青藏高原两种沙蜥的代谢特征及其对环境的适应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原是世界上海拔最高的高原,平均海拔在4000米以上,寒冷和低氧是其主要的环境特征。世居该地区的动物经过长期的进化适应,具备了完善的高原环境适应性,这些高原土著动物也为研究高原生物适应性及其机制提供了很好的研究材料。沙蜥属蜥蜴是青藏高原中较为典型且广泛分布的爬行动物,被认为是研究青藏高原爬行动物适应特征及其机制的好材料。迄今为止,尚未见到较为系统的关于高原土著沙蜥代谢适应性的研究。本论文选用世界上垂直分布最高的蜥蜴——红尾沙蜥、青藏高原分布海拔跨度最大的青海沙蜥以及低海拔分布的荒漠沙蜥作为研究对象,从种间比较红尾沙蜥和荒漠沙蜥、种内比较不同种群的青海沙蜥以及实验室条件下不同氧气浓度习服三个不同角度,分析了青藏高原两种沙蜥的形态特征、体温选择、线粒体呼吸速率,质子漏、部分代谢酶活性、氧自由基生成速率和代谢相关基因表达等多个方面,多学科交叉研究了这两种沙蜥对高原低温低氧环境的代谢适应特征,尝试发现其中蕴藏的机制和规律。
     红尾沙蜥生活在海拔4500米以上,经过长期进化对高原低温低氧的环境产生了较好的适应性。将其与亲缘关系较近、世居低海拔地区的荒漠沙蜥相比较,发现红尾沙蜥肝脏和骨骼肌线粒体呼吸速率显著低于荒漠沙蜥。质子漏分析表明,红尾沙蜥质子漏调节与荒漠沙蜥相比更为高效,其质子漏占State3和State4的比例分别为7-8%和74~79%,而荒漠沙蜥中分别各占24~26%和43-48%。由此推测红尾沙蜥线粒体在State4下较高的质子漏有利于产热,缩小其体温与环境温度的温差;而质子漏占State3的比例小于10%,有利于其提高氧气的利用率及ATP合成效率。红尾沙蜥较低的乳酸脱氢酶(LDH)活性说明其能量代谢并不主要依赖无氧呼吸,并且其较高的β-羟酰基辅酶A脱氢酶(HOAD)活性表明红尾沙蜥可能在能量代谢过程中更多的依赖脂类作为能源物质。大多数研究表明低温低氧环境会诱导PGC-1α表达量上调,但生活在寒冷环境中的红尾沙蜥其PGC-1α和PPAR-γ表达量均显著低于温暖环境中生活的荒漠沙蜥。我们认为这可能是由于红尾沙蜥在体温选择、线粒体呼吸速率以及酶活性等方面的高效调节,降低了基因水平对高原低温低氧环境的应答。线粒体过氧化氢生成速率的分析结果表明红尾沙蜥中过氧化氢生成速率较低,这很可能与其较低的线粒体呼吸速率有关,但是与哺乳动物中解偶联蛋白调节氧自由基生成的机制存在明显差异。红尾沙蜥与荒漠沙蜥在代谢调控方面的差异体现出世居高原的红尾沙蜥对高原环境良好的适应性,同时这些结果也为后续爬行动物高原适应机制的研究提供了重要的参考资料。
     青海沙蜥广泛分布于青藏高原上,是研究爬行动物对高原环境适应性的理想实验材料。我们选用生活在海拔较高的玛多种群(4300米)和低海拔的格尔木种群(2800米)作为研究对象,实验结果表明高海拔玛多种群的吻肛长和四肢长与格尔木种群没有显著差异,这一结论与经典的Bergmann定律相悖。另一方面,玛多种群的尾长和头长显著小于格尔木种群,这一结果符合Allen定律;但前后肢长却无明显种群间差异,这与Allen定律不符。在体温选择方面,玛多种群的体温选择与低海拔的格尔木种群相比相对较低,但其升温速率可能较快。两种群线粒体呼吸速率结果与红尾沙蜥和荒漠沙蜥线粒体呼吸速率比较结果相似,高海拔的玛多种群线粒体呼吸速率显著低于低海拔的格尔木种群,但在质子漏调节方面高海拔的玛多种群与红尾沙蜥存在一定差异。玛多种群中,肝脏线粒体质子漏占State4的比例约为21~27%,而红尾沙蜥肝脏线粒体质子漏占其State4的比例高达74~79%。我们推测玛多种群的青海沙蜥在静息状态下不依赖质子漏产热来提高体温,而是通过降低线粒体呼吸速率以及质子漏,从而进一步提高线粒体呼吸效率和ATP产率。玛多种群肝脏中LDH酶活性以及LDH/CS比值均显著地低于海拔相对较低的格尔木种群,这说明高海拔的青海沙蜥肝脏对无氧代谢依赖性较小。CS和HOAD酶活性结果表明低温时肝脏中两种酶的活性无显著种群间差异,而30℃时格尔木种群肝脏CS和HOAD活性显著高于玛多种群;骨骼肌中仅发现20℃时CS无明显种群间差异,这些结果反映出青海沙蜥种群间不同组织在对低温环境的响应以及营养物质的利用能力方面存在差异。
     爬行动物对高原环境适应性的研究多数集中在机体对低温环境的适应性方面,而有关这些动物对低氧环境的适应性研究则相对较少。我们选用甘肃玛曲的青海沙蜥作为研究对象,将其分别放在较低(低氧组)和较高(富氧组)的氧浓度下进行习服,检测氧浓度变化对其代谢的影响。实验结果表明,青海沙蜥在低氧环境中倾向选择较低的体温并维持相对较低的静止代谢率,这与我们之前在青海沙蜥玛多种群和格尔木种群的比较中所得到结果一致。线粒体呼吸速率实验结果表明,两处理组间肝脏线粒体呼吸速率没有显著差异,低氧组骨骼肌线粒体State3呼吸速率在30℃均显著低于富氧组,这说明线氧浓度变化对线粒体呼吸速率的影响有限,而世居高原的沙蜥较低的线粒体呼吸速率可能主要与高原低温环境有关。低氧组骨骼肌LDH酶活性显著地低于富氧组,但在肝脏中却没有显著差异。这一结果与红尾沙蜥与荒漠沙蜥比较结果不同。我们推测世居高原的沙蜥LDH活性的组织特异性可能是低温和低氧条件相互协同作用的结果,因为在较低温度条件下,沙蜥代谢水平会显著降低,这可能会协同增强低氧条件对LDH酶活性的抑制作用。同时这种结果可能也与不同组织对低氧环境的敏感程度存在差异有关。低氧组和富氧组肝脏以及骨骼肌中HOAD酶活性均没有显著差异。这与上述种间与种群间HOAD的比较结果不一致。说明世居高原的沙蜥其脂代谢通路的激活可能主要受低温环境的影响,而在热环境较为理想的低氧环境中依靠糖代谢产生能量可能更有助于机体提高氧气的利用率。过氧化氢的生成速率在两个氧处理组间并没有显著差异,这与之前我们推测氧自由基调节主要依赖线粒体呼吸速率的结论存在差异,具体的原因和调节机制还需要更进一步的研究。此外,短期低氧习服与长期低氧适应的机制可能存在显著差异,这可能也是本实验中一些实验结果与上述种间及种群间比较结果不同的原因之一
     综合上述结果,作者认为红尾沙蜥和青海沙蜥在代谢方面对高原低温低氧环境具有一些独特的适应特征,这些成果填补了沙蜥属蜥蜴高原适应性研究领域的空白。结合高原低温低氧适应已有的研究成果,作者还分析了爬行动物在低温低氧适应中可能存在的机制,这有助于进一步丰富和完善动物低氧适应机制的理论体系,更好地保护高原的生物多样性,同时也为高原医学的研究和发展提供参考。但是,由于爬行动物对高原低温低氧环境的适应性研究处于起步阶段,本实验中有关沙蜥属蜥蜴高原适应机制的研究中仍存在一些尚不明确的问题,今后需要对相关领域进行更为深入细致的研究。
The Tibetan plateau is the highest plateau in the world, averaging more than4000m above sea level in altitude. High altitude is a major challenge to life, but native animals can survive vigorously in the cold and hypoxic conditions associated with these environments. Compared with a mass of studies on Tibetan plateau mammals and birds, limit information was gathered on the adaptation characteristics of reptilian species at high altitude. Some lizards in the genus of Phrynocephalus are widely distribute on the Tibetan plateau and are thought to be the exceptional choice for investigations of reptile metabolic adaptation to high altitude. Phrynocephalus erythrurus is dwelling at altitudes higher than any other living lizards in the world and Phrynocephalus vlangalii distributes with a widely range of altitudes on the Tibetan plateau. Phrynocephalus przewalskii, which inhabits desert and semi-desert areas in north China (altitude from1000to1500m), was selected as a reference species for the present study. Here, we conducted our research to three different aspects (intraspecific, interspecific and different oxygen concentration acclimatization), and these three Phrynocephalus lizards were used to analyse some metabolism-related characteristics, including morphological traits, body temperature selection, mitochondrial respiratory rates, some metabolic enzymes and metabolism-related genes. These studies could accumulate some useful information on lizards'metabolic characteristics and provide new insights into the adaptation mechanisms of reptiles at high altitude.
