-handed transmission-line superlens," Phys. Rev. B.72,035112 (2005).
    [8]. T. J. Cui, Q. Cheng, W. B. Lu, Q. Jiang, and J. A. Kong, "Localization of electromagnetic energy using a left-handed-medium slab," Phys. Rev. B 71,045114 (2004).
    [9]. G. V. Eleftheriades, A. K. Iyer, and P.C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microwave Theory Tech.50, 2702 (2002).
    [10]. Y. J. Feng, X. H. Teng, Z. B. Wang, J. M..Zhao, and T. Jiang, "Extraordinary transmission in planar waveguide loaded with anisotropic metamaterials,"J. Appl. Phys.105,034912 (2009).
    [11].Z. Y. Wang, Y. Luo, P. Liang, J. T. Huangfu, D. X. Wang, H. S. Chen, "Second-harmonic generation and spectrum modulation by an active nonlinear metamaterial," Appl. Phys. Lett. 94,134102,(2009).
    [12].Z. Y. Wang, Y. Luo, T. Jiang, Z. Wang, J. T. Huangfu, L. X. Ran, "Second-harmonic generation and spectrum modulation by an active nonlinear metamaterial," Appl. Phys. Lett. 94,134102,(2009).
    [13]. A. Shahvarpour, S. Gupta, and C. Caloz, "Schrodinger solitons in left-handed SiO2-Ag-Si 02 and Ag-SiO2-Ag plasmonic waveguides calculated with a nonlinear transmission line approach," J.Appl. Phys.104,124510(2008).
    [14].A. B. Kozyrev, H. Kim, A. Karbassi, and D. W. van der Weide, "Wave propagation in nonlinear left-handed transmission line media," Appl. Phys. Lett.87,121109 (2005).
    [15].A. B. Kozyrev and D. W. van der Weide, "Nonlinear wave propagation phenomena in left-handed transmission-line media," IEEE Trans. Microwave Theory Tech.53,238 (2005).
    [16].Z. B. Wang, Y. J. Feng, B. Zhu, J. M. Zhao and T. Jiang. "Dark Schrodinger solitons and harmonic generation in left-handed nonlinear transmission line," J. Appl. Phys,107, 094907(2010)
    [17].I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, "Second-harmonic generation in nonlinear left-handed metamaterials," J. Opt. Soc. Am. B.23,529 (2003).
    [1]. M. Elshazly-Zaghloul and R. M. A. Azzam, "Brewster and pseudo-Brewster angles of uniaxial crystal surfaces and their use for determination of optical properties," J. Opt. Soc. Am.72,657(1982).
    [2]. S. Y. Kim and K. Vedam, "Analytic solution of the pseudo-Brewster angle," J. Opt. Soc. Am. A.3,1772(1986)
    [3]. G. P. Ohman,'The Pseudo-Brewster Angle," IEEE Trans Antenna Propagat.25,903 (1977).
    [4]. E. Cojocaru, "Contours of constant minimum-reflectance and maximum-reflectance angles in the complex plane of a dielectric constant for incident light of arbitrary polarization," Applied Optics.34,7949 (1995).
    [5]. R. F. Potter, "Pseudo-Brewster Angle and the Optical Constants," Applied Optics,9,1717 (1970)
    [6]. Ritta Z. Vitlina and Gregory I. Surdutovich, "Expressions for determination of layer absorbances of a weakly absorbing double-layer sample through reflectance at the Brewster angles," Applied Optics,41 (2002),3111-3117.
    [7]. H. Z. Wang, Z. S. Wang, "Design of reflection multilayered polarizers and analyzers in the soft X-ray range," Optical Technique,29,277 (2003).
    [8]. C. Lu, K. Yi, J. D. Shao, "Designing and Fabrication of Multilayer Polarization for Soft X-ray at 8.0 nm," Acta Photonica Sinica.36,2049 (2007).
    [9]. B. Gralak, S. Enoch, G. Tayeb, "Anomalous refractive properties of photonic crystals," J. Opt. Soc. Am. A,17,1012 (2000).
    [10]. V. M. Shalaev, "Optical negative-index metamaterials," Nature Photonics,1,41 (2007).
    [11]. W. X. Shu, Z. Z. Ren, H. L. Luo, and F. Li, "Brewster angle for anisotropic materials from the extinction theorem," Appl. Phys. A,87,297 (2007).
    [12]. Paul. F. D, "Microwave absorber:theory, design and test," Microwave Journal,11,88 (1993).
    [13]. R. F. Harrington, "Time-Harmonic Electromagnetic Fields," New York,1961.
    [14]. J. B. Pendry, A. J. Holden, D. J. Robbins, et al, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans Microwave Theory Tech,41,2075 (1999).
    [15]. N. Liu, H. C. Guo, Li. W. Fu, S. Kaiser, H. Schweizer and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nature materials,7,31 (2008).
    [16]. I. R. Hooper, J. R. Sambles and A. P. Bassom, "The transverse magnetic reflectivity minimum of metals," Optics Express,16,7580 (2008).
    [17]. R. W. Ziolkowski and A. D. Kipple, "Causality and double-negative metamaterials," Phys. Rev.E.68,026615(2003).
    [1].陈生,徐畅,“吸波材料抑制电子设备机箱谐振的数值研究,”电子质量,11,93(2007).
    [2].曾立志,段宝岩,“电子设备中吸波材料位置与尺寸的优化设计初探,”电子机械工程,23(6),15(2007).
    [3]. K. S. Lee, Y. C. Yun, S. W. Kim, and S. S. kim, "Microwave absorption of λ/4 wave absorbers using high permeability magnetic composites in quasimicrowave frequency band," Jounal of Applied Physics,103,07E504(2008).
    [4]. Roger F. Harrington. Time-Harmonic lectromagnetic Fields. New York:McGRAW,Book company,Inc,1961
    [5].伍瑞新,陈平,“磁性Salisbury屏的高频响应,”物理学报,53(9),2915(2004).
    [6].伍瑞新,王相元,钱鉴,张明雪,朱航飞,徐培华,“影响Salisbury屏高频响应的若干因数,”物埋学报,53(3),745(2004).
    [7].康青.新型微波吸收材料.北京:科学出版社,2006
    [8].赵振声,吴明忠,何华辉,“雷达吸波材料对斜入射电磁波的反射,”华中理工大学学报,26(4),81(1998).
    [9]. Yi Yang, B. S. Zhang, W. D.Xu, Y. B. Shi, Z. S. Jiang, N. S. Zhou, B. X. Gu, and H. X. Lu, "Preparation and properties of a novel iron-coated carbon fiber," Journal of Magnetism and Magnetic Materials,256,129 (2003).
    [10].M.Yamaguchi, Y.Miyazawa,etc, "soft magnetic applications in the RF range," Journal of Magnetism and Magnetic Materials,268,170 (2004).
    [11].T. Giannakopoulou, A. Kontogeorgakos, G. Kordas, "Single-layer microwave absorbers: influence of dielectric and magnetic losses on the layer thickness," Journal of Magnetism and Magnetic Materials,263,173 (2003).
    [12].T. Giannakopoulou, A. OiKonomou, G. Kordas, "Double-layer microwave absorbers based on materials with large magnetic and dielectric losses," Journal of Magnetism and Magnetic Materials,271,224 (2004).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700