InGaAs(Sb)近、中红外激光器材料与器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.5-2.0μm近、中红外波段半导体激光器在通讯、测高、测距、遥感等方面有着广泛的应用。研究位于该波段的低维半导体量子激光光源,已经成为半导体研究领域中的国际前沿和热点之一。本论文主要围绕1.5-2.0μm近、中红外波段半导体激光器材料和器件开展了研究工作,通过系统深入地开展低维In(Ga)As量子点激光器材料、中红外锑化物量子阱In(Al)GaAsSb激光器材料的MBE外延生长技术研究,探索了1.5-2.0μm近、中红外波段In(Ga)As(Sb)氐维量子尺寸(量子点、量子阱)激光器材料制备技术。通过优化材料质量,深入开展工艺研究,制备了位于该波段的半导体激光器件,为进一步开展近、中红外波段半导体激光器材料和器件研究提供了基础材料和技术支持。
     主要开展的研究内容如下:
     1)在1.5gm波段,深入开展了外延生长In(Ga)As/GaAs量子点激光器材料研究,分析了生长温度、生长速度、V/Ⅲ族束流比、掺杂浓度以及量子点密度、形状等对生长质量和发光效率的影响;首次采用Sb敏化和InGaAs应变减小层技术拓展波长的同时,优化生长速率和退火温度,在有源区优化有效p型掺杂以及采用分别限制渐变折射率AlGaAs限制层的设计,分析了结构参数对量子点结构的光学性质和电学性质的影响。
     2)在1.5-2gm波段,主要开展了InGaAs(Sb)的优化生长研究。优化材料生长条件和结构设计,开展高质量、高发光效率的InGaAsSb/AlGaAsSb量子阱生长研究,提高有源区增益、降低激射阈值;获得了高均匀性、高晶体质量的InGaAsSb/AlGaAsSb材料,获取了提高量子阱结构生长质量的技术手段。
     3)深入开展了GaAs基量子点,GaSb基量子阱材料的器件工艺研究。
     (1)解决了GaSb基材料的刻蚀、钝化和欧姆接触等关键工艺技术问题;
     (2)评价和表征了器件特性,分析了影响器件阈值、效率等因素。
     4)开展了位于1.5-2μm波段低维In(Ga)As(Sb)量子点激光器材料、中红外锑化物量子阱In(Al)GaAsSb激光器技术研究。
     (1)系统研究了影响量子点的生长因素。开展了采用多层量子点在量子阱中(DWELL)结构的激光器研究。为了提高激光器有源区量子点的均匀性,增加有效激射量子点的数目,采用多层量子点结构,通过选择适当的量子点间隔层厚度,利用存在于量子点层之间应力的相互作用,使量子点在垂直方向上相互吸引,形成大尺寸量子有源区的“应变人工控制”,不但增大了量子点的体密度,还有效地改善了量子点分布的均匀性。制备了波长位于1.5gm多层量子激光器,器件测试结果表明,随着温度从20℃升高到60℃,在60℃时激光器仍可以实现连续激射,输出功率20mW左右,波长为1.5μm。
     (2)采用分子束外延(Molecular Beam Epitaxy,MBE)生长技术,制备了波长位于1.6-2.3μm的InGaAsSb/AlGaAsSb多量子阱结构材料。在此基础上制备的2.2μm波长激光器,测得激光器件的阈值电流密度为187A/cm2,斜率效率为0.2W/A,室温下连续输出功率达到320mW。波长随注入温度的变化率约为0.28nm/℃。当温度从20℃升高到60℃时,斜率效率由20.1%减小到10.8%。
     以上器件结果表明,采用MBE外延生长低维In(Ga)As量子点激光器材料、中红外In(Al)GaAsSb锑化物量子阱激光器材料,为1.5-2μm波段近、中红外半导体材料和激光器研究提供了新的有效方法和研究思路,对进一步开展近、中红外波段半导体激光器研究及应用具有十分重要意义。
Low-dimensional semiconductor quantum laser located in the1.5-2μm near-and mid-infrared wavelength range has become one of the international frontier areas. These devices are especially attractive and enormous interest for the development of the practical realization of optoelectronic devices operating in the1.5-2μm wavelength range, with potential applications in a wide variety of areas including communications, altimetry, ranging, optical sensing and monitoring.
     The present research work focuses on1.5-2μm quantum dots (QDs) and multiple quantum wells (MQWs) materials and devices. The active layers were in the first case low-dimensional burried In(Ga)As QDs. and in the second case MBE-grown mid-infrared antimonide MQWs In(Al)GaAsSb emitting in the1.5-2.0μm near-infrared band. By optimizing the quality of materials and the growth technology, we prepared the high quality antimonide laser structures and devices, which is conducive for further research for near-and mid-infrared semiconductor lasers development and a wide range of applications.
     The present research work mainly focuses on the following.
     First, we carried out the epitaxial growth of In(Ga)As/GaAs QDs laser material emitting in the1.5μm band, by optimizing the growth temperature, growth rate, the Ⅴ/Ⅲ beam flux, the doping concentration as well as the QDs density and shape influencing the growth quality and the photoluminescence efficiency. The addition of Sb into InGaAs decreases the strain magnitude, lengthens the wavelength. This technology also allows the optimization of the growth rate, the annealing temperature, and the effective p-type doping of the active region. We also could limit the gradient of the high-refractive index AlGaAs cladding layer and other important parameters. We analyzed the impact of the structural parameters of the optical and electrical properties of the quantum dot structure.
