人工修枝对提高杉木木材质量影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科学地集约经营人工用材林,通过合理营林措施,有效地控制木材形成,提高人工林木材产品质量,实现高产优质的森林培育目标是当前林业生产及森林培育学科发展的方向。本项研究以我国南方造林面积最大的杉木人工林为研究对象,以培育高品质的杉木无节大径材为研究目标,研究密度控制和人工修枝等营林措施对杉木人工林木材质量的影响,探讨提高杉木木材质量和加工利用率的森林培育方法。在福建省洋口国有林场1996年营造的杉木人工纯林进行试验,按3种林分密度:900株?hm-2、1 200株?hm-2、1 800株?hm-2和4级修枝强度:6 cm、8 cm、10 cm、12 cm(修枝处的最小直径)对杉木进行密度和修枝处理,以不修枝杉木为对照。系统地研究人工修枝对杉木生长和生产力、木材的物理力学性质和主要缺陷,以及林下植被和林地土壤等林分环境的影响作用。最后综合木材生产的数量、质量和利用等多项指标,确定了对提高杉木木材质量有利的合理林分密度和适合采取的修枝强度,以及人工修枝的起始时间、修枝次数和时间间隔,林地土壤管理等具体森林栽培措施,为杉木无节大径材培育提供科学依据。
     试验结果表明,人工修枝对杉木优质材培育具有积极作用。在合理密度下,人工修枝对杉木生长有一定促进作用,杉木的胸径生长提高20%,树高生长和林分蓄积提高4%,缩短杉木数量成熟的时间,生产力提高50%以上。人工修枝还能有效地控制木材中节子的长度,提高杉木无节材比例,同时减小尖削度,提高枝下高,使杉木干形更趋近于通直圆满。杉木修枝10年后,无节材比例可达20%~25%,比不修枝的杉木提高了近5倍。修枝后杉木人工林的林下植被盖度、种类丰富度和多样性大大提高,人工修枝对提高杉木人工林的林分稳定性和物种优势种的更迭起到一定作用。在木材性质方面,人工修枝还可以降低幼龄材比例,从而提高杉木木材的尺寸稳定性。木材幼龄材比例下降了近一倍。然而,人工修枝也带来一些不利影响。在密度较大的林分内进行修枝,会抑制杉木的树高、胸径和材积生长,延缓杉木的数量成熟时间。此外,人工修枝还会降低杉木木材密度和冲击韧性等木材物理力学性能,且修枝强度越大,对木材物理力学性能的影响越大。林地土壤肥力消耗加大,应加强人工抚育措施,维持地力保证以获得最大材积生长量。
     采用工业CT扫描获取杉木木材内部结构信息,有效地解决了传统解剖方法无法确定无节材内部缺陷的难题,为工业CT扫描技术在木材利用科学上的应用研究做了有益的尝试。单位长度范围内,杉木木材的节子轮数为4~5轮,平均间距为0.22 m,节子数量20个左右。杉木每一轮枝上的节子数量约为4~5个,呈均匀对称分布。随着在树干上着生位置的上移,节子的数量逐渐减少,节子尺寸则是长度逐渐缩短而直径增大。而利用植物生长模型对杉木分枝结构的模拟,直观地表达了杉木无节材的内部缺陷结构与分布,为木材加工利用提供有效信息,大大提高木材利用率。
     试验证明,杉木无节大径材的培育方案为在林分密度1 200株?hm-2条件下,采用修枝强度为10 cm对5年生的杉木进行人工修枝最为合适。采用树干直径作为修枝强度的度量值,能够有效地控制木材缺陷的范围,不受林木生长状况影响,同时与树高控制法相比,还具有操作性强的优势。修枝10年后,杉木树高接近15 m,胸径可达22 cm以上,平均材积0.24 m3。4~10年为杉木速生期,7~9年时杉木生长速度最快。15年生时,杉木还未达到数量成熟年龄。杉木木材的含水率为8%,气干密度0.34 g?cm-3,抗弯弹性模量11.9 MPa,抗弯强度65.8 MPa,冲击韧性15.58 kJ?m-2。林下植被主要有五节芒、渐尖毛蕨、芒萁等草本和粗叶榕、杜茎山、苦竹等灌木,还有三叶青、大头艾纳香、玉叶金花等藤本植物。林下植被的盖度达40%以上,而未修枝杉木林下植被盖度仅为2%。
The development trends of current forest silviculture are to intensively manage plantation, adopt reasonable cultivation measures, effectively control the wood formation and improve the quality of timber, and achieve the goal of high yielding and quality. For the purpose of producing high-quality large-diameter clear wood, the author studied the effects of density control and green-pruning on the wood quality of Chinese fir (Cunninghamia lanceolata) and the measures to improve the timber quality and productivity of Chinese fir which planted the largest area in South China.