     In the first part of my dissertation, the metabolic characteristics of P. erythrurus, which inhabits at high altitudes (4500m) and P. przewalskii, which inhabits low altitudes, were analysed to explore the adaptation strategies of lizards to high-altitude environments. The results indicated that the mitochondrial respiratory rates of P. erythrurus were significantly lower than those of P. przewalskii, and that proton leak accounts for74~79%of state4and7~8%of state3in P. erythrurus vs.43~48%of state4and24~26%of state3in P. przewalskii. Lactate dehydrogenase (LDH) activity in P. erythrurus was lower than in P. przewalskii, indicating that at high altitude the former does not, relatively, have a greater reliance on anaerobic metabolism. A higher activity related to β-hydroxyacyl coenzyme A dehydrogenase (HOAD) and the HOAD/citrate synthase (CS) ratio suggested there was a possible higher utilization of fat in P. erythrurus. The lower expression of PGC-la, PPAR-y and UCP2in P. erythrurus suggested their expression was not influenced by cold and low PO2at high altitude. Analysis of mitochondrial H2O2production indicated that it was largely related to the mitochondrial respiratory rate, rather than the effect of UCP2. These distinct characteristics of P. erythrurus are considered to be necessary strategies in metabolic adaptation to high altitude and may effectively compensate for the negative influence of cold and low PO2.
     In the second part of my dissertation, a high altitude population (from Maduo, Qinghai Province, with an altitude of4300m) and a low altitude population (from Golmud, Qinghai Province, with an altitude of2800m) of P. vlangalii were used to analyze the possible intraspecific differences on the morphological traits, body temperature selection, resting metabolic rate, mitochondrial respiratory rate, proton leak and some metabolic enzymes. The snout-vent length, arm length and leg length of Maduo population (MD) was not significantly shorter than those of Golmud population (GM), these results suggested the morphological traits were conversed to the Bergmann's rule for this lizard species. The body temperature of MD was significantly lower than that of GM, and the heating rate of MD may faster than that of GM. The mitochondrial respiratory rates of MD were significantly lower than those of GM, this result was consistent with our previous study on the mitochondrial respiratory rates of P. erythrurus and P. przewalskii. While, there were some differences between P. erythrurus and P. vlangalii of MD on the proton leak regulation; the proton leak of liver mitochondria in MD account for21.4~27.2%of State4, and this proportion of P.erythrurus reached to74~79%. We speculate that the MD did not elevate their body temperature by proton leak thermogenesis, but by means of reducing mitochondrial respiratory rate to improve the efficiency of mitochondrial respiration and ATP production, thereby the energy metabolism could maintain the basic ATP needs of organism for a longer time. In addition, LDH activity and LDH/CS ratio of MD liver was significantly lower than those of GM, which suggested that the liver metabolism at high altitude may less depend on anaerobic metabolism. Moreover, the comparisons of CS and HOAD activity between the two populations indicated nutrients utilization ability may varied with organs, especially, the fat metabolism may make a major contribution to skeletal muscle metabolism.
     Many studies about reptile adaptations at high altitude were mainly focused on effect of low temperature, while relative less information about adaptation to hypoxia were gathered in these reptile species. In order to examine the impact of oxygen concentration on metabolic adaptation, the P. vlangalii were divide into two groups to acclimated a high (21%, HO group) or a low (10%, LO group) oxygen concentration by artificial simulation in our lab for45days, respectively. The results showed that P. vlangalii in the LO group was tended to select lower body temperatures and sustained lower resting metabolic rates, this was consistent with our previous result in the comparison between MD and GM of P. vlangalii. Compared to HO group, the LDH activities in skeletal muscle was significantly lower in LO group, but there was no difference in liver. This result was not consistent with our previous studies on liver LDH activity in P. erythrurus and P. vlangalii. We conjecture that the lower liver activity in these lizards may be as the result of living in high altitude, which have a synergy effect of both hypoxia and low temperature. In addition, the HOAD activities in liver and skeletal muscle did not differ between LO and HO group, which was also not consistent with P. erythrurus and P. vlangalii. These results indicated that activation of fat metabolism pathway in lizards at high altitude maybe greatly affected by low ambient temperature, while depend on glucose metabolism during hypoxia with warm temperature may be more helpful to raise the utilization rate of oxygen. The production rate of H2O2has no difference between the two groups, which differed with our prediction that the regulation of free radical mainly rely on the mitochondrial respiratory rate previously, the detail mechanism needs further study.
     In conclusion, we found that the P. erythrurus and P. vlangalii have some special characteristics coping with the hypoxia and low temperature at high altitude, these results fill the gap of the high altitude adaptation in genus of Phrynocephalus. Furthermore, we conclude some possible mechanisms of reptile adaptation facing to hypoxia and low temperature, which helps to further enrich the theoretical system of animals adaptation at high altitude. These work were useful to better protect the biodiversity of the plateau, and may also provide innovative references for the research and development of plateau medicine. However, the research on the reptile adaptation to plateau is in its infancy, our research on the genus of Phrynocephalus adaptation to high altitude still exist some uncertain questions, we need to carry on more intensive research of the related field in the future.
引文
1.苏明华,陈华伟,温佳林,王志刚,寇星灿(1992)高原鼠兔心肺组织的超微结构观察.高原医学杂志3:34-34.
    2.张春爱,李文华(2011)高原低氧对大鼠心肺组织超微结构的影响.中国组织工程研究与临床康复15:4473-4476.
    3.崔刚,赖明荣(1991)牦牛心肺的解剖学特点.中国牦牛:29-30.
    4. Durmowicz AG, Hofmeister S, Kadyraliev T, Aldashev AA, Stenmark KR (1993) Functional and structural adaptation of the yak pulmonary circulation to residence at high altitude. Journal of Applied Physiology 74:2276-2285.
    5.俞红贤.(1999).藏羊肺组织形态测量指标及其与高原低氧的关系.中国兽医科技,29(7),15-16.
    6.齐新章,王晓君,朱世海,饶鑫峰,魏莲,et al.(2008)高原鼢鼠和高原鼠兔心脏对低氧环境的适应.生理学报60:348-354.
    7. Rong C, Yan M, Zhen-Zhong B, Ying-Zhong Y, Dian-Xiang L, et al. (2012) Cardiac adaptive mechanisms of Tibetan antelope(Pantholops hodgsonii) at high altitudes. American Journal of Veterinary Research 73:809-813.
    8.王晓君(2008)高原鼢鼠和高原鼠兔氧传输系统部分特征的比较:青海大学.
    9. Heath D (1992) Mast cells in the human lung at high altitude. International journal of biometeorology 36:210-213.
    10.陈秋红(2001)高原鼠兔肺动脉血管功能及形态变化.中国应用生理学杂志17:2.
    11.张德禄,胡春香(2002)荒漠沙蜥肺动脉分布及毛细血管超微构筑.兰州大学学报:自然科学版38:90-94.
    12.俞诗源(1997)黄脊游蛇肺微血管的扫描电镜观察.动物学报43:214-215.
    13.俞诗源,王建林,王子仁.(2005).肺微血管研究进展.西北师范大学学报(自然科学版),41(4),96-101.
    14. Adair TH, Gay WJ, Montani JP (1990) Growth regulation of the vascular system:evidence for a metabolic hypothesis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 259:R393-R404.
    15. Banchero N, Grover RF, Will JA (1971) Oxygen transport in the llama(Lama glama). Respiration physiology 13:102-115.
    16. Hepple RT, Agey PJ, Hazelwood L, Szewczak JM, MacMillen RE, et al. (1998) Increased capillarity in leg muscle of finches living at altitude. Journal of Applied Physiology 85: 1871-1876.
    17. Black CP, Tenney S (1980) Oxygen transport during progressive hypoxia in high-altitude and sea-level waterfowl. Respiration Physiology 39:217-239.
    18. Lundby C, Pilegaard H, Andersen JL, van Hall G, Sander M, et al. (2004) Acclimatization to 4100 m does not change capillary density or mRNA expression of potential angiogenesis regulatory factors in human skeletal muscle. Journal of experimental biology 207: 3865-3871.
    19.朱世海,齐新章,王晓君,饶鑫峰,魏莲,et al.(2009)高原鼢鼠和高原鼠兔骨骼肌摄氧功能差异.生理学报61:373-378.
    20.王晓君,魏登邦,魏莲,张建梅,于红妍(2008)高原鼢鼠和高原鼠兔红细胞低氧适应特征.四川动物27:1100-1103.
    21.江家椿,何玛丽(1991)不同海拔高原西藏高原牦牛若干血液生理常值的比较.畜牧兽医学报22:20-26.
    22.阮宗海,陈华伟,陈秋红,魏春英,崔芝忠,et a1.(2000)不同海拔高原鼠兔,大白鼠血红蛋白电泳及血液学对比观察.中国应用生理学杂志16:47-47.
    23.杜继曾,李庆芬(1982)模拟高原低氧对高原鼠兔和大鼠器官与血液若干指标的影响.兽类学报2:35-42.
    24. Beall C, Reichsman A (2005) Hemoglobin levels in a Himalayan high altitude population. American journal of physical anthropology 63:301-306.
    25. Adams WH, Graves I, Pyakural S. Hematologic observations on the yak; 1975. Royal Society of Medicine, pp.701-705.
    26.马志军,王可(2000)高原灰尾兔和高原鼠兔骨髓红系细胞Feret's直径研究.高原医学杂志10:6-7.
    27.袁青妍,谢庄(2005)动物对高原低氧的适应性研究进展.生理科学进展36:1792182.
    28.杨之,滕国奇,龙雯,陈惠新,寇星灿,et al.(1987)青海牦牛肺动脉压及相关参数的比较性研究.青海医药杂志1:000.
    29. Weber RE, Lalthantluanga R, Braunitzer G (1988) Functional characterization of fetal and adult yak hemoglobins:an oxygen binding cascade and its molecular basis. Archives of biochemistry and biophysics 263:199-203.