     Second, we optimized the growth conditions of InGaAs(Sb) QWs emitting in the1.5-2μm band to improve the layer quality. We also optimized the structure design of our InGaAsSb/AlGaAsSb structures, achieving high photoluminescence efficiency, significantly increasing the gain of the active region and reducing the lasing threshold. We were able to achieve highly uniform, high crystal quality InGaAsSb/AlGaAsSb devices.
     Third, we performed detailed materials treatment study for GaAs QD based and GaSb QW-based laser materials. To do this we solved several technological issues related to GaSb-based materials, i.e. etching, passivation and fabrication of ohmic contacts. We were then able to evaluate and characterize the devices, and analyze the threshold, efficiency and other factors.
     Fourth, we grew1.5-2μm wave-band low-dimensional In(Ga)As(Sb) quantum dot laser materials, as well as mid-infrared quantum well antimonide In(Al)GaAsSb lasers,
     i) We performed a systematic study on the growth factors affecting the quantum dots. We grew and fabricated multi-layer quantum dots-in-well laser structure (DWELL), in order to improve the uniformity of the quantum dots used as laser active region, and to increase the number of quantum dots effectively contributing to lasing. The use of multilayer quantum dot structures allows the stacking of QDs in the vertical direction via the stress interaction existing between the QD layers. An appropriate choice of the thickness of the QDs spacer layer not only increases the QDs bulk density, but also effectively improves the QD size and emission distribution uniformity. Our1.5μm wavelength multilayer lasers are able to achieve room temperature continuous lasing from20℃to60℃, with an output power as high as20mW with a1.5μm emission.
     ii) Using MBE growth, InGaAsSb/AlGaAsSb multiple quantum well structures were prepared with an emission wavelength located in the1.6-2.3μm range. The laser threshold current A device emitting at2.2μm wavelength was measured at187A/cm2, with a slope efficiency of0.2W/A. The maximum output power was320mW in continuous mode at room temperature. The lasing wavelength shifts with temperature by about0.28nm/℃. When the temperature is increased from20℃to60℃, the slope efficiency decreases from20.1%to10.8%.
     This thesis systematically studied low-dimensional In(Ga)As quantum dot, as well as MBE-grown mid-infrared antimonide quantum well In(Al)GaAsSb as laser active media. We achieved semiconductor lasing in the1.5-2μm infrared band. Our research provides a new way of thinking and effective work methods, which is of great significance for further studies related to mid-infrared semiconductor lasers applications. The methods employed and emphasized in this work proved very effective, which brings valuable results and is expected to find wide applications in the field of mid-infrared wavelength range.
引文
[1]Z.Y.Zhang.A.E.H.Oehler.B.Resan.1.55 μm InAs/GaAs Quantum Dots and High Repetition Rate Quantum Dot SESAM Mode-locked Laser, Nature. (2012).2.477.
    [2]A. Zrenner, E. Beham, S. Stufler. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature,(2002),418,612-614.
    [3]L. Nevou. V. Liverini. P. Friedli, et al. Current quantization in an optically driven electron pump based on self-assembled quantum dots. Nature Physics, (2011).7.423-427.
    [4]Report:Mid-infrared lasers,Nature Photonics,(2010),4.566-568.
    [5]Arun Mohanl, Pascal Gallol,Marco Felicil,Record-Low Inhomogeneous Broadening of Site-Controlled Quantum Dots for Nanophotonics.Small. (2010).16.1268-1272.
    [6]Thomas E. Vandervelde.Michael C. Lenz.Quantum Dots-in-a-Well Focal Plane Arrays.IEEE J. OF Selected Topics in Qantum Electronics. (2008)14.4.
    [7]Motoichi Ohtsu and Satonhiko Araki.Using a 1.5μm DFB InGaAsP laser in a passive ring cavity type fiber gyroscope.Appl. Optic.,(1987)26.3.464.
    [8]Seth R B. Mark A W. Lynford L.Get al. Low Threshold Continous wave 1.5μm GaInNAsSb Lasers Grown on GaAs,IEEE J. of Quantum Electronics,(2004) 40.6.
    [9]Seth B, W.Ha, V.Gambin,1.5μm GaInNAs(Sb) lasers grown on GaAs by MBE. J.Grystal Growth, (2003),251.367-371.
    [10]L.H.Li. V.Sallet, G.Patri4rche,1.5μm laser on GaAs with inGaNAs(Sb) quinary quantum well. Electron Lett., (2003)39.6.
    [11]Tangring,H.Q.Ni,B.P.Wu,et al,1.58μm InGaAs quantum well laser on GaAs.Appl.Phys.Lett., (2007).91.221101.
    [12]L. H. Li. M. Rossetti. A. Fiore, and G. Patriarche.1.43 μm InAs bilayer quantum dot lasers on GaAs substrate, Electron. Lett., (2006),42,638.
    [13]L. H. Li. M. Rossetti, G. Patriarche. and A. Fiore. Growth of InAs bilayer quantum dots for long-wavelength laser emission on GaAs, J. of Crystal Growth, (2007),301.959.
    [14]T. Yamanaka. B. Movaghar. S. Tsao. S. Kuboya, A. Myzaferi. and M. Razeghi. Gain-length scaling in quantum dot/quantum well infrared photodetectors.Appl. Phys. Lett.. (2009).95.093502.
    [15][15].Y. Sun. S. F. Cheng. G. Chen, and R. F. Hicks, The effect of antimony in the growth of indium arsenide quantum dots in gallium arsenide (001), J. of Appl. Phys.. (2005).97.053503.