     The sample site is at the Chinese fir pure plantation established in 1996 located at the Yangkou State-owned Forest Farm in Fujian Province. The Chinese fir trees were pruned artificially with 4 intensities :6 cm, 8 cm, 10 cm and 12 cm, and 3 stand densities:900 tree?hm-2, 1 200 tree?hm-2 and 1 800 tree?hm-2 with non-pruned Chinese fir trees as the contract. The influences of green-pruning on tree growth and productivity, wood physical properties and defects, and on the forest environment conditions, such as understory vegetation and forest soil, were studied. By integrating the wood quantity, quality and utilization and other indicators, the reasonable stand density and pruning intensity beneficial to improving the timber quality of Chinese fir were determined. Some silviculture measures about initial time, frequency and time interval of pruning, and stand soil management were suggested so as to provide a scientific basis for produce large-diameter clear wood of Chinese fir.
     The results of the study showed that green-pruning played a positive role in improving Chinese fir’s wood quality. 10 years after pruning, the DBH of Chinese fir increased by 20%, the height and stand volume increased by 4%, the wood quantity maturity came earlier, the productivity increased by more than 50%. Green-pruning could also effectively control the length of knots on wood, reduce tree taper, improve the proportion of clear wood and the under branch height, so that to improve the stem form and quality. The proportion of clear wood increased to 20% to 25%, nearly 5 times that of non-pruned Chinese fir tree. The coverage, species richness and diversity of understory vegetation were greatly improved after pruning. Green-pruning played a positive role in improving the forest stability and helping the dominant species’change. Green-pruning could also improve the wood properties by reducing the proportion of juvenile wood, and improve wood dimensional stability. After pruning, the proportion of juvenile wood of Chinese fir dropped by 40% or more. However,green-pruning could also bring some negative impacts. Pruning in the dense stands and using heavier intensity would restrict the increments of tree height, diameter and volume, delay the quantity maturation. In addition, pruning would degrade some physical and mechanical properties of wood such as density and bending strength. And more soil fertility will also be consumed. So it was necessary to strength artificial tending and to maintain the site quality to yield the maximum volume increment.
     The study showed that, for cultivating knot-free,large-diameter Chinese fir wood with stand density of 1 200 tree?hm-2, it was appropriate to prune the 5-year-old young Chinese fir stands with pruning intensity of 10 cm. Using tree diameter as a measure of pruning intensity could effectively control the wood defects and could be free from the influences of tree growth conditions. Also, it was more operational compared with the method of tree height controlling. 10-years after pruning, the tree height of Chinese fir was close to 15 m, DBH up to 22 cm, the average volume up to 0.24 m3. The fourth to tenth year was the fast growth period for Chinese fir trees, when the trees were 7 to 9 years-old, the growth rate was the fastest. Chinese fir could not reach the quantity maturity until 16-years-old. 10 years after pruning, the moisture content of wood was 8%, air-dry density was 0.34 g?cm-3, MOE was 11.9 MPa, bending strength was 65.8 MPa, and the toughness was 15.58 kJ?m-2. The coverage of understory vegetation of pruned Chinese fir plantation was more than 40% while that without pruning was only 2%. The dominant understory herb, shrub and liana species were Miscanthus floridulus, Cyclosorus acuminatus, Dicranopteris linearis, Ficus hirta, Maesa japonica, Pleioblastus amarus, Tetrastlgma hemsleyanum, Blumea riparia var. megacephala and Mussaenda pubescens.