    30. Liu X-Z, Li S-L, Jing H, Liang Y-H, Hua Z-Q, et al. (2001) Avian haemoglobins and structural basis of high affinity for oxygen:structure of bar-headed goose aquomet haemoglobin. Acta Crystallographica Section D:Biological Crystallography 57:775-783.
    31. Kramer DL (1988) The behavioral ecology of air breathing by aquatic animals. Canadian Journal of Zoology 66:89-94.
    32. Piccinini M, Kleinschmidt T, JURGENS KD, Braunitzer G (1990) Primary structure and oxygen-binding properties of the hemoglobin from guanaco (Lama guanacoe, Tylopoda). Biological Chemistry Hoppe-Seyler 371:641-648.
    33. Snyder LR, Hayes JP, Chappell MA (1988) Alpha-chain hemoglobin polymorphisms are correlated with altitude in the deer mouse, Peromyscus maniculatus. Evolution:689-697.
    34. Grigg GC, Harlow P (1981) A fetal-maternal shift of blood oxygen affinity in an Australian viviparous lizard, Sphenomorphus quoyii (Reptilia, Scincidae). Journal of Comparative Physiology B:Biochemical, Systemic, and Environmental Physiology 142:495-499.
    35. Bennett AF (1973) Blood physiology and oxygen transport during activity in two lizards, Varanus gouldii and Sauromalus hispidus. Comparative Biochemistry and Physiology Part A:Physiology 46:673-690.
    36. Pough FH (1980) Blood oxygen transport and delivery in reptiles. American Zoologist 20: 173-185.
    37. Snyder GK, Weathers WW (1977) Activity and oxygen consumption during hypoxic exposure in high altitude and lowland sceloporine lizards. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 117:291-301.
    38. Hou P-CL, Huang S-P (1999) Metabolic and ventilatory responses to hypoxia in two altitudinal populations of the toad, Bufo bankorensis. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology 124:413-421.
    39. He J, Xiu M, Tang X, Wang N, Xin Y, et al. (2013) Thermoregulatory and metabolic responses to hypoxia in the oviparous lizard, Phrynocephalus przewalskii. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology.
    40. Hochachka P (1986) Defense strategies against hypoxia and hypothermia. Science (New York, NY) 231:234.
    41. Hochachka P, Buck L, Doll C, Land S (1996) Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proceedings of the National Academy of Sciences 93:9493-9498.
    42. Seebacher F, Guderley H, Elsey RM, Trosclair PL (2003) Seasonal acclimatisation of muscle metabolic enzymes in a reptile (Alligator mississippiensis). Journal of Experimental Biology 206:1193-1200.
    43. Hames BD, Hooper NM (2000) Instant notes in biochemistry:Taylor & Francis.
    44.史福胜,车发梅,孙旭红,谭俊(2007)不同海拔地区牦牛血浆和组织中乳酸脱氢酶的比较.中国兽医杂志43:2-2.
    45. El-Mir M, Gerasopoulos D, Metzidakis I, Kanellis AK (2001) Hypoxic acclimation prevents avocado mesocarp injury caused by subsequent exposure to extreme low oxygen atmospheres. Postharvest biology and technology 23:215-226.
    46. Moore RH, Wohlschlag DE (1971) Seasonal variations in the metabolism of the atlantic midshipman, Porichthys porosissimus (Valenciennes). Journal of Experimental Marine Biology and Ecology 7:163-172.
    47. Newsholme E (2003) Enzymes, energy and endurance. Principles of exercise biochemistry 3: 1-35.
    48. Lin YQ, Wang GS, Feng J, Huang JQ, Xu YO, et al. (2011) Comparison of enzyme activities and gene expression profiling between yak and bovine skeletal muscles. Livestock Science 135:93-97.
    49.魏莲,魏登邦,王晓君,蔡琦(2009)高原鼢鼠,鼠兔及大鼠心肌和骨骼肌乳酸脱氢酶活力及同工酶谱.四川动物28:64-68.
    50. Benard G, Faustin B, Passerieux E, Galinier A, Rocher C, et al. (2006) Physiological diversity of mitochondrial oxidative phosphorylation. American Journal of Physiology-Cell Physiology 291:C1172-C1182.
    51.路瑛丽,赵鹏,冯连世,徐建方,朱珂,et al.(2010)不同低氧暴露对大鼠有氧代谢潜能的影响.中国应用生理学杂志:295-296.
    52. Chambers D, Braimbridge M, Frost G, Nahir A, Chayen J (1982) A quantitative cytochemical method for the measurement of β-hydroxyacyl CoA dehydrogenase activity in rat heart muscle. Histochemistry and Cell Biology 75:67-76.
    53. Kanatous SB, DiMichele LV, Cowan DF, Davis RW (1999) High aerobic capacities in the skeletal muscles of pinnipeds:adaptations to diving hypoxia. Journal of Applied Physiology 86:1247-1256.
    54. Fuson AL, Cowan DF, Kanatous SB, Polasek LK, Davis RW (2003) Adaptations to diving hypoxia in the heart, kidneys and splanchnic organs of harbor seals (Phoca vitulina). Journal of Experimental Biology 206:4139-4154.
    55. Bremer K, Moyes CD (2011) Origins of variation in muscle cytochrome c oxidase activity within and between fish species. The Journal of experimental biology 214:1888-1895.
    56. de Souza SCR, de Carvalho JE, Abe AS, Bicudo JEPW, Bianconcini MSC (2004) Seasonal metabolic depression, substrate utilisation and changes in scaling patterns during the first year cycle of tegu lizards (Tupinambis merianae). Journal of Experimental Biology 207: 307-318.
    57. Solaini G, Baracca A, Lenaz G, Sgarbi G (2010) Hypoxia and mitochondrial oxidative metabolism. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1797:1171-1177.
    58. J.St-Pierre, G. Boutilier R (2001) Aerobic Capacity of Frog Skeletal Muscle during Hibernation. Physiological and Biochemical Zoology 74:390-397.
    59. Heather LC, Cole MA, Tan JJ, Ambrose LJA, Pope S, et al. (2012) Metabolic adaptation to chronic hypoxia in cardiac mitochondria. Basic research in cardiology 107:1-12.
    60. Bennett A (1976) Metabolism. In'Biology of the Reptilia. Vol.5'.(Eds C. Gans and WR Dawson.) pp.127-223. Academic Press. London.
    61. Berner NJ (1999) Oxygen consumption by mitochondria from an endotherm and an ectotherm. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology 124:25-31.
    62. Bacila M. Respiration and oxidative phosphorylation of mitochondria from tissues and organs of Antarctic fish; 1997. pp.145-152.
    63. Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Molecular cell 40:294-309.
    64. Shams I, Avivi A, Nevo E (2004) Hypoxic stress tolerance of the blind subterranean mole rat: expression of erythropoietin and hypoxia-inducible factor 1α. Proceedings of the National Academy of Sciences of the United States of America 101:9698-9703.
    65. Wang D, Li H, Li Y, Guo S, Yang J, et al. (2006) Hypoxia-inducible factor la cDNA cloning and its mRNA and protein tissue specific expression in domestic yak(Bos grunniens) from Qinghai-Tibetan plateau. Biochemical and biophysical research communications 348:310-319.
    66. Li HG, Ren YM, Guo SC, Cheng L, Wang DP, et al. (2009) The protein level of hypoxia-inducible factor-1α is increased in the plateau pika(Ochotona curzoniae) inhabiting high altitudes. Journal of Experimental Zoology Part A:Ecological Genetics and Physiology 311:134-141.
    67. Spiegelman BM, Heinrich R (2004) Biological control through regulated transcriptional coactivators. Cell 119:157-167.
    68. Puigserver P, Wu Z, Park CW, Graves R, Wright M, et al. (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829.
    69. Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, et al. (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413:131-138.
    70. Lin J, Wu P-H, Tarr PT, Lindenberg KS, St-Pierre J, et al. (2004) Defects in Adaptive Energy Metabolism with CNS-Linked Hyperactivity in PGC-la Null Mice. Cell 119:121-135.
    71. Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, et al. (2005) PGC-1α deficiency causes multi-system energy metabolic derangements:muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS biology 3:e101.
    72.何茹(2009)解偶联蛋白家族成员UCP2.北京教育学院学报:自然科学版4:19-22.
    73. Schwartz TS, Murray S, Seebacher F (2008) Novel reptilian uncoupling proteins:molecular evolution and gene expression during cold acclimation. Proc Biol Sci 275:979-985.
    74. Eddy SF, Morin P, Storey KB (2005) Cloning and expression of PPARy and PGC-1α from the hibernating ground squirrel, Spermophilus tridecemlineatus. Molecular and cellular biochemistry 269:175-182.
    75. Eddy SF, Storey KB (2003) Differential expression of Akt, PPARy, and PGC-1 during hibernation in bats. Biochemistry and cell biology 81:269-274.
    76. Brand MD, Esteves TC (2005) Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell metabolism 2:85-93.
    77.徐瑜(2008)UCPs在高原缺氧大鼠脑线粒体能量代谢中的作用:第三军医大学.
    1. Zhao E, Zhao K, Zhou K. (1999) Fauna Sinica, Reptilia Vol.2, Squamata, Lacertilia. Beijing, Science Press:i-xi 394:1-8.
    2. Ananjeva N (1986) On the validity of Megalochilus mystaceus (Pallas,1776). Proceedings of the Zoological.
    3. Sokolovskii V (1974) Comparative karyological study of lizards of the family Agamidae. I. Chromosome complements of 8 species of the genus Phrynocephalus. Tsitologiia 16:920.
    4. Manilo V, Golubev M (1993) Karyotype information on some toad agamas of the Phrynocephalus guttatus species group (Sauria, Agamidae) of the former USSR. Asiatic Herpetological Research 5:105-108.