    [16]C. Y. Jin, H. Y. Liu, S. Y. Zhang. Q. Jiang, S. L. Liew. and M. Hopkinson. Optical transitions in type-Il InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer, Appl. Phys. Lett.. (2007).91,021102.
    [17]L. Zhang, A. L. Gray, R. Wang. S. Luong,1.3 to 1.6 Micron quantum dot devices,2004 International Conference on Indium Phoshide and Related Materials
    [18]Matt hew Peters. Victor Rossin. Bruno Acklin. High efficiency. high reliability laser diodes at JDS uniphase.S PI E. 2005,5711:142-151
    [19]G.Balakrishnan.S.H.Huang.A.Khoshakhlagh. Room-temperature optically-pumped InGaSb quantum well lasers monolithically grown on Si(100)substrate.Electronics letters,(2005)41.17.
    [20]N. Yamamto, K.Akahane, S. Gozu.Growth of InGaSb Quantum Dot Structures on GaAs and Silicon SubstratesJ. Journal of Appl. Phys., (2007),46,2401-2404.
    [21]N. Yamamto, K.Akahane, S. Gozu. S. GOZU, Over 1.3μm continuous-wave laser emission from InGaSb quantum-dot laser diode fabricated on GaAs substrates,Appl. Phys. Lett., (2005),86,203118.
    [22]V. Okishev, D. Westerfeld, L. Shterengas, and G. Belenky. A stable mid-IR. GaSb-based diode laser source for the cryogenic target layering at the Omega Laser Facility,Optics Express, (2009),17,18.
    [23]J. B. Rodriguez,L. Cerutti, and E. Tournie. GaSb-based,2.2 μm type-I laser fabricated on GaAs substrate operating continuous wave at room temperature.Appl. Phys. Lett., (2009),94,023506.
    [24]刘莉萍,1.57μm人眼安全激光技术的军用前景分析.激光与红外.(2003).33.301.
    [25]http://www.frlaserco.com/
    [26]http://www.nlight.net/
    [27]Gambin, V.,Bank. S., Wistey, M.et al,A 1.5 μm GaInNAs(Sb) laser grown on GaAs by MBE,Device Research Conference,2002.60th DRC.139-140.
    [28]Naokatsu YAMAMOTO,Kouichi AKAHANE, Shin-ichirou GOZU.1.55- m-Waveband Emissions from Sb-Based Quantum-Dot Vertidal-Cavity Surface-Emitting Laser Structures Fabricated on GaAs Substrate,Japanese Journal of Applied Physics Vol.45, No.4B.2006. pp.3423-3426。
    [29]L.Ya. Karachinsky, T. Kettler. N.Yu. Gordeev.et al. High-power singlemode CW operation of 1.5 lm-range quantum dot GaAs-based laser.Electronics Letters. (2005),41.19.
    [30]G. Moreau. K. Merghem. A. Martinez.et al.1516nm room temperature CW operation of quantum dot InAs/InP(311)B singlemode laser. Electronics Letters,(2005),43,199.
    [31]H. Y. Liu. M. J. Steer, T. J. Badcock, D.J. Mowbray. M. S. Skolnick et al..Room-temperature 1.6μm light emission from InAs/GaAs quantum dots with a thin GaAsSb cap layer.J. Appl. Phys.,(2006),99.046104.
    [32]http://www.qphotonics.com/home.php
    [33]http://www.m2k-laser.de/
    [34]G. Belenky. L. Shterengas. D.Donetsky. M. Kisin. and Gela Kipshidze."Advances in Type-I GaSb Based Lasers"J, of Applied Physics. (2008) 47,10.
    [35]L.Shterengas.G.Belenky,and M.V.Kisin. High power 2.4μm heavily strained type-Ⅰ quantum well GaSb-based diode lasers with more than 1 W of continuous wave output power and a maximum power-conversion efficiency of 17.5%.Appl.Phys.Lett. (2007),90,011119.
    [36]Mitsuru Sugawara. Kohki Mukai. Yoshiaki Nakata. Koji Otsubo, and Hiroshi Ishilkawa. Senior. Performance and Physics of Quantum-Dot Lasers with Self-Assembled Columnar-Shaped and 1.3μm Emitting InGaAs Quantum Dots.IEEE Journal of Selected Topics in Quantum Electronics. (2000).6.3.
    [37]Q. Xie, A. Madhukar, P. Chen, and N. P. Kobayashi, Vertically self-organized InAs quantum box islands on GaAs(100). Phys. Rev. Lett., (1995).75,2542.
    [38]C. Y. Jin. H. Y. Liu. S. Y. Zhang. Q. Jiang, S. L. Liew. and M. Hopkinson, Optical transitions in type-Ⅱ InAs/GaAs quantum dots covered by a GaAsSb strain-reducing layer. Appl. Phys. Lett., (2007).91.021102.
    [39]Akio Ueta. Shin-ichiro Gozu, Kouichi Akahane. Naokatsu Yamamoto and Naoki Ohtani. Optical Cavity Properties of Metal Mirror Microcavities ith InAsSb Quantum Dots. Japanese Journal of Applied Physics,(2006).45.11.
    [40]L.S. Rothman. C.P. Rinsland. A. Goldman. S.T. Massie. D.P. Edwards, J.M. Flaud.A. Perrin. C. Camy-Peyret. V. Dana. J.Y. Mandin. J. Schroeder. A. McCann.R.R. Gamache. R.B. Wattson, K. Yoshino, K.V. Chance. K.W..lucks. L.R. Brown.V. Nemtchinov. P. Varanasi:The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation):1996 edition. J. Quant. Spectrosc. Radiat.Transfer, (1998),60,665.