     By CT scanning, the internal structure information of wood was obtained. It effectively solved the problem that the traditional dissection methods could not determine the internal defects of wood. The results of CT scanning showed that the whorled branches of Chinese fir were 4 to 5 rounds with round spacing of 0.22 m, and the knots number was 20 per meter. The knot number of each round was about 4-5 and was symmetrical distributed. For the knots on the trunk, the higher they locate, the less the number was, the length became shorter while the diameter became larger. Plant growth model was used to simulate the structure of branches, which could provide effective informations for wood processing and utilization by visually presenting the structure and distribution of internal wood defects, so the timber utilization would be greatly improved.
引文
Briggs, D. G., Smithe D. R.Effect of silvicultural practices on wood properties of conifers:a review. In Douglas Fir: Stand Management for the Future. SEATTLE, 1986, 108-117.
    Chandrashekara, U. M. Effects of pruning on radialgrowth and biomass increment of trees growing in homegardens of Kerala, India. Agroforestry Syst, 2007, (69): 231-237.
    Danborg, F. Spiral grain in plantation trees of picea abies. Can.J. For. Res, 1994,(24):1662-1671.
    Daniel T.W., Helms J.A., Baker F. S. Principles of silviculture.Mcgraw-hill book company, 1979.
    Dean Kearney, Ryde James, Kelvin Montagu et a1. The effeet of initial planting density on branching characteristics of Eucalyptus pilularis and E.grandis. Australian Forestry,2007,70(4):262-268.
    Fielding, J. M. The influence of silvicultural practices on wood properties. In J.A Romberger and P.Mikola(eds.), International Review of Forest Research. 1967,2:95-126.
    G. I. Vestùl, HùibùO.A. Internal distribution of sound and dead knots in. Springer-Verlag, 2000,58:107-114.
    Gardiner, B. A., Stacey G. R., et al. Field and wind tunnel assessments of the implications of respacing and thinning for tree stability. Foresry,1997,70:233-252.
    Gyenge, J. E., Fernandez M. E., et al. Effedt of pruing on branch production and water relations in widely spaced ponderosa pines. Agroforestry Syst, 2009,77:223-235.
    Harris, J. M. Spiral Grain and Wave Phenomena in Wood Formation. Springer Verlag,1989.
    Kerr, G. The use of silvicultural systenms to enhance the biological diversity of plantation forests in Britain. forestry, 1999,72(3):191-205.
    Kerr,G. Does formative pruning improve the form of broadleaved trees? Candian Journal of Forestry Research, 2006,36:132-141.
    Macdonale, E., Hubert J. A review of silviculture on timber quality of sitka spruce. Foresty,2002,75(2):107-138.
    M?kinen, H., Isom?ki, A. Thinning intensity and long-term changes in increment and stem form of norway sprunce trees. Forest Ecology and Management, 2004,201:295-309.
    M?KINEN, H.,OJANSUU R., et al. Predicting branch characteristics of Norway spruce from simple stand and tree measurements. Forestry, 2003,76(5):525-546.
    Maun, K. W. Sitka spruce for construction timber: the relationship between wood growth chatacteristics and machine grade yields of Sitka spruce.Forestry Commission Research Information Note, 1992,212.
    Mehari, A., Habte B. Influence of initial spacingon growth and branching characteristics of Cordia africana trees established on Eritrean highland. New Forests, 2006,31:185-193.
    Nicholls, J. W. P. Wind action, leaning trees and compression wood in pinus radiata D.Don.Aust. For. Res., 1982,12:75-91.
    Naskoweak, A. f. Spiral grain in trees-a revies. For. Prod. J. 1963,13(7):266-275.
    Olesen, T., Muldoon S. J. Branch development in relation in custard apple in relation to tip-pruning and flowering,including efcets on production. Trees, 2009, 23:855-862.