    5. Arnold EN (1999) Phylogenetic relationships of toad-headed lizards (Phrynocephalus, Agamidae) based on morphology. Bulletin-Natural History Museum Zoology Series 65: 1-14.
    6. Ananjeva NB (2011) The skull structure of some arid Asian agamids of Phrynocephalus genus (Agamidae, Sauria). Russian Journal of Herpetology 5:29-35.
    7. Schwenk K, Greene HW (1987) Water collection and drinking in Phrynocephalus helioscopus: a possible condensation mechanism. Journal of Herpetology:134-139.
    8. Ulmasov K, Zatsepina O, Molodtsov V, Evgen'ev M (1999) Natural body temperature and kinetics of heat-shock protein synthesis in the toad-headed agamid lizard Phrynocephalus interscapularis. Amphibia-Reptilia 20:1-9.
    9.曾晓茂,王跃招,刘志君,方自力,吴贯夫,et al.(1997)九种沙蜥的核型——兼论中国沙蜥属核型演化.
    10.王跃招,Macey J(1993)中国沙蜥属的生态地理分化.中国黄山国际两爬学会论文集.
    11. Blyth E (1863) Catalogue of the Mammalia in the Museum Asiatic Society:Savielle & Cranenburgh.
    12. Anderson J (1872) On some Persian, Himalayan, and other reptiles. Proc R Soc Zool London 1872:371-404.
    13. Blanford W (1881) List of Mammalia collected by the late Dr. Stoliczka when attached to the embassy under Sir D. Forsyth in Kashmir, Ladak, eastern Turkestan, and Wakhan, with descriptions of new species. Journal of the Asiatic Society of Bengal 44:105-112.
    14. Przhevalsky N (1876) Mongolia i Stana Tangutov [Mongolia and the Country of the Tanguts]. St Petersburg:VS Balashev.
    15. Boulenger GA (1885) Catalogue of the lizards in the British Museum (Natural History): Printed by order of the Trustees.
    16.赵肯堂(1964)沙蜥的泄殖系统及其繁殖习性.动物学杂志4:004.
    17.赵肯堂(1979)中国沙蜥属的分类和分布研究.内蒙古大学学报(自然科学版)2:111-121.
    18.江耀明,黄庆云,赵尔宓(1980)青海沙蜥一新亚种及其生态初步观察.动物学报26:178-183.
    19.王跃招,江耀明(1992)青海沙蜥红原亚种分类地位的探讨.两栖爬行动物学论文集:110-115.
    20.王跃招,曾晓茂,方自力,刘志君,吴贯夫(1996)两藏沙蜥属一新种—泽当沙蜥.动物学研究,17(1),27-29.
    21.王跃招,方自力(1996)中国沙蜥属一新纪录种.动物分类学报21:9-9.
    22.赵肯堂(1995)内蒙古沙蜥属一新种[J].四川动物14:47-50.
    23.陈伟腾(1991)宁夏永宁杨显地区荒漠沙蜥春季种群结构.宁夏大学学报(农业科学版)4:006.
    24.郭砺(2004)内蒙古土默特平原生境变化对草原沙蜥种群的影响.内蒙古大学学报:自然科学版35:658-662.
    25.文陇英(2007)丽斑麻蜥和草原沙蜥的种群调查.甘肃科学学报19.
    26. Xu H, Yang F (1995) Simulation model of activity of Phrynocephalus przewalskii. Ecological modelling 77:197-204.
    27.徐海根,杨凤翔(1993)腾格里荒漠沙蜥年龄结构划分的研究.动物学报39:146-151.
    28.王硕果,曾宗永,吴鹏飞,蓝振江,王跃招(2004)青海沙蜥的巢域研究.四川大学学报(自然科学版)41.
    29.全仁哲,张继锋(2006)变色沙蜥(Phrynocephalus versicolor)的日活动频律研究.兵团教育学院学报4:005.
    30.古丽波斯坦·艾则孜(1999)东疆沙蜥和密点麻蜥的食性研究,干旱区研究16.
    31.鲍敏,曾阳,马建滨,袁平珍(1998)青海沙蜥和密点麻蜥的分布状况,生活规律及食性.青海师范大学学报(自然科学版)4:42-45.
    32. Zhang X-D, Ji X, Luo L-G, Gao J, Zhang L (2005) Sexual dimorphism and female reproduction in the Qinghai toad-headed lizard Phrynocephalus vlangalii. Acta Zoologica Sinica 51:1006-1012.
    33.刘迺发,李仁德,梁效成(1992)甘肃荒漠蜥蜴群落结构的研究.动物学报38:377-384.
    34.徐海根,杨凤翔,宋志明(1993)荒漠沙蜥的年龄划分.生态学杂志4:005.
    35.刘迺发,李仁德(1995)三种荒漠蜥蜴空间和营养生态位研究.生态学报15:48-53.
    36. Xiaolong Tang, Feng Yue, Ming Ma, Ningbo Wang, Jianzheng He, et al. (2012) Effects of Thermal and Hydric Conditions on Egg Incubation and Hatchling Phenotypes in Two Phrynocephalus Lizards. Asian Herpetological Research 3:184.
    37.赵尔宓,赵肯堂,&周开亚.(1998),.中国动物志.爬行纲,2.
    38.刘遁发,陈强,解雪梅(1996)荒漠沙蜥繁殖生态研究.生态学报16:276-281.
    39. Wei Z, Nannan Y, Yajuan W, Weihong J, Naifa L (2011) Female Reproductive Cycles of Phrynocephalus przewalskii (Lacertilia:Agamidae) in the Tengger Desert, China亚洲两栖爬行动物研究(英文版)2.
    40.陈强,韩昭雪,宋志明(1993)变色沙蜥繁殖的研究.兰州大学学报(自然科学版)4:044.
    41.郭砺,赵晨光(2001)草原沙蜥(Phyrnocephalus frontalis)生殖策略的研究[J].内蒙古大学学报32:214-216.
    42.李仁德,宋志明(1990)温度对荒漠沙蜥能量代谢,呼吸和水分蒸发的影响.兰州大学学报(自然科学版)26:107·112.
    43.李仁德,刘迺发(1992)环境温度对荒漠沙蜥和密点麻蜥体温的影响及其对环境温度的选择.动物学研究13:47-52.
    44.李仁德,杨明俊(2002)温度对荒漠沙蜥在体心脏单相动作电位的影响.兰州大学学报(自然科学版)6:019.
    45.李仁德,陈强,刘迺发(1996)温度对蜥蜴血红蛋白及血浆总蛋白浓度的影响.动物学报3:004.
    46.李仁德,沈剑敏,周桂花,吴鹏程,陈强(2001)荒漠沙蜥血清蛋白含量的年周期变动.兰州大学学报(自然科学版)3:017.
    47.李仁德,刘迺发,王金恒(1992)温度对荒漠沙蜥心脏活动影响的实验研究.动物学报1.
    48.马明,王万雄,马晓敏(2000)用多元分析方法研究温度对蜥蜴血红蛋白及血浆总量的影响.西北民族学院学报(自然科学版)1:009.
    49.钱亚群,牛翠娟(2006)荒漠蜥蜴的温度适应策略.生物学通报12:005.
    50.陈卓,安蓓,李仁德(2004)温度对荒漠沙蜥肝脏组织中SOD活性的影响.兰州大学学报(自然科学版)40.
    51.陈强(1994)丽斑麻蜥和草原沙蜥静止代谢率的研究.动物学研究15:12-12.
    52.李仁德,李云鸿,陈强(2002)荒漠沙蜥血糖浓度的昼夜变动及季节性变化.动物学报48:558-562.
    53.李仁德,李云鸿,陈强(2002)荒漠沙蜥松果体褪黑激素含量的季节性变化(英文).动物学报4:018.
    54.常城,刘迺发,王磊(1993)变色沙蜥(Phrynocephalus versicolor)皮肤感受器形态观察.甘肃科学学报2:008.
    55.常城(1995)蜕皮周期中荒漠沙蜥表皮的组织学变化.兰州大学学报:自然科学版31:55-60.
    56.郭砺,包孟彩,刘立特(1998)三种沙蜥肾脏组织学的初步观察.内蒙古大学学报(自然科学版)5.
    57.郭砺,包孟彩,栾雅文(1998)三种沙蜥消化道的组织学研究.内蒙古大学学报(自然科学版)2.
    58.韩昭雪,岳荣(1993)蜥蜴胃肠嗜银细胞的分布及形态学观察.兰州大学学报:自然科学版29:122-126.
    59.康旭,刘重斌,王子仁,李仁德,佘秋生(2005)荒漠沙蜥冬眠前与冬眠中期肝脏,胰腺,脂肪体超微结构的比较.动物学杂志40:103-107.
    60.王典群(1992)荒漠沙蜥松果眼和侧眼的比较.解剖学报4:002.
    61.常城,王子仁荒漠沙蜥皮肤感受器的形态学研究.兰州大学学报:自然科学版32:92-97.
    62.谢高地,鲁春霞,冷允法,郑度,李双成(2003)青藏高原生态资产的价值评估.自然资源学报,18(2).
    63.吴鹏飞,王跃招,王硕果,曾涛,郭海燕,et a1.(2002)青海沙蜥(蜥蜴亚目:鬣蜥科)种群的年龄结构与性比.四川大学学报(自然科学版),6,036.
    64.王跃招,曾晓茂,方自力,吴贯夫(1999)西藏几种沙蜥的分类,演化,分布及其与古地史的关系.动物学研究,3.
    65.金园庭,刘迺发(2008)青海高原两种沙蜥mtDNA的渐渗杂交.动物学报54:111-121.