    [41]B. Jean. T. Bende:Mid-IR Laser Applications in Medicine. In:I.T. Sorokina.K.L. Vodopyanov (ed) Solid-State Mid-Infrared Laser Sources. Springer-Verlag, Berlin.2003, pp.511-544 (Topics in Applied Physics no.89).
    [42]J.T. Olesberg:Noninvasive blood glucose monitoring in the 2.0-2.5 μm spectral range.In:2001 IEEE/LEOS Conf. Proc. Vol.2. p.529.
    [43]http://www.lisalaser.com
    [44]http://www.laserfocuseworld.com.
    [45]H. K. Choi. G. W. Turner. J. N. Walpole. M. J. Manfra. M. K. Connors, and L. J. Missaggia, Low-threshold, high-power. high-brightness GaInAssSb/AIGaAsSb quantum-well lasers emitting at 2.05μm, Proc. SPIE,(1998),3284.268
    [46]V. Okishev. D. Westerfeld, L. Shterengas, and G. Belenky. A stable mid-IR, GaSb-based diode laser source for the cryogenic target layering at the Omega Laser Facility.Optics Express, (2009),17,18.
    [47]J. Chen, G. Kipshidze, Member. L. Shterengas, T. Hosoda, Y. Wang, D. Donetsky, and G. Belenky.2.7 μm GaSb-Based Diode Lasers With Quinary Waveguide. IEEE Photonics Technology Letters,(2009).21,16.
    [48]J. B. Rodriguez,L. Cerutti, and E. Tournie, GaSb-based,2.2 μm type-I laser fabricated on GaAs substrate operating continuous wave at room temperature",Appl. Phys. Lett., (2009),94,023506.
    [49]Seungyong Jung, Sergey Suchalkin. Gela Kipshidze, David Westerfeld, GaSb-Based Type I Quantum-Well Light-Emitting Diode Addressable Array Operated at Wavelengths up to 3.66μm. IEEE Photonics Technology Letters, (2009),21,15,.
    [50]Gregory Belenky, Leon Shterengas, Dmitry Donetsky, Mikhail Kisin, and Gela Kipshidze, Advances in Type-I GaSb Based Lasers, J. of Applied Physics,(2008),47,10.
    [51]W. Li. J. B. Heroux et al,Strain-compensated InGaAsSb/AlGaAsSb mid-infrared quantum-well lasers, Appl. Phys. Lett. (2004),84(12),2016.
    [52]T. Hosoda, G. Kipshidze.L. Shterengas, and Gregory Belenky,200 mW type I GaSb-based laser diodes operating at 3μm: Role ofwaveguide width,Appl. Phys. Lett., (2009),94,261104.
    [53]I. Melngailis:Maser action in InAs Diodes. Appl. Phys. Lett.,(1963).2,176.
    [54]J.S.Major. J.S.Osinski.and D.f.Welch,IEEE Photonics Technology Letters, (1993),5, pp594.
    [55]L. M. Dolgnov, et al.. Sov.J.Quantum.Eletron, (1978)18:416-419.
    [56]N. Kobayashi. et al., "AlGaAsSb/InGaAsSblGaSb growth by LPE". J. Appl. Phys.,(1990).19:30-34
    [57]H.K.Choi and S.J.Eglash, "High-power multiple-quantum-well GalnAsSb/AIGaAsSb diode lasers emitting at 2.1 μm with low threshold current density." Appl.Phys.Lett. (1992).61.1154.
    [58]J.I. Malin. J. R. Meyer. C. L. Felix,J. R. Lindle. L. Goldberg. C. A. Hoffman. F. J.Bartoli. C.-H. Lin. P. C. Chang. S. J. Murry. R. Q. Yang, and S.-S. Pei. Appl. Phys.Lett. (1996).68.2976.
    [59]J. Faist. F. Capasso. D. L. Sivco et al.. Quantum cascade laser. Science.(1994).264:553-556
    [60]J. Faist. F. Capasso. D. L. Sivco et al.. Short wavelength (~3.4μm) quantum cascade laser based on strained compensated InGaAs/AllnAs. Appl. Phys. Lett. (1998).72:680-682.
    [61]R. Colombelli. F. Capasso. C. Gmachl et al.. Far-infrared surface-plasmon quantumcascade lasers at 21.5μm and 24μm wavelengths. Appl. Phys. Lett..(2001).78:2620-2622.
    [62]L. R. Wilson. D. A. Carder. J. W. Cockburn et al.. Intervalley scattering in GaAs-AlAs quantum cascade lasers. Appl. Phys. Lett.,(2002).81:1378-1380.
    [63]L. Ajili. G. Scalari. J. Faist et al.. High power quantum cascade lasers operating at and 130μm. Appl. Phys. Lett. (2004).85: 3986-3988
    [64]http://www.ece.sunvsb.edu/-oe/
    [651 http://www.optosolutions.com/.
    [66]T. H. Chiu. W. T. Tsang. J. A. Ditzenberger. J. P. van der Ziel. Room temperature operation of InGaAsSb/AlGaAsSb double heterostructure laser near 2.2μm prepared by molecular beam epitaxy, Appl. Phys. Lett. (1986),49,1051
    [67]J. R. Meyer. C. A. Hoffman, F. J. Bartoli, and L. R. Ram-Mohan. Appl. Phys. Lett. (1995),67,757.