    Pertuncio,M., Briggs, D., Barbour, R.J. Presictiing pruned branch stub occlusion in young,coastal Douglas fir. Canadian Journal of Forestry Research, 1997, 27:1074-1082.
    Philip J. Growth response following green Erown pruning in plantation-grown Eucalyptus pilularis and Eucalyptus cloeziana. Can. J. For. Res., 2008(38):770-781.
    Pinkard, E. A., Beadle C. L. Effect of green pruning on growth and stem shape of Eucalyptus nitens (Deane and Maiden) Maiden. New Forests,1998,15:107-126.
    Pinkard, E.A., Beadle, C.L. Aboveground biomass partitioning and crown architecture of Eucalyptus nitens following green pruning. Canadian Journal of Forestry Research, 1998,28:1419-1428.
    Plauborg, K U. Analysis of radial growth responses to changes in stand density for four tree species. Forest Ecology and Management, 2004, 188:65-75.
    Rojas, G., Condal A., et al. Indentification of internal defect of sugar maple logs from CT images using supervised classification methods. Holz als Roh- und Werkstoff, 2006, 64:295-303.
    Savill, P. S., Sandels A. J. The influence of early respacing on the wood density of Sitka spruce. Forestry,1983,56:109-120.
    Schulte, P. J., Brooks J. R. Branch junctions and the fiow of water through xylem in Douglas-fir and ponderosa pine stems. Journal of Experimental Botany, 2003,54(387):1597-1605.
    Smith, R.G.B., Dingle, J., Kearney, D., Montagu, K. Branch occlusion after pruning in four contrasting sub-tropical eucalypt species. Journal of Tropical Forestry Science,2006,18(2):117-123.
    Stirling, G., Gardiner B., et al. A survey of Sitka spruce stem straightness in south Scotland. Forest Research Unpublished Report, 2000.
    Tain, X., Cown D. J., et al. Modelling of Pinus radiata wood properties. Spiral grain. N. Z. J. For. Sci., 1995,25:200-213.
    Ursula Schatz, Her?j?rvi H., et al. Influence of saw and secateur prunningon Stem Discolouration, Wound Cicatrisation and Diameter Growth of Betula pendula. Silva Fennica, 2008, 42(2):295-305.
    Vestol, G. I., Hoibo O. A. Pridiction of knot diameter in Picea abies(L.)Karst. Springer-verlag, 2001, 129-136.
    Walker, J. F. C. Prinmary wood processiong:principles and practice. Chapman and hall, 1993.
    Wei, Q., Chui Y. H., et al. Identification of selected internal wood characteristics in computed tomography images of black spruce:a comparison study. Wood Sci, 2009, 55:175-180.
    White, D., Beadle C., et al. The influence of drought on the relationship betwween leaf and conduction sapwood area in Eucalyptus globulus and Eucalyptus nitens. Springer-verlag, 1998, 12:406-414.
    Zhang, S. Y. Wood quality:its definition,impact and implications for value-added timber management and edn uses. Proceedings of the CTIA/IUFRO International Wood Quality Workshop, 1997, part 1:17-39.
    Zobel, B. J., Jett J. B. Genetics of wood production.Springer-Verlag, 1995.
    Zobel, B. J., Sprague J. R. Juvenile wood in forest trees.Springer-Verlag, 1998.
    
    鲍甫成,王正,郭文静.杨木和杉木木材表面性质的研究.林业科学.2004,40(1):131-136.
    鲍甫成,江泽慧.中国主要人工林树种木材性质.北京:中国林业出版社,1998,
    北京林学院主编.森林利用学.北京:中国林业出版社,1983,
    蔡则谟,刘京.马尾松和杉木管胞长度的变异.南京林学院学报.1986,(2):131-136.
    车成森,刘晋浩,胡建伟.大兴安岭林区兴安落叶松的木材缺陷及其分布.森林采运科学.1990,(3):37-42.
    陈东升,金钟跃,李凤日.樟子松节子的大小及分布.东北林业大学学报.2007,35(5):19-21.