    66. Jin Y, Liu N, Li J (2007) Elevational variation in body size of Phrynocephalus vlangalii in the North Qinghai-Xizang (Tibetan) Plateau. Belgian Journal of Zoology 137:197.
    67. Jin Y-T, Liu N-F (2010) Phylogeography of Phrynocephalus erythrurus from the Qiangtang Plateau of the Tibetan Plateau. Molecular Phylogenetics and Evolution 54:933-940.
    68. Ji X, Wang Y-Z, Wang Z (2009) New species of Phrynocephalus (Squamata, Agamidae) from Qinghai, Northwest China. Zootaxa,61(68),
    69.杨军,温晓敏,原洪(2006)西藏两栖爬爬行动物考察报告3.从乌鲁木齐到拉萨(图版Ⅰ,Ⅱ,Ⅲ,Ⅳ).四川动物24:254-259.
    70.王跃招,曾晓茂,方自力,吴贯夫,刘志君(2002)沙蜥属一有效种贵德沙蜥及红原沙蜥的分类研究(蜥蜴亚目:鬣蜥科).动物分类学报,27(2),372-383.
    71. Guo X, Wang Y (2007) Partitioned Bayesian analyses, dispersal-vicariance analysis, and the biogeography of Chinese toad-headed lizards (Agamidae:Phrynocephalus):A re-evaluation. Molecular Phylogenetics and Evolution 45:643-662.
    72. Pang J, Wang Y, Zhong Y, Rus Hoelzel A, Papenfuss TJ, et al. (2003) A phylogeny of Chinese species in the genus Phrynocephalus (Agamidae) inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 27:398-409.
    73.邱清波,杜宇,林炽贤(2008)沙蜥属13种蜥蜴基于16S rRNA序列的系统发生关系.海南师范学院学报:自然科学版20:350-354.
    74.骆爽(2009)西藏高原两种沙蜥遗传结构及三种沙蜥亲子鉴定:兰州大学.
    75. Jin, Y. T., Liu, N. F., Brown, R. P. (2008). Cladogenesis and phylogeography of the lizard phrynocephalus vlangalii (agamidae) on the tibetan plateau. Molecular Ecology,17(8), 1971-1982.
    76.原洪,邱景禹,姬明周,何华民,赵开生,et a1.(1986)西藏羌塘高原野生动物考察报告.四川动物5:27-27.
    77. Przhevalskii NM (1876) Mongolia, the Tangut country and the solitudes of northern Tibet, tr. by ED Morgan.
    78.马继雄,鲍敏(1999)青海沙蜥和密点麻蜥生存环境的比较研究.青海师范大学学报:自然科学版:46-48.
    79.吴鹏飞,曾宗永,王跃招,朱波(2005)青海沙蜥种群密度调查的一种新方法.生态学杂志,24(10),1241-1244.
    80.吴鹏飞,王跃招,朱波,曾宗永(2004)若尔盖青海沙蜥——洞穴密度与深度的生态内涵.动物学研究,4,008.
    81.金园庭,田仁荣,刘迺发(2006)四种沙蜥的形态地理变异:Bergmann和Allen规律的检验.动物学报52.
    82. Jin, Y., Liu, N., & Li, J. (2007). Elevational variation in body size of Phrynocephalus vlangalii in the North Qinghai-Xizang (Tibetan) Plateau. Belgian Journal of Zoology,137(2),197.
    83. Jin Y-T, Liu N-F (2007) Altitudinal variation in reproductive strategy of the toad-headed lizard, Phrynocephalus vlangalii in North Tibet Plateau (Qinghai). Amphibia-Reptilia 28: 509-515.
    84. He J, Xiu M, Tang X, Yue F, Wang N, et al. (2013) The Different Mechanisms of Hypoxic Acclimatization and Adaptation in Lizard Phrynocephalus vlangalii Living on Qinghai-Tibet Plateau. Journal of Experimental Zoology Part A:Ecological Genetics and Physiology:1-7.
    1. Storz JF, Scott GR, Cheviron ZA (2010) Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. Journal of Experimental Biology 213:4125-4136.
    2. Beall CM (2007) Two routes to functional adaptation:Tibetan and Andean high-altitude natives. Proceedings of the National Academy of Sciences 104:8655-8660.
    3. Leon-Velarde F, Sanchez J, Bigard A, Brunet A, Lesty C, et al. (1993) High altitude tissue adaptation in Andean coots:capillarity, fibre area, fibre type and enzymatic activities of skeletal muscle. Journal of Comparative Physiology B:Biochemical, Systemic, and Environmental Physiology 163:52-58.
    4. Qiu Q, Zhang G, Ma T, Qian W, Wang J, et al. (2012) The yak genome and adaptation to life at high altitude. Nature Genetics.
    5. Hoppeler, H., Vogt, M., Weibel, E. R., Fluck, M. (2003). Response of skeletal muscle mitochondria to hypoxia. Experimental physiology,88(1),109-119.
    6. Weber RE (2007) High-altitude adaptations in vertebrate hemoglobins. Respiratory Physiology & Neurobiology 158:132-142.
    7. Pearson OP, Bradford DF (1976) Thermoregulation of Lizards and Toads at High Altitudes in Peru. Copeia 1976:155-170.
    8. Frappell, P. B., Leon-Velarde, F., Rivera-Ch, M. (2007). Oxygen transport at high altitude--an integrated perspective. Introduction. Respiratory physiology & neurobiology,158(2-3), 115.
    9. Haas JD (1979) High altitude adaptation. Reviews in Anthropology 6:437-451.
    10. Frisancho AR (1990) Functional adaptation to high altitude hypoxia. Para conocer al hombre: Homenaje a Santiago Genoves a 33 anos como investigador en la UNAM:481.
    11. Bennett AF, Ruben J (1975) High altitude adaptation and anaerobiosis in sceloporine lizards. Comparative Biochemistry and Physiology Part A:Physiology 50:105-108.
    12. Spellerberg I (1976) Adaptations of reptiles to cold. Morphology and biology of reptiles 3: 261-285.
    13. Feala JD, Coquin L, Zhou D, Haddad GG, Paternostro G, et al. (2009) Metabolism as means for hypoxia adaptation:metabolic profiling and flux balance analysis. BMC systems biology 3:91.
    14. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell metabolism 3:187-197.
    15. St-Pierre J, Tattersall GJ, Boutilier RG (2000) Metabolic depression and enhanced O2 affinity of mitochondria in hypoxic hypometabolism. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 279:R1205-R1214.
    16. McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria:more than just a powerhouse. Current Biology 16:R551-R560.
    17. Estabrook RW (1967) Mitochondrial respiratory control and the polarographic measurement of ADP:O ratios. Methods in enzymology 10:41-47.
    18. Lowen A (1975) Bioenergetics:Penguin Books New York.
    19. Gnaiger E, Kuznetsov A, Schneeberger S, Seiler R, Brandacher G, et al. (2000) Mitochondria in the cold. Springer, Heidelberg, Berlin, New York. pp.431-442.
    20. Hochachka P, Buck L, Doll C, Land S (1996) Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proceedings of the National Academy of Sciences 93:9493-9498.
    21. Rolfe DF, Brand MD (1997) The physiological significance of mitochondrial proton leak in animal cells and tissues. Bioscience Reports 17:9-16.
    22. Seebacher F, Murray S, Else P (2009) Thermal acclimation and regulation of metabolism in a reptile (Crocodylus porosus):the importance of transcriptional mechanisms and membrane composition. Physiological and Biochemical Zoology 82:766-775.
    23. Brand MD, Couture P, Else PL, Withers KW, Hulbert A (1991) Evolution of energy metabolism. Proton permeability of the inner membrane of liver mitochondria is greater in a mammal than in a reptile. Biochemical journal 275:81.
    24. Pierce V, Crawford D (1997) Phylogenetic analysis of glycolytic enzyme expression. Science 276:256-259.
    25. Storey KB (1997) Metabolic regulation in mammalian hibernation:enzyme and protein adaptations. Comparative Biochemistry and Physiology Part A:Physiology 118: 1115-1124.
    26. St-Pierre J, Boutilier RG (2001) Aerobic capacity of frog skeletal muscle during hibernation. Physiol Biochem Zool 74:390-397.
    27. Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, et al. (2005) PGC-la deficiency causes multi-system energy metabolic derangements:muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS biology 3:e101.
    28. Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-I family of transcription coactivators. Cell metabolism 1:361-370.
    29. Ongwijitwat S, Wong-Riley M (2005) Is nuclear respiratory factor 2 a master transcriptional coordinator for all ten nuclear-encoded cytochrome c oxidase subunits in neurons? Gene 360:65.
    30. Scarpulla RC (2002) Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochimica et biophysica acta 1576:1.
    31. LeMoine CM, Genge CE, Moyes CD (2008) Role of the PGC-1 family in the metabolic adaptation of goldfish to diet and temperature. Science Signalling 211:1448.
    32. Moyes CD (2003) Controlling muscle mitochondrial content. Journal of Experimental Biology 206:4385-4391.
    33. Puigserver P, Wu Z, Park CW, Graves R, Wright M, et al. (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829.
    34. St-Pierre J, Lin J, Krauss S, Tarr PT, Yang R, et al. (2003) Bioenergetic analysis of peroxisome proliferator-activated receptor y coactivators 1α and 1β (PGC-1α and PGC-1β) in muscle cells. Journal of Biological Chemistry 278:26597-26603.
    35. O'Hagan KA, Cocchiglia S, Zhdanov AV, Tambuwala MM, Cummins EP, et al. (2009) PGC-la is coupled to HIF-1α-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells. Proceedings of the National Academy of Sciences 106:2188.