    [68]D.Z.Garbuzov J.H.Abeles.N.A.Morries.and.I.C.Connolly,4 watt.high effviency,0.81 μm SQW-SCH AlGaAs/GaAs laser diodes with broadened waveguides, in IEEE/OSA Conf.lasers Optics.Anaheim.CA,June.1996.pp.79-80.
    [69]D.Z. Garbuzov. H. Lee. V. Khalfin. R. Martinelli. J. Connolly. G. Belenky:2.3-2.7 μm Room Temperature CW Operation of InGaAsSb-AlGaAsSb Broad Waveguide SCH-QW Diode Lasers. IEEE Photon. Technol. Lett. (1999).11.794
    [70]H. K. Choi. G W. Turner. J. N. Walpole, M. J. Manfra. M. K. Connors, and L. J. Missaggia. Low-threshold, high-power, high-brightness GaInAssSb/AlGaAsSb quantum-well lasers emitting at 2.05μm, Proc. SPIE (1998),3284, 268
    [71]S. Simanowski. M. Walther. J. Schmitz. R. Kiefer. N. Herres. F. Fuchs. M. Maier. C. Mermelstein, J. Wagner, and G. Weimann, Asenic incorporation in molecular beam epitaxy (MBE) grown (AlGaIn)(AsSb) layers for 2.0-2.5μm laser structures on GaSb substrates. J. Cryst. Growth. (1999).201/201.849.
    [72]J.G..Kim. L.Shterengas et al. Room-temperature 2.5μm InGaAsSb/AlGaAsSb diode lasers emitting 1 W continuous waves, Appl.Phys.Lett. (1992),81.3146.
    [73]W. Li, J. B. Heroux et al, Strain-compensated InGaAsSb/AlGaAsSb mid-infrared quantum-well lasers. Appl. Phys. Lett. (2004),84(12),2016.
    [74]C. Lin, M. Grau,O. Dier, and M. C. Amann, Low threshold room-temperature continuous-wave operation of 2.24-3.04 mm GaInAsSb'AlGaAsSb quantum-well lasers. Appl. Phys. Lett. (2004).84(25).5088.
    [75]L. Shterengas, G. Belenky. G. Kipshidze, and T. Hosoda. Room temperature operated 3.1 μm type-Ⅰ GaSb-based diode lasers with 80 mW continuous-wave output power, Appl. Phys. Lett.. (2008).92.171111.
    [76]L. Shterengas, G. L. Belenky. A. Gourevitch. D. Donetsky, J. G. Kim, R. U. Martinelli, and D. Westerfeld. High-Power 2.3μm GaSb-Based Linear Laser Array. IEEE Photonics Technology Letters, (2004).16,10.
    [77]D. Donetsky. J. Chen.L. Shterengas.G. Kipshidze.and D. Westerfeld.2.3μm High-Power Type I Quantum-Well GaInAsSb/AlGaAsSb/GaSb Laser Diode Arrays with Increased Fill Factor. J. of Electronic Materials. (2008).37.12.
    [78]T. Hosoda, G. Belenky. L. Shterengas. G. Kipshidze, and M. V. Kisin, Continuous-wave room temperature operated 3.0μm type Ⅰ GaSb-based lasers with quinternary AlInGaAsSb barriers. Appl. Phys. Lett., (2008),92,091106.
    [79]L.Shterengas.G.Belenky,and M.V.Kisin, High power 2.4⒚m heavily strained type-I quantum well GaSb-based diode lasers with more than 1 W of continuous wave output power and a maximum power-conversion efficiency of 17.5%, Appl.Phys.Lett.. (2007),90,011119.
    [80]Jianfeng Chen. Dmitry Donetsky, Leon Shterengas, Mikhail V. Kisin.Gela Kipshidze, and Gregory Belenky, Effect of Quantum Well Compressive Strain Above 1% On Differential Gain and Threshold Current Density in Type-I GaSb-Based Diode Lasers. IEEE Photon. Techn. Lett., (2008),44,12.
    [81]Stefan Nowy, Benjamin C. Krummacher, Jorg Frischeisen, Nils A. Reinke, and Wolfgang Brutting, Light extraction and optical loss mechanisms in organic light-emitting diodes:Influence of the emitter quantum efficiency,J. of App. Phys., (2008),104,123109.
    [82]D. Donetsky, S. Anikeev. G. Belenky. and S. Luryi, Reduction of interfacial recombination in GaInAsSb/GaSb double heterostructures,Appl. Phys. Lett.. (2008),18.25.
    [83]J. Tatebayashi, A. Jallipalli. M. N. Kutty. S. H. Huang. G. Balakrishnan.L. R. Dawson, and D. L. Huffakerb. Room-temperature lasing at 1.82 μm of GaInSb/AlGaSb quantum wells grown on GaAs substrates using an interfacial misfit array, Appl. Phys. Lett., (2007),91.141102.
    [84]C. Wanga. D. Shiau. D. Donetsky, et al. Extremely low surface recombination velocity in GalnAsSb/AlGaAsSb heterostructures. Appl. Phys. Lett.. (2005).86.101910.
    [85]S.Suchalkin. L.Shterengas, M.Kisin. et al. Mechanism of the temperature sensitivity of mid-infrared GaSb-based semiconductor lasers. Appl. Phys. Lett., (2005),87.041102.
    [86]C. Lin, Y. L. Zheng. Y. G.Zhang, et al. Temperature and injection current dependencies of 2μn InGaAsSb/AlGaAsSb quantum-well ridge-waveguide lasers. J.Cryst. Growth (2007).225.
    [87]N. Yamamoto. K. Akahane. and S. Gozu. Over 1.3 μm continuous-wave laser emission from InGaSb quantum-dot laser diode fabricated on GaAs substrates. Appl. Phys. Lett.. (2005).86.203118.