    陈瑞英,魏萍,刘景宏.杉木间伐材压缩密化利用的研究.应用生态学报.2005,16(12):2306-2310.
    陈森锟,尹伟伦,刘晓东等.修枝对欧美107杨木材生长量的短期影响.林业科学.2008,44(7):130-135.
    陈健波,周卫玲,黄开勇等.澳大利亚的森林经营、林业研究及启示.广西林业科学,2010,39(2):112-116.
    成俊卿.木材学.北京:中国林业出版社,1985,
    程朝阳.杉木人工林无节材培育技术研究.林业科学研究,2005,18(5):530-534.
    
    崔英颖,张厚江,盛威.基于横向振动法对樟子松木材进行应力分等的研究.林业机械与木工设备,2005, 10(33):1-6.
    董金伟,白世红,李杰等.日本落叶松林修枝技术研究.山东林业科技,2008,(2):18-19.
    龚士干,潘彪,尹思慈.在评定木材质量中应怎样认识密度指标,1993,(2):21-24.
    龚士干,尹思慈.速生杉木的宏观质量.林业科技开发,1992,(3):33-36.
    龚维荣,沈荣生.木质柱状颗粒活性炭的研制.林产化工通讯.2000,34(3):25-27.
    郭明辉.森林培育措施对红松人工林径向生长性质的影响.林业科学,2003,39(5):100-1-4
    郝金城,李伯祥.落叶松木节与斜纹理对指接材强度的影响.林业科技,1992,17(4):38-41.
    胡云楚,刘元.酚类阻燃剂处理杉木热解过程的热动力学研究.林业科学,2003,39(3):116-120.
    黄安民,费本华,刘君良.杉木木材性质研究进展.世界林业研究,2006,19(1):48-52.
    黄治,袁玉峰,孔红娃.修枝对红松人工林林木生长和木材力学性质的影响.东北林业大学学报,2002,30(1):76-77.
    惠刚盈.杉木大中径材成材机理的研究.林业科学研究,2000,13(2):177-181.
    江莎.赤霉素对水平放置水曲柳幼苗的负向重性和木材形成的影响.云南植物研究,2003,25(3):336~346.
    江泽慧.大别山主要自然类型杉木的物理力学性质比较研究.安徽农业大学学报,1997,24(1):1-7.
    江泽慧,任海青.人工林杉木、马尾松木材的断裂特性.林业科学,2001,37(3):118-121.
    姜成增,刘孝岷.木材缺陷对木材利用的影响.科技信息,2008,(24):331.
    姜笑梅,骆秀琴,陈益泰.杉木材性株内的变异I:管胞形态的变异.林业科学,1997,33(5):441-446.
    李坚.木材科学.北京:高等教育出版社,2002.
    李荣岐,姜秀志.红松人工林修枝效果的调查.林业科技,2001,26(5):11-12.
    李文彬.第15届国际木材无损检测会议报告.国际学术动态,2008,4):41-42.
    李晓储,黄利斌,王伟.杉木木材基本密度变异的研究.林业科学研究,1999,12(2):179-184.
    李耀芬,李大纲,宋庭均.宜春杉木人工林管胞形态变异及其对材性的影响.南京林业大学学报,1988,(2):115-120.
    梁元瑞.修枝对杉木幼林土壤肥力的影响初报.福建林业科技,2007,34(4):63-70.
    林金国,林思祖,林庆福.人工林木材力学性质变异规律的研究.福建林学院学报,1997,17(2):176-179.
    林金国,陈慈禄.福建省杉木人工林材性产区效应的研究Ⅱ:木材力学性质.福建林学院学,1999,19(4):375-377.
    林铭,谢拥群,杨庆贤.水温对杉木压缩木吸水厚度膨胀率的影响.福建林学院学报,2004,24(2):172-174.
    林庆富.杉木人工林木材密度及干缩性变异规律.浙江林学院学报,1997,14(2):169-173.