    36. Lin YQ, Wang GS, Feng J, Huang JQ, Xu YO, et al. (2011) Comparison of enzyme activities and gene expression profiling between yak and bovine skeletal muscles. Livestock Science 135:93-97.
    37. Liang H, Ward WF (2006) PGC-la:a key regulator of energy metabolism. Advances in Physiology Education 30:145-151.
    38.柳晓峰,李辉(2006)PPAR基因与脂肪代谢调控.遗传28:243-248.
    39.户国,王守志,&李辉.(2009)PPAR-y基因对脂质代谢调控机制的生物信息学分析.东北农业大学学报,40(012),66-70.
    40. Brand MD, Esteves TC (2005) Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell metabolism 2:85-93.
    41. Schwartz TS, Murray S, Seebacher F (2008) Novel reptilian uncoupling proteins:molecular evolution and gene expression during cold acclimation. Proc Biol Sci 275:979-985.
    42. Glass ML, Wood SC, Johansen K (1978) The application of pneumotachography on small unrestrained animals. Comparative Biochemistry and Physiology Part A:Physiology 59: 425-427.
    43. Zhao E, Adler K (1993) Herpetology of China. Herpetology of China.
    44. Jin Y-T, Liu N-F (2010) Phylogeography of Phrynocephalus erythrurus from the Qiangtang Plateau of the Tibetan Plateau. Molecular Phylogenetics and Evolution 54:933-940.
    45. Trzcionka M, Withers K, Klingenspor M, Jastroch M (2008) The effects of fasting and cold exposure on metabolic rate and mitochondrial proton leak in liver and skeletal muscle of an amphibian, the cane toad Bufo marinus. Journal of Experimental Biology 211: 1911-1918.
    46. Guderley H, Seebacher F (2010) Thermal acclimation, mitochondrial capacities and organ metabolic profiles in a reptile(Alligator mississippiensis). Journal of Comparative Physiology B:Biochemical, Systemic, and Environmental Physiology:1-12.
    47. Rey B, Sibille B, Romestaing C, Belouze M, Letexier D, et al. (2008) Reptilian uncoupling protein:functionality and expression in sub-zero temperatures. Journal of Experimental Biology 211:1456-1462.
    48. Seebacher F, Guderley H, Elsey RM, Trosclair PL (2003) Seasonal acclimatisation of muscle metabolic enzymes in a reptile (Alligator mississippiensis). Journal of Experimental Biology 206:1193-1200.
    49. John-Alder HB, Joos B (1991) Interactive effects of thyroxine and experimental location on running endurance, tissue masses, and enzyme activities in captive versus field-active lizards (Sceloporus undulatus). General and comparative endocrinology 81:120-132.
    50. Barja G (2002) Minireview:The Quantitative Measurement of H2O2 Generation in Isolated Mitochondria. Journal of bioenergetics and biomembranes 34:227-233.
    51. Livak KJ, Schmittgen TD (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. methods 25:402-408.
    52. St-Pierre J, Brand M, Boutilier R (2000) The effect of metabolic depression on proton leak rate in mitochondria from hibernating frogs. Journal of Experimental Biology 203: 1469-1476.
    53. Barger JL, Brand MD, Barnes BM, Boyer BB (2003) Tissue-specific depression of mitochondrial proton leak and substrate oxidation in hibernating arctic ground squirrels. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 284: R1306-R1313.
    54. Hulbert A, Else P, Manolis S, Brand M (2002) Proton leak in hepatocytes and liver mitochondria from archosaurs (crocodiles) and allometric relationships for ectotherms. Journal of Comparative Physiology B:Biochemical, Systemic, and Environmental Physiology 172:387-397.
    55. Glanville E, Seebacher F (2006) Compensation for environmental change by complementary shifts of thermal sensitivity and thermoregulatory behaviour in an ectotherm. The Journal of experimental biology 209:4869.
    56. Solaini G, Baracca A, Lenaz G, Sgarbi G (2010) Hypoxia and mitochondrial oxidative metabolism. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1797:1171-1177.
    57. de Souza SCR, de Carvalho JE, Abe AS, Bicudo JEPW, Bianconcini MSC (2004) Seasonal metabolic depression, substrate utilisation and changes in scaling patterns during the first year cycle of tegu lizards (Tupinambis merianae). Journal of Experimental Biology 207: 307-318.
    58. Guderley H, Seebacher F (2010) Thermal acclimation, mitochondrial capacities and organ metabolic profiles in a reptile(Alligator mississippiensis). Journal of Comparative Physiology B:Biochemical, Systemic, and Environmental Physiology:1-12.
    59. Guderley H, Johnston I (1996) Plasticity of fish muscle mitochondria with thermal acclimation. Journal of Experimental Biology 199:1311.
    60. Chavez JC, Pichiule P, Boero J, Arregui A (1995) Reduced mitochondrial respiration in mouse cerebral cortex during chronic hypoxia. Neuroscience letters 193:169-172.
    61. Rolfe DFS, Brand MD (1997) The Physiological Significance of Mitochondrial Proton Leak in Animal Cells and Tissues. Bioscience Reports 17.
    62. Rolfe D, Brand MD (1996) Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate. American Journal of Physiology-Cell Physiology 271:C1380-C1389.
    63. Rolfe DFS, Newman JMB, Buckingham JA, Clark MG, Brand MD (1999) Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR. American Journal of Physiology-Cell Physiology 276:C692-C699.
    64. Glanville EJ, Seebacher F (2006) Compensation for environmental change by complementary shifts of thermal sensitivity and thermoregulatory behaviour in an ectotherm. Journal of Experimental Biology 209:4869-4877.
    65. J.St-Pierre, G. Boutilier R (2001) Aerobic Capacity of Frog Skeletal Muscle during Hibernation. Physiological and Biochemical Zoology 74:390-397.
    66. Sheafor BA (2003) Metabolic enzyme activities across an altitudinal gradient:an examination of pikas (genus Ochotona). Journal of Experimental Biology 206:1241-1249.
    67. Shoag J, Arany Z (2010) Regulation of hypoxia-inducible genes by PGC-1α. Arteriosclerosis, Thrombosis, and Vascular Biology 30:662-666.
    68. Rasbach KA, Gupta RK, Ruas JL, Wu J, Naseri E, et al. (2010) PGC-1α regulates a HIF2a-dependent switch in skeletal muscle fiber types. Proceedings of the National Academy of Sciences 107:21866-21871.
    69. Spiegelman BM, Heinrich R (2004) Biological control through regulated transcriptional coactivators. Cell 119:157-167.
    70. Scarpulla RC (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiological Reviews 88:611-638.
    71. Vega RB, Huss JM, Kelly DP (2000) The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor a in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Molecular and cellular biology 20: 1868-1876.
    72. Palacios-Callender M, Quintero M, Hollis VS, Springett RJ, Moncada S (2004) Endogenous NO regulates superoxide production at low oxygen concentrations by modifying the redox state of cytochrome c oxidase. Proceedings of the National Academy of Sciences of the United States of America 101:7630-7635.
    73. He J, Xiu M, Tang X, Wang N, Xin Y, et al. Thermoregulatory and metabolic responses to hypoxia in the oviparous lizard, Phrynocephalus przewalskii. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology.165(2):207-213.
    74. E. BP, T. BL (2007) Hypoxia tolerance in reptiles, amphibians, and fishes:Life with variable oxygen availability. Palo Alto, CA, ETATS-UNIS:Annual Reviews.26 p.
    75. Eddy SF, Storey KB (2003) Differential expression of Akt, PPARy, and PGC-1 during hibernation in bats. Biochemistry and cell biology 81:269-274.
    76. Eddy SF, Morin P, Storey KB (2005) Cloning and expression of PPARy and PGC-la from the hibernating ground squirrel, Spermophilus tridecemlineatus. Molecular and cellular biochemistry 269:175-182.
    1. Rogers KD, Seebacher F, Thompson MB (2004) Biochemical acclimation of metabolic enzymes in response to lowered temperature in tadpoles of Limnodynastes peronii. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology 137:731-738.
    2. Blouin-Demers G, Nadeau P (2005) The cost-benefit model of thermoregulation does not predict lizard thermoregulatory behavior. Ecology 86:560-566.
    3. Clark TD, Butler PJ, Frappell PB (2006) Factors influencing the prediction of metabolic rate in a reptile. Functional Ecology 20:105-113.
    4. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853-858.
    5. Ray C (2005) The application of Bergmann's and Allen's rules to the poikilotherms. Journal of Morphology 106:85-108.
    6. Zink R, Remsen Jr J (1986) Evolutionary processes and patterns of geographic variation in birds.
    7. Ashton KG, Tracy MC, de Queiroz A (2000) Is Bergmann's rule valid for mammals? The American Naturalist 156:390-415.
    8. Meiri S, Dayan T (2003) On the validity of Bergmann's rule. Journal of Biogeography 30: 331-351.
    9. Ashton KG (2002) Do amphibians follow Bergmann's rule? Canadian Journal of Zoology 80: 708-716.
    10. Porter EE, Hawkins BA (2001) Latitudinal gradients in colony size for social insects:termites and ants show different patterns. The American Naturalist 157:97-106.
    11. Ashton KG, Feldman CR (2003) Bergman's rule in nonavian reptiles turtles follow it, lizard and snakes reverse it. Blackwell Publishing Ltd. pp.1151-1163.
    12. Ray C (1960) The application of Bergmann's and Allen's Rules to the poikilotherms. Journal of morphology 106:85.
    13. Gaston KJ, Blackburn TM, Spicer JI (1998) Rapoport's rule:time for an epitaph? Trends in Ecology & Evolution 13:70-74.