    [88].N. Yamamoto. K. Akahane. S. Gozu. et al.1.55μm Waveband Emissions from Sb-Based Quantum-Dot Vertical-Cavity Surface-Emitting Laser Structures Fabricated on GaAs Substrate. J. Journal of App. Phys.. (2006).45.4B..
    [89]Z.G.i, G..Liu.M.H.You.et al.2.0μm Room Temperature CW Operation of InGaAsSb/AlGaAsSb Laser with Asymmetric Waveguide Structure, Laser Physics. (2009)19.1.
    [90]张雄,中红外波段锑化物激光器、探测器件与物理研究,中国科学院上海微系统与信息技术研究所博士论文,2004年。
    [91]林春,2μmm锑化物激光器、探测器材料器件及物理,中国科学院上海微系统与信息技术研究所博士论文,2001年。
    [92]Zhang. Y. G, Li. A. Z. Zheng. Y. L. et al. MBE grown 2.0μm InGaAsSb/AlGaAsSb MQW ridge waveguide laser diodes. J.Crystal. Growth. (2001).227:582-585.
    [93]R.E.Naborg,M.A.Pollack.W.D.Johnston.Jr and R.L.Barns, Appl.Phys.Lett.33.659.1978
    [94]Nakwaski W. Thermal conductivity of biary.ternary and quaternary Ⅲ-Ⅴ compounds. J.Appl.Phys. (1988)64.159-166.
    [95]唐田,锑化物激光器探测器MBE生长与物理研究,中科院上海微系统与信息技术研究所博士论文,2005年。
    [96]G. Xiuying.Y. Bauhua.M. Yindi. et al. Japanese of Aplied Physics. (1991)30. pp.1343,.
    [97]R. J. Lang. A.Hardy. R. Parke, et al.. Numerical analysis of flared conductor laser amplifiers, IEEE.1. Quan. Electron., (1993).29.2044-2050.
    [98]E. Gehrig. O. Hess, and R. Wallenstein. Modeling of the performance of high-power diode amplifier systems with an optothermal microscopic spatio-temporal theory, IEEE J. Quantum Elecron., (1999).35.320-328.
    [99]A. Paxtion and G.Dente. Filament formation in semiconductor gain regions. J. Appl. Phys., (1991).7O:2921-2925.
    [100]A.Egan. C. Ning, J. Moloney. et al.. Dynamic instabilities in optothermal microscopic spatio-temporal theory. IEEE J. Quan. Elecron.. (1998)34:166-170.
    [101]Z. Dai. R. Michalzik. P. Unger. et al.. Numerical analysis of broad-area high-power semiconductor laser amplifier, IEEE J. Quan. Elecron., (1997),33:2240-2254.
    [102]S. Ramanujan and H. Winful. Spontaneous emission induced filamentation in flared amplifiers. IEEE J. Quan.Elecron.. (1996).32:784-789.
    [103]施敏著,导体器件物理.电了工业出版社,1987.
    [104]汪洪海,魏学勤等.等离子体辅助反应式脉冲激光熔蚀制备A1N薄膜的低温生长,功能材料,(1999).30(2):204-206,.
    [105]薄报学,808nm波长高功率半导体激光器研究,吉林大学博士论文,2002年。
    [106]江剑平.半导体激光器.北京:电子工业出版社,2001.190-226。
    [107]K.Kiyoshi,T. Hireshi, et aL.Syn-thesis and surface acoustic wave properties of AIN thin fiLms fabricared on(001)and(110)sapphire substrates using chemical vapor deposition of AIC13-NH3 system. Japanese J. of AppL. Phy, (1997),36(5A):2837-2842.
    [108]Z,stefan, K,Atul, et al.Dielectric function of ALN grown on Si(Ⅲ) by MBE.Mater. Research Society Symp.-Pro., (1999),572:231-236.
    [109]钱祥忠,非晶硅薄膜光吸收系数的研究.真空电子技术,(2004),2:20-2.
    [110]. Hossain, H. Naseem et al..Characterization of hydrogenated amorphous silicon thin films prepared by magnetron sputtering, Non Crystalline Solid. (2006),352:18-23.
    [111]T. Kettler, L. Ya. Karachinsky. N. N. Ledentsov.et al. Degradation-robust single mode continuous wave operation of 1.46μm metamorphic quantum dot lasers on GaAs substrateAppl. Phys. Lett. (2006),89,041113.
    [112]T. Shitara, J. Zhang. J. H. Neave, and B. A. Joyce,Ga adatom incorporation kinetics at steps on vicinal GaAs (001) surfaces during growth of GaAs by molecular beam epitaxy, J. Appl. Phys.1992,71.4299.
    [113]D.Beaton. R.Lewis, M. Masnadi-Shirazi. and T. Tiedje, Temperature dependence of hole mobility in GaAsl-xBix alloys. J. Appl. Phys.,2010,108,083708.
    [114]M. Yamada, Y.Ide and K.Tone. Effect of Atomic Hydrogen on GaAs (001) Surface Oxide Studied by Temperature-Programmed Desorption.Jpn. J. Appl. Phys.,(1992).31, L1157-L1160
    [115]E.J. Petit and F. Houzay. GaAs wafer bonding by atomic hydrogen surface cleaning.J. Appl. Phys.1999.86.7146 P. Tomkiewicz. A. Winkler. and J. Szuber.Appl. Surf. Sci. (2006).252.7647.