    林文树,杨慧敏,王立海.超声波与应力波在木材内部缺陷检测中的对比研究.林业科技,2005,30(2):39-41.
    刘晶,刘镇波.激光技术在木材无损检测中的应用.森林工程,2003,19(3):15-16.
    刘盛,倪成才.红松人工林修枝技术对林木生长和干形的影响.吉林林学院学报.1997,13(2):80-84.
    刘元.幼龄材范围的确定及树木生长速率对幼龄材生长的影响.林业科学,1997,33(5):418-426.
    刘志坤,杜春贵,李延军等.小径杉木梳解加工工艺研究.林产工业,2003,30(3):22-25.
    卢军,李凤日.樟子松人工林的节子寿命及年轮丢失数.林业科学,2007,43(12):16-20.
    吕建雄,林志远,赵有科.杉木和I-72杨人工林木材干缩性质的研究.林业科学,2005,41(5):127-133.
    骆秀琴.32个杉木无性系木材密度和力学性质差异.林业科学研究,1994,7(3):259-262.
    骆秀琴.木材材性株内径向变异模式初探Ⅵ.林业科学,1999,35(6):86-92.
    骆秀琴,管宁.木材材性株内径向变异模式初探Ⅵ:19个杉木种源木材密度径向变异模式的研究.林业科学,1999,35(6):86-92.
    马继东,李淑红,朱玉杰.原条量材设计中木材等级的确定.森林工程,2004,20(3):13-14.
    马世春,杨文斌.人工林杉木板材高温和常温组合干燥研究.林业科学,2006,42(3):125-128.
    孟宪宇.测树学.北京:中国林业出版社,1996,
    聂少凡.人工杉木林木材化学成分的变异规律.南京林业大学学报,1998,22(3):
    彭冠云,任海青,于文吉.基于CT技术的农作物秸秆人造板结构检测与物理性能比较.湖南农业科学,2009,(6):101-103.
    钱俊,叶良明,余肖.速生杉木的改性研究—UF树脂浸渍后热压法改性.木材工业,2001,15(2):14-16.
    曲志华,王立海.红外热像技术及其在木材无损检测中应用的可行性探讨.森林工程,2009,25(1):21-24.
    任海青,黄安民,刘君良等.杉木加工利用研究进展及建议.木材工业,2006,20(1):25-27.
    沈国舫.森林培育学.北京:中国林业出版社,2001,
    沈惠娟.植物激素与木材形成.林业科学,1996,32(2):165-170.
    施季森.杉木林木材性的遗传和变异的研究.南京林业大学报,1987,(4):15-23.
    宋文龙,李东升,于海珠.红松人工林生长轮密度与培育措施关系的研究.林业机械与木工设备,2004,
    宋孝金.杉木间伐材生产人造板的可行性研究及存在问题.林业科技通讯,2000,(3):3-5.
    苏兵强.单色软x射线杉木木材密度测定及变异研究.福建林业科技,1999,26(增刊):159-164.
    苏乙奇.人工落叶松枝下高动态研究.林业调查规划,2008,33(1):21-24.
    孙永林,沈繁宜.3种树木节和节间导管接触角的研究.安徽农业科学.2008,36(17):7131-7132.
    田荆祥,俞友明,余学军.无性系杉木的物理力学性质.浙江林学院学报,1998,15(3):260-266.
    童雀菊,丁建文,王厚立.非破坏性木材内部缺陷检测——木材CT扫描研究动态.林产工业,2005,32(2):5-7.
    童雀菊,丁建文,王厚立.非破坏性木材内部缺陷检测(续)——木材CT扫描研究动态.林产工业,2005,32(3):14-17.
    童雀菊,张述垠.Effects of Precommercial Thinning on Tree Growth and Stem Quality in Jack Pine
    Stands.Journal of Nanjing Forestry University(Natural Sciences Edition),2005,29(6):73-76.
    王传贵.杉木无性系木材物理力学性质研究.四川农业大学学报,1998,16(专):88-90.
    王桂凤,高燕,杨立伟等.杉木木材形成过程特异表达基因的鉴定与分析.遗传,2007,29(4):483-489.