    14.金园庭,田仁荣,刘迺发(2006)四种沙蜥的形态地理变异:Bergmann和Allen规律的检验.动物学报52.
    15. Jin Y, Liu N, Li J (2007) Elevational variation in body size of Phrynocephalus vlangalii in the North Qinghai-Xizang (Tibetan) Plateau. Belgian Journal of Zoology 137:197.
    16. Helen M. Muleme, Amy C. Walpole, James F. Staples (2006) Mitochondrial Metabolism in Hibernation:Metabolic Suppression, Temperature Effects, and Substrate Preferences. Physiological and Biochemical Zoology 79:474-483.
    17. Clarke A, Portner H-O (2010) Temperature, metabolic power and the evolution of endothermy. Biological Reviews 85:703-727.
    18. Brattstrom BH (1965) Body Temperatures of Reptiles. American Midland Naturalist 73: 376-422.
    19. Huey R (2008) Phylogenetic and ontogenetic determinants of sprint performance in some diurnal Kalahari lizards. Koedoe-African Protected Area Conservation and Science 25: 43-48.
    20. Gvozdik L (2002) To heat or to save time? Thermoregulation in the lizard Zootoca vivipara (Squamata:Lacertidae) in different thermal environments along an altitudinal gradient. Canadian Journal of Zoology 80:479-492.
    21. Damme RV, Bauwens D, Verheyen RF (1990) Evolutionary Rigidity of Thermal Physiology: The Case of the Cool Temperate Lizard Lacerta vivipara. Oikos 57:61-67.
    22. van Berkum FH (1986) Evolutionary patterns of the thermal sensitivity of sprint speed in Anolis lizards. Evolution 40:594-604.
    23. Youssef MK, Adolph SC, Richmond JQ (2008) Evolutionarily conserved thermal biology across continents:The North American lizard Plestiodon gilberti (Scincidae) compared to Asian Plestiodon. Journal of Thermal Biology,33(5),308-312.
    24. Hicks JW, Wood SC (1985) Temperature regulation in lizards:effects of hypoxia. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 248: R595-R600.
    25. Howald H, Hoppeler H (2003) Performing at extreme altitude:muscle cellular and subcellular adaptations. European Journal of Applied Physiology 90:360-364.
    26. Shen J-M, Li R-D, Gao F-Y (2005) Effects of ambient temperature on lipid and fatty acid composition in the oviparous lizards, Phrynocephalus przewalskii. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology 142:293-301.
    27. Rolfe DF, Brand MD (1997) The physiological significance of mitochondrial proton leak in animal cells and tissues. Bioscience Reports 17:9-16.
    28. Voet D, Voet JG (1995) Biochemistry. New York:J. Wiley & Sons.
    29. Liao J, Zhang Z, Liu N (2006) Altitudinal variation of skull size in Daurian pika (Ochotona daurica Pallas,1868). Acta Zoologica Academiae Scientiarum Hungaricae 52:319-329.
    30. Liao J, Liu N (2008) Altitudinal variations of acoustic organs in anurans:A case study from China. Italian Journal of Zoology 75:125-134.
    31. Liao J, Zhang Z, Liu N (2007) Effects of altitudinal change on the auditory bulla in Ochotona daurica (Mammalia, Lagomorpha). Journal of Zoological Systematics and Evolutionary Research 45:151-154.
    32. Moran EF (1982) Human adaptability:Westview press.
    33. Nagy KA (2005) Field metabolic rate and body size. Journal of Experimental Biology 208: 1621-1625.
    34. Bauwens D, Garland Jr T, Castilla AM, Van Damme R (1995) Evolution of sprint speed in lacertid lizards:morphological, physiological and behavioral covariation. Evolution: 848-863.
    35. Reilly SM, McBrayer LB, Miles DB (2007) Lizard ecology:Cambridge University Press.
    36. Du W-G, Zhao B, Shine R (2010) Embryos in the Fast Lane:High-Temperature Heart Rates of Turtles Decline After Hatching. PloS one 5:e9557.
    37. Huey RB, Slatkin M (1976) Cost and Benefits of Lizard Thermoregulation. The Quarterly Review of Biology 51:363-384.
    38. Huey RB, Kingsolver JG (1993) Evolution of Resistance to High Temperature in Ectotherms. The American Naturalist 142:S21-S46.
    39. Herczeg G, Herrero A, Saarikivi J, Gonda A, Jantti M, et al. (2008) Experimental support for the cost-benefit model of lizard thermoregulation:the effects of predation risk and food supply. Oecologia 155:1-10.
    40. Stevenson RD (1985) The Relative Importance of Behavioral and Physiological Adjustments Controlling Body Temperature in Terrestrial Ectotherms. The American Naturalist 126: 362-386.
    41. Gvozdik L, Castilla AM (2001) A Comparative Study of Preferred Body Temperatures and Critical Thermal Tolerance Limits among Populations of Zootoca vivipara (Squamata: Lacertidae) along an Altitudinal Gradient. Journal of Herpetology 35:486-492.
    42. Solaini G, Baracca A, Lenaz G, Sgarbi G (2010) Hypoxia and mitochondrial oxidative metabolism. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1797:1171-1177.
    43. de Souza SCR, de Carvalho JE, Abe AS, Bicudo JEPW, Bianconcini MSC (2004) Seasonal metabolic depression, substrate utilisation and changes in scaling patterns during the first year cycle of tegu lizards (Tupinambis merianae). Journal of Experimental Biology 207: 307-318.
    44.魏莲,魏登邦,王晓君,蔡琦(2009)高原鼢鼠,鼠兔及大鼠心肌和骨骼肌乳酸脱氢酶活力及同工酶谱.四川动物28:64-68.
    45.李莉(2006)引入青海省小尾寒羊和本地杂种羊心钠素含量和乳酸脱氢酶活性的测定.青海大学学报(自然科学版)2:016.
    46.史福胜,车发梅,孙旭红,谭俊(2007)不同海拔地区牦牛血浆和组织中乳酸脱氢酶的比较.中国兽医杂志43:2-2.
    47. Lin YQ, Wang GS, Feng J, Huang JQ, Xu YO, et al. (2011) Comparison of enzyme activities and gene expression profiling between yak and bovine skeletal muscles. Livestock Science 135:93-97.
    48.高文祥,陈建,高钰琪,黄碱(2007)慢性低氧大鼠骨骼肌线粒体的蛋白质组学研究.中国病理生理杂志23:591-594.
    1. Jackson DC (2007) Temperature and hypoxia in ectothermic tetrapods. Journal of Thermal Biology 32:125-133.
    2. Bickler P E, Buck L T. Hypoxia tolerance in reptiles, amphibians, and fishes:Life with variable oxygen availability. Palo Alto, CA, ETATS-UNIS:Annual Reviews.26 p.
    3. Bouverot, P. (1985). Adaption to Altitude-hypoxia in Vertebrates. Berlin Heidelberg New York: Springer.
    4. Cadena V, Tattersall GJ (2009) Decreased precision contributes to the hypoxic thermoregulatory response in lizards. Journal of Experimental Biology 212:137-144.
    5. Wood S (1995) Interrelationships between hypoxia and thermoregulation in vertebrates. Mechanisms of Systemic Regulation:Acid—Base Regulation, Ion-Transfer and Metabolism:Springer. pp.209-231.
    6. Wood SC, Gonzales R (1996) Hypothermia in hypoxic animals:mechanisms, mediators, and functional significance. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology 113:37-43.
    7. Lemos-Espinal JA, Ballinger RE (1995) Comparative thermal ecology of the high-altitude lizard Sceloporus grammicus on the eastern slope of the Iztaccihuatl volcano, Puebla, Mexico. Canadian journal of zoology 73:2184-2191.
    8. Boutilier RG (2001) Mechanisms of cell survival in hypoxia and hypothermia. Journal of Experimental Biology 204:3171-3181.
    9.杨之,滕国奇,龙雯,陈惠新,寇星灿,et al.(1987)青海牦牛肺动脉压及相关参数的比较性研究.青海医药杂志1:000.
    10.陈秋红(2001)高原鼠兔肺动脉血管功能及形态变化.中国应用生理学杂志17:2.
    11.王晓君(2008)高原鼢鼠和高原鼠兔氧传输系统部分特征的比较:青海大学.
    12.俞红贤(1999)藏羊肺组织形态测量指标及其与高原低氧的关系.四川畜牧兽医:16-17.
    13. Hochachka P (1986) Defense strategies against hypoxia and hypothermia. Science (New York, NY) 231:234.
    14. Seibel BA, Childress JJ (2000) Metabolism of benthic octopods (Cephalopoda) as a function of habitat depth and oxygen concentration. Deep Sea Research Part Ⅰ:Oceanographic Research Papers 47:1247-1260.
    15. Schurmann H, Steffensen J (1997) Effects of temperature, hypoxia and activity on the metabolism of juvenile Atlantic cod. Journal of Fish Biology 50:1166-1180.
    16. Hou P-CL, Huang S-P (1999) Metabolic and ventilatory responses to hypoxia in two altitudinal populations of the toad, Bufo bankorensis. Comparative Biochemistry and Physiology-Part A:Molecular & Integrative Physiology 124:413-421.
    17. Hayes JP (1989) Field and maximal metabolic rates of deer mice (Peromyscus maniculatus) at low and high altitudes. Physiological Zoology:732-744.
    18.王祖望,曾缙祥,韩永才(1979)高原鼠兔和中华鼢鼠气体代谢的研究.动物学报25:75-85.
    19. Karas RH, Taylor CR, Jones JH, Linstedt SL, Reeves RB, et al. (1987) Adaptive variation in the mammalian respiratory system in relation to energetic demand:Ⅶ. Flow of oxygen across the pulmonary gas exchanger. Respiration Physiology 69:101-115.