    [116]F. Proix. C.A. Sebenne, M. Cherchour. et al. Hydrogen-induced contamination of Ⅲ-Ⅴ compound surfaces. J. Appl. Phys. (1998).64.898.
    [117]O.B.Shchekin.D.G.Deppe.1.3μm InAs quantum dot laser with T0=161 K from 0 to 80℃. Applied Physics Letters, (2002).80.3277-3279.
    [118]K.L.Shaklee. R.F.Leheny. Direct Determination of Optical Gain in Semiconductor Crystals. Applied Physics Letters,18.475-477,1971.
    [119]F. Bastiman. R. Hogg, M. Skolnick. A. G. Cullis. and M. Hopkinson. J. of Physics:Conference Series. (2010).209. 012066.
    [120]R.Schwertberger. D.Gold, et al. Epitaxialgrowth of 1.55 μm emitting InAs quantum dashes on InP-based heterostructures by GS-MBE for long-wavelength laser applications. J. of Cryst. Growth. (2003),251.248-252.
    [121]W. Shockley. Energy Band Structures in Semiconductors. PhysicalReview, (1950).78.173.
    [122]O.Shchekin,D. G. Deppe. Low-threshold high-TO 1.3-um InAs quantum-dot lasers due to P-type modulation doping of the active region.IEEE Photon. Tech. Lett.. (2002)14.1231-1233.
    [123]J. R. Roth. Industrial Plasma Engineering. Vol.2:applications to nonthermal plasma processing, Chap.25. (The Institute of Physics. London.2001).
    [124]L. H. Li. N. Chauvin N, G. Patriarche, B. Alloing, and A. Fiore. J.of Appl. phys.,(2004),104,083508.
    [125]P. Bhattacharya and S. Ghosh.Tunnel injection In0.4Ga0.6As/GaAs quantum dot lasers with 15 GHz modulation bandwidth at room temperature. Appl.Phys. Lett.,, (2002).80.3482-3484.
    [126]J. Szeszko. Q. Zhu, P. Gallo and E. Kapon. Carrier capture into semiconductor quantum dots via quantum wire barriers: Localization and thermionic emission effects. Appl. Phys. Lett.,(2011)99.091910.
    [127]M.-A. Dupertuis. F. Karlsson. D. Oberli. and A. Rudra et al. Symmetries and the Polarized Optical Spectra of Exciton Complexes in Quantum Dots. Phys. Review Lett.. (2011)107,7403.
    [128]P. Gallo. K. Atlasov, M. Calic. et al. Active Semiconductor Nanophotonics based on Deterministic Quantum Wire and Dot Systems. Conference on Active Photonic Materials IV. San Diego. CA. Proceedings of SPIE,2011.
    [129]E. Levy. I. Sternfeld. M. Eshkol. M. Karpovski and B. Dwir et al. Experimental evidence for Luttinger liquid behavior in sufficiently long GaAs V-groove quantum wires, in Physical Review B,, (2012).85,4.
    [130]A. Mohan. L. Nevou. P. Gallo. B. Dwir and A. Rudra et al. Photocurrent spectroscopy of site-controlled pyramidal quantum dots, in Applied Physics Letters,. (2012)101.031110.
    [131]A. Surrente. E. Kapon, Epitaxial Growth and Optical Properties of Dense Arrays of Pyramidal Quantum Dots. EPFL. Lausanne.2013.
    [132]B. C. Richards, J. Hendrickson, J. Sweet, et al. Attempts to grow optically coupled Fibonacci-spaced InGaAs/GaAs quantum wells always result in surface gratings.Optics Express. (2008).16.21512.
    [133]M. Schowalter. A. Rosenauer, D. Gerthsen.On the influence of surface segregation on the optical properties of semiconductor quantum wells, Appl. Phys. Lett. (2006).88.111906.
    [134]A. Rosenauer, W. Oberst, D. Litvinov.et al.Structural and chemical investigation of In0.6Ga0.4As Stranski-Krastanow layers buried in GaAs by transmission electron microscopy. Phys. Rev.B, (2000),61,8276.
    [135]D. Litvinov, A. Rosenauer, D. Gerthsen.et al.Transmission electron microscopy studies of lateral periodic compositional modulation in corrugated GaAs-AlAs superlattices grown on a GaAs (311)A surface, Appl.Phys.Lett. (2002),81,1080.
    [136]D. Litvinov, D. Gerthsen, A. Rosenauer,et al.Distribution of nitrogen in GaInNAs/GaAs quantum wells,EE Proc.-Optoelectronic, (2004),151.275.
    [137]T. Passow, S. Li, P. Feinaugle, Th. Vallaitis. J. Leuthold, D. Litvinov, D. Gerthsen, M. Hetterich, Systematic investigation of the influence of growth conditions on InAs/GaAs quantum dot properties. J. Appl. Phys. (2007),102,073511.
    [138]W. Loffler, D. Trondle, J. Fallen, E. Tsitsishvili, H. Kalt, D. Litvinov, D. Gerthsen. J. Lupaca-Schomber. T. Passow, B. Daniel. J. Kvietkova. M. Hetterich, Electrical spin injection into InGaAs quantum dots.Phys. Stat. Sol. C,3,2406 (2006)
    [139]D. Litvinov, D. Gerthsen, A. Rosenauer. M. Schowalter, T. Passow, M. Hetterich. Transmission electron microscopy investigation of segregation and critical floating-layer content of indium for island formation in InGaAs, Phys. Rev. B 74, 165306(2006)
    [140]F.H6hnsdorf.J. Koch.C. Agert,W. StolzCorresponding,et al,Investigations of (Galn)(NAs) bulk layers and (Galn)(NAs)/GaAs multiple quantum well structures grown using tertiarybutylarsine (TBAs) and 1,1-dimethylhydrazine (UDMHy).(1998).195.391-396.