    王洁瑛,赵广杰,中野隆人.热处理过程中杉木压缩木材的材色及红外光谱.北京林业大学学报,2001,23(1):59-64.
    王金要,李春生,陆从进.杨木旋切及单板质量与木材性质关系的研究.木材工业,1995,9(5):1-7.
    王立海,徐华东,闫在兴.传感器的数量与分布对应力波检测原木缺陷效果的影响.林业科学,2008,44(5):115-121.
    王晓军译.中等径级杉树原木的制材:不同外形特征原木的下锯方法及其出材率.国外林业.1991,(3):32-38.
    吴玉章,松井宏昭,片冈厚.酚醛树脂对人工林杉木木材的浸注性及其改善的研究.林业科学.,2003,39(6):136-140.
    肖祥希.修枝对福建柏林分生长及无节材形成的影响.林业科学研究,2005,18(1):22-26.
    肖忠平,刘雁,陆继圣.阻燃材料的燃烧热释放率研究.福建林学院学报,2002,22(4):325-328.
    肖忠平,陆继圣,马世春.热重法研究阻燃杉木间伐材热解反应动力学.福建林学院学报,2002,22(2):113-116.
    徐明,任海青,郭伟.我国杉木材性变异研究进展.西北林学院学报,2008,23(1):185-189.
    徐宗明.硫酸盐法制浆木节子处理系统简介.中国造纸,1989,(5):61-62.
    袁坤,王明庥,黄敏仁.林木蛋白质组学研究进展.中国生物工程杂志,2006,26(6):88-92.
    杨慧敏,王立海.超声波功率谱技术在木材空洞缺陷无损检测中应用.森林工程.2005,21(2):8-9.
    杨慧敏,王立海.基于超声波频谱分析技术的木材孔洞缺陷无损检测.东北林业大学学报,2007,35(8):2007.
    杨继平.值得重视的经验-新西兰林业分类经营考察报告.中国林业,2005,07B:23-30.
    杨学春,王立海.应力波技术在木材性质检测中的研究进展.森林工程,2002,18(6):11-12.
    杨忠,江泽慧,费本华.近红外光谱技术及其在木材科学中的应用.林业科学,2005,41(4):178-183.
    叶忠华,刘晓辉.杉木间伐材复合墙裙板的研制.林业科技通讯,2000,(7):28-29.
    尹拥君,陈卫军.杉木建筑材林密度管理技术与生长效应的研究.广东林业科技,2001,17(2):16-20.
    于文勇,王立海,杨慧敏.超声波木材缺陷检测若干问题的探讨.森林工程,2006,22(6):7-8.
    余学军.浙江省速生杉木纤维形态及基本密度.浙江林学院学报,1997,1997(14):3.
    俞新妥.中国杉木研究进展(2000-2005)Ⅱ.杉木遗传育种、森林培育、经营、计测、木材加工利用
    的研究综述.福建林学院学报,2006,26(3):266-274.
    喻云水,李本贵,黄健.人造板工业人工用材林资源定向培育探讨.建筑人造板,1998,(1):21-22.
    张国武,罗建中,尹国平.澳大利亚·巴西桉树人工林经营特点及其启示.安徽农业科学,2009 ,37(7) :2965 - 2967
    张红梅,刘渝,张双保.树木心材的特点及其加工利用.木材加工机械,2007,4):44-46.
    张奇,池珊珊.节子对胶合板质量的影响.中国木材,1993,5):35-36.
    赵西平,郭明辉,朱熙岭.温度对树木生长与木材形成影响的研究进展.森林工程,2005,21(6):1-4.
    朱锦茹,袁位高,江波.杨木节痕控制技术.浙江林学院学报,2001,18(1):32-35.
    朱玉杰,张文国,王巍.影响木材产品质量因素及控制方法的研究.森林工程,2003,19(3):9-10.
    邹双全,陈金明.杉木间伐材工业利用问题研究.建筑人造板,2000,(3):18-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700