    20. Barger JL, Brand MD, Barnes BM, Boyer BB (2003) Tissue-specific depression of mitochondrial proton leak and substrate oxidation in hibernating arctic ground squirrels. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 284: R1306-R1313.
    21. de Souza SCR, de Carvalho JE, Abe AS, Bicudo JEPW, Bianconcini MSC (2004) Seasonal metabolic depression, substrate utilisation and changes in scaling patterns during the first year cycle of tegu lizards (Tupinambis merianae). Journal of Experimental Biology 207: 307-318.
    22. Helen M. Muleme, Amy C. Walpole, James F. Staples (2006) Mitochondrial Metabolism in Hibernation:Metabolic Suppression, Temperature Effects, and Substrate Preferences. Physiological and Biochemical Zoology 79:474-483.
    23. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell metabolism 3:187-197.
    24. Shoag J, Arany Z (2010) Regulation of Hypoxia-Inducible Genes by PGC-1α. Arteriosclerosis, Thrombosis, and Vascular Biology 30:662-666.
    25. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, et al. (2007) Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry and Cell Biology 39:44-84.
    26. Liu Y, Fiskum G, Schubert D (2002) Generation of reactive oxygen species by the mitochondrial electron transport chain. Journal of neurochemistry 80:780-787.
    27. St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. Journal of Biological Chemistry 277:44784-44790.
    28.何茹(2009)解偶联蛋白家族成员UCP2.北京教育学院学报:自然科学版4:19-22.
    29. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nature Reviews Cancer 3:721-732.
    30. Kaluz S, Kaluzova M, Stanbridge EJ (2008) Rational design of minimal hypoxia-inducible enhancers. Biochemical and Biophysical Research Communications 370:613-618.
    31. Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Molecular and cellular biology 12:5447-5454.
    32. Semenza GL (2012) Hypoxia-Inducible Factors in Physiology and Medicine. Cell 148: 399-408.
    33. Rankin EB, Rha J, Selak MA, Unger TL, Keith B, et al. (2009) Hypoxia-inducible factor 2 regulates hepatic lipid metabolism. Molecular and cellular biology 29:4527-4538.
    34. Solaini G, Baracca A, Lenaz G, Sgarbi G (2010) Hypoxia and mitochondrial oxidative metabolism. Biochimica et Biophysica Acta(BBA)-Bioenergetics 1797:1171-1177.
    35. Hu C-J, Wang L-Y, Chodosh LA, Keith B, Simon MC (2003) Differential roles of hypoxia-inducible factor la (HIF-la) and HIF-2a in hypoxic gene regulation. Molecular and cellular biology 23:9361-9374.
    36. Gordan JD, Thompson CB, Simon MC (2007) HIF and c-Myc:sibling rivals for control of cancer cell metabolism and proliferation. Cancer cell 12:108-113.
    37. Bouverot P (1985) The Respiratory Gas Exchange System and Energy Metabolism Under Altitude Hypoxia. Adaptation to Altitude-Hypoxia in Vertebrates:Springer, pp.19-34.
    38. Frisancho AR (1990) Functional adaptation to high altitude hypoxia. Para conocer al hombre: Homenaje a Santiago Genoves a 33 arios como investigador en la UNAM:481.
    39. Beall CM (2001) Adaptations to altitude:A current assessment. Annual review of anthropology:423-456.
    40. Hertz PE, Huey RB (1981) Compensation for altitudinal changes in the thermal environment by some Anolis lizards on Hispaniola. Ecology:515-521.
    41. Navas CA (1997) Thermal extremes at high elevations in the Andes:Physiological ecology of frogs. Journal of Thermal Biology 22:467-477.
    42. Cadena V, Tattersall GJ (2009) Decreased precision contributes to the hypoxic thermoregulatory response in lizards. Journal of Experimental Biology 212:137.
    43. Pearson OP, Bradford DF (1976) Thermoregulation of Lizards and Toads at High Altitudes in Peru. Copeia 1976:155-170.
    44. Hutchison VH, Haines HB, Engbretson G (1976) Aquatic life at high altitude:Respiratory adaptations in the lake titicaca frog, Telmatobius culeus. Respiration Physiology 27: 115-129.
    45. Ruiz G, Rosenmann M, Veloso A (1989) Altitudinal distribution and blood values in the toad, Bufo spinulosus Wiegmann. Comparative Biochemistry and Physiology Part A: Physiology 94:643-646.
    46. Snyder GK, Weathers WW (1977) Activity and oxygen consumption during hypoxic exposure in high altitude and lowland sceloporine lizards. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 117:291-301.
    47. Lindgren B, Laurila A (2009) Physiological variation along a geographical gradient:is growth rate correlated with routine metabolic rate in Rana temporaria tadpoles? Biological Journal of the Linnean Society 98:217-224.
    48. Chippari-Gomes A, Gomes L, Lopes N, Val A, Almeida-Val V (2005) Metabolic adjustments in two Amazonian cichlids exposed to hypoxia and anoxia. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology 141:347-355.
    49. Coulson RA, Hernandez T (1980) Oxygen debt in reptiles:relationship between the time required for repayment and metabolic rate. Comparative Biochemistry and Physiology Part A:Physiology 65:453-457.
    50. Damme RV, Bauwens D, Verheyen RF (1990) Evolutionary Rigidity of Thermal Physiology: The Case of the Cool Temperate Lizard Lacerta vivipara. Oikos 57:61-67.
    51. Glanville E, Seebacher F (2006) Compensation for environmental change by complementary shifts of thermal sensitivity and thermoregulatory behaviour in an ectotherm. The Journal of experimental biology 209:4869.
    52. Bennett A (1976) Metabolism. In'Biology of the Reptilia. Vol.5'.(Eds C. Gans and WR Dawson.) pp.127-223. Academic Press. London.
    53. Rome L, Stevens ED, John-Alder H (1992) The influence of temperature and thermal acclimation on physiological function. Environmental physiology of the amphibians: 183-205.
    54. Jackson DC (1973) Ventilatory response to hypoxia in turtles at various temperatures. Respiration Physiology 18:178-187.
    55. White CR, Phillips NF, Seymour RS (2006) The scaling and temperature dependence of vertebrate metabolism. Biology Letters 2:125-127.
    56. Bennett AF, Licht P (1972) Anaerobic metabolism during activity in lizards. Journal of Comparative Physiology A:Neuroethology, Sensory, Neural, and Behavioral Physiology 81:277-288.
    57. Tsuji JS (1988) Thermal Acclimation of Metabolism in Sceloporus Lizards from Different Latitudes. Physiological Zoology 61:241-253.
    58. Guderley H, Seebacher F (2010) Thermal acclimation, mitochondrial capacities and organ metabolic profiles in a reptile (Alligator mississippiensis). Journal of Comparative Physiology B:Biochemical, Systemic, and Environmental Physiology:1-12.
    59.谭小玲,柳君泽,曹利飞,邓忠才,李英和(2002)长时间缺氧对大鼠脑皮质线粒体细胞色素氧化酶活性及亚基Ⅰ,Ⅳ蛋白表达的影响.中华航空航天医学杂志13:239-242.
    60. Chavez JC, Pichiule P, Boero J, Arregui A (1995) Reduced mitochondrial respiration in mouse cerebral cortex during chronic hypoxia. Neuroscience letters 193:169-172.
    61. Caceda R, Gamboa JL, Boero JA, Monge-C C, Arregui A (2001) Energetic metabolism in mouse cerebral cortex during chronic hypoxia. Neuroscience letters 301:171-174.
    62.高文祥,黄缄,高钰琪,谭小玲,刘福玉,et a1.(2008)低氧调节大鼠骨骼肌线粒体呼吸链复合体非协同性表达.第三军医大学学报30:223-225.
    63. Gnaiger E, Mendez G, Hand SC (2000) High phosphorylation efficiency and depression of uncoupled respiration in mitochondria under hypoxia. Proceedings of the National Academy of Sciences 97:11080-11085.
    64. Sugden MC, Holness MJ (2003) Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. American Journal of Physiology-Endocrinology And Metabolism 284:E855-E862.
    65. Wiesener MS, Jurgensen JS, Rosenberger C, SCHOLZE CK, Horstrup JH, et al. (2003) Widespread hypoxia-inducible expression of HIF-2α in distinct cell populations of different organs. The FASEB Journal 17:271-273.
    66. Berner NJ (1999) Oxygen consumption by mitochondria from an endotherm and an ectotherm. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology 124:25-31.
    67. He, J., M. Xiu, et al. (2013). Thermoregulatory and metabolic responses to hypoxia in the oviparous lizard, Phrynocephalus przewalskii. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology 165(2):207-213.
    68. Bakonyi T, Radak Z (2004) High altitude and free radicals. Journal of Sports Science and Medicine 3:64-69.
    69. Dosek A, Ohno H, Acs Z, Taylor AW, Radak Z (2007) High altitude and oxidative stress. Respiratory Physiology& Neurobiology 158:128-131.
    70. Sinha S, Ray US, Tomar OS, Singh SN (2009) Different adaptation patterns of antioxidant system in natives and sojourners at high altitude. Respiratory Physiology & Neurobiology 167:255-260.
    71. Ricquier D, Bouillaud F (2000) Mitochondrial uncoupling proteins:from mitochondria to the regulation of energy balance. The Journal of Physiology 529:3-10.
    72. Rey B, Sibille B, Romestaing C, Belouze M, Letexier D, et al. (2008) Reptilian uncoupling protein:functionality and expression in sub-zero temperatures. Journal of Experimental Biology 211:1456-1462.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700