    [141]F. Bugge. G. Erbert. J. Fricke.et al.12 W continuous-wave diode lasers at 1120 nm with InGaAs quantum wells.Appl. Phys. Lett.. (1965),2001.79.
    [142]Y.X.Dang. W.J.Fan, S.T.Ng,et al. Study of interdiffusion in GaAsSbN/GaAs quantum well structure by ten-band kp method.J.Appl.Phys.,(2005).98,026102.
    [143]M. Buda. W. C..et al. Low-loss.low-confinement GaAs/Al GaAs DQW laser diode with optical t rap layer for high power operation. IEEE Photon.Technol. Lett., (1999).11 (2):161-163.
    [144]G. lordache. M. Buda. G. A. Acket et al.. High power CW output from low confinement asymmet ric st ructure diode laser. Electron. Lett..(1999).35 (2):148-149.
    [145]J. Lee. L. Mawst. D.Botez. MOCVD growth of asymmet ric 980 nm InGaAs/InGaAsP broad-waveguide diode lasers for high power applications. J. Crystal Growth,(2003).249 (1):100-105.
    [146]Dennis G. Deppe. H.Huang, and Oleg B. Shchekin. Modulation Characteristics of Quantum-Dot Laser:The Influence of p-type doping and electronic desity of states on obtaining high speed. IEEE. J. Quantum Electron., (2002).38:1587.
    [147]M.Kodama.Improvement of reverse leakage current characteristics of GaSb and Al0.3Ga0.7As/GaSb diodes grown by MBE.Solid State Electron, (1994).37:1567.
    [148]G.peake.R.shul.l.ashby.et al. Inductively coupled plasma reactive ion etching of GaInAsSb and AlGaAsSb for quanternary antimonide multiple interconnected module thermophotovoltaics.J.Vacuum Sci. Tech.B. (2003).21.8:43.
    [149]I.Vurgaftman. J.R. Meyer. L.R. Ram-Mohan:Band parameters for III-V compound semiconductors and their alloys. Appl. Phys. Rev.,(2001).89:5815.
    [150]C. Alibert. A. Joullie. A.M. Joullie:Modulation-spectroscopy study of the Gal-xAlxSb band structure. Phys. Rev B (1983).27:4946.
    [151]K. Shim. H. Rabitz. P. Dutta:Band gap and lattice constant of GaxIn1-xAsySb1-y. J. Appl.Phys.. (2000).88:7157.
    [152]C. Mermelstein. S. Simanowski, M. Walther, et al..Room-temperature low-threshold low-loss continuous-wave operation of 2.26 um GaInAsSb/AIGaAsSb quantum-well laser diodes. Appl. Phys. Lett. (2000).77.1581.
    [153]T. Chong. C. Fonstad,Theoretical gain of strained-layer semiconductor lasers in thehigh-strain regime. IEEE. J. Quantum Electron.(1989).25:171.
    [154]S. Chuang:Efficient band-structure calculations of strained quantum wells. Phys. Rev. B. (1991).43:9649.
    [155]S. Corzine. R. Yan. L. Coldren:Optical gain in Ⅲ-Ⅴ bulk and quantum well semiconductors. In:PS. Zory (ed.) Quantum well lasers. Academic Press. San Diego,(1986).17-93.
    [156]A. Ghiti, E. O'Reilly, Antimoni-based strained-layer 2-2.5 μm quantum well lasers.IEEE J. Quantum Electron. (1991).27:1347.
    [157]Kawamura Yuichi, Amano Masanobu.et al. Molecular beam epitaxial growth and characterization of InGaAsSb quantum wellstructures on InP for lasers operating at 2μm wavelength region. Technical Report of IEICE. (2003),103(47):31-36.
    [158]Lao Yanfeng. Wu Huizhen. Design of GaInAs/InGaAsP quantum wells for 1.44μm semiconductor lasers. Chinese Journal of Rare Metals. (2004).28(3):511-515.
    [159]Gao Shaowen. Chen Yiqiao. et al. Calculation of band structure of GaxInl-xAs/GaInAsP strained quantum wells [J]. Journal of Functional Materials and Devices.(2002).8(3):218-222.
    [160]Tang Tian. Zhang Yongang. et al. Photoluminecence characteristic of InGaAsSb multiple quantum-well materials. Journal of Functional Materials and Devices. (2005).11(2):183-186.
    [161]K.G.Eyink, M.L.Seaford. T.W.Haas, et al, Characterization of low-temperature grown AlSb and GaSb buffer layers.J. Vac. Sci. Technol. B,1997,15(4):1187-1191.
    [162]T. Sato, M. Akabori, S. Yamada, High-quality highly mismatched InSb films grown on GaAs substrate via thick AlSb and InxAl1-xSb step-graded buffers,Physica E.(2004),21:615-619.
    [163]S. Simanowski, M. Walther. J. Schmitz,et al, Asenic incorporation in molecular beam epitaxy (MBE) grown (AlGaIn)(AsSb) layers for 2.0-2.5μm laser structures on GaSb substrates. J. Cryst. Growth,(1999).201/201:849.
    [164]W. Li, J. B. Heroux, et al, Strain-compensated InGaAsSb/AlGaAsSb mid-infrared quantum-well lasers, Appl. Phys. Lett.,(2004).84(12):2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700