黄瓜单性结实性生理和遗传分析及分子标记研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜(Cucumis sativus L.)是我国重要的蔬菜作物,单性结实性是黄瓜与产量有关的重要经济性状,也是保护地专用黄瓜品种选育主要的育种目标之一。正确评价黄瓜种质资源单性结实性、深入理解其生理机制与遗传规律、筛选与单性结实性紧密连锁的分子标记,是黄瓜遗传改良的基础。本文在对75份黄瓜种质资源单性结实性系统评价的基础上,基于单性结实性稳定的欧洲温室型雌性系‘6401’和雌雄同株自交系‘6457’与非单性结实自交系‘6429’和‘6426’,采用植物数量性状主基因+多基因混合遗传分析方法,对黄瓜单性结实性进行了多世代联合分析;并对‘6457’中自然发生的超级子房的生长发育规律和内源激素进行了研究;采用BSA法筛选了与黄瓜单性结实性相关的分子标记,以期为黄瓜单性结实性遗传改良提供依据。取得了以下主要结果:
     1黄瓜种质资源单性结实性评价
     河北昌黎春季日光温室条件下,75份黄瓜种质资源单性结实性评价结果表明,单性结实率在0~100%呈连续分布,不同黄瓜种质资源单性结实性间存在极显著差异。75份种质资源中,强单性结实材料40份,占53.3%,中等单性结实材料24份,占32%,弱单性结实材料11份,占14.7%。其中的24份品种资源中,强单性结实品种20份,占83.3%,其余为中等单性结实。黄瓜单性结实性强弱表现为座果率的差异,一般随着节位的升高而增强,其评价工作可侧重于20节内的低节位。
     南京春季塑料大棚条件下,55份黄瓜种质资源单性结实性评价结果表明,单性结实座果率≥70%的种质资源4份,40%~70%的种质资源28份,低于40%的种质资源23份。获得了单性结实性相对稳定种质4份,为黄瓜单性结实性遗传与育种奠定了物质基础。
     2黄瓜超级子房生长发育规律及其内源激素的研究
     春季日光温室条件下,对‘6457’栽培群体中自然发生的超级子房生长发育规律及其内源激素研究结果表明,开花当天超级子房长度在9cm以上,平均长度为14.4cm,占74.6%,典型超级子房长度为13.0~17.0cm;开花当天正常子房长度在9cm以下,平均长度为5.8cm,占25.4%,典型正常子房长度为5.0~7.0cm。开花当天超级子房长度是正常子房长度的3倍左右,超级子房株率为64%。超级子房与正常子房(果实)发育速度和雌蕊发育进程基本一致,但比正常子房延迟开花4~5d。超级子房形成的生理机制可能与高水平的内源GA3含量以及较高的ZT/ABA和GA3/ABA有关。
     不同浓度的TDZ(10mg/L、5mg/L、2.5mg/L、1.25mg/L、0 mg/L)处理均能有效诱导黄瓜超级子房的发生。其中,2.5mg/L的TDZ处理效果最佳,使开花当天平均子房长度为11.2cm,比对照延迟开花4-5d,超级子房百分率达75%,且有效促进了果实的快速发育,处理后第11d果实长度为23.6cm,远大于对照(13.2cm)。
     3黄瓜单性结实性遗传分析
     对单性结实雌性系‘6401’与非单性结实自交系‘6429’、‘6426’杂交组合6世代群体的单性结实性遗传分析表明,在不同遗传背景下,全雌黄瓜单性结实性均表现为不完全隐性遗传,受2对加性-显性-上位性主基因+加性-显性多基因控制(E-1-1模型)。两组合第一主基因显性效应、主基因显性×显性互作效应以及多基因效应较大。B1、B2、F2主基因遗传率分别为0.6%~51.1%、59.6%~75.4%、41.3%~71.4%,相应的多基因遗传率分别为0.2%~19.9%、0.0%~12.7%、3.2%~35.5%。
     对雌雄同株黄瓜单性结实自交系‘6457’与非单性结实自交系‘6429’、‘6426’构建的6个世代遗传分析表明,不同遗传背景和季节下,雌雄同株黄瓜单性结实性均受2对主基因+多基因控制(E-1-0,E-1-2)。不同季节F1的遗传倾向不同,两对主基因的加性效应值均较大。B1、B2、F2主基因遗传率分别为72.2%~88.8%、52.5%~93.1%、88.6%~95.4%,相应的多基因遗传率分别为0.0%~11.2%、0.0%~43.1%、0.0%~1.5%。
     以单性结实自交系‘6401’、‘6457’与非单性结实自交系‘6429’杂交组合的4世代联合分析结果表明,同一遗传背景下,全雌黄瓜和雌雄同株黄瓜单性结实性均受2对不完全隐性主基因+多基因控制。全雌黄瓜单性结实性遗传受2对加性-显性-上位性主基因+加性-显性-上位性多基因控制(E-1-0模型),F2的主基因的遗传率为83.5%;雌雄同株黄瓜单性结实性遗传受2对加性-显性-上位性主基因+加性-显性多基因控制(E-1-1模型),F2的主基因的遗传率为42.1%。
     基于强单性结实黄瓜自交系‘6457’与非单性结实自交系‘6429’构建的4世代群体,对南京江宁和河北昌黎两地黄瓜单性结实性遗传进行了比较研究。结果表明,不同生态环境下,雌雄同株黄瓜单性结实性遗传均符合E-1-1模型,受2对加性-显性-上位性主基因+加性-显性多基因控制,存在基因型与环境互作效应。不同环境条件下F1的遗传倾向和遗传参数不同,F2的主基因遗传率为42.1%~97.5%。
     强单性结实性黄瓜品种选育以双亲均为强单性结实为宜,常规杂交育种早期世代选择有效。
     4黄瓜单性结实性相关的分子标记研究
     基于雌雄同株黄瓜单性结实自交系‘6457’和非单性结实自交系‘6429’为亲本构建的F2分离群体,采用BSA方法筛选与黄瓜单性结实性连锁的AFLP分子标记。结果表明,引物E41/M47在非单性结实池中扩增出一条分子量约为325bp的特异条带。经F2单株验证,该特异条带能在大多数非单性结实单株中稳定出现。用MapMaker3.0软件进行连锁分析表明,该特异条带与黄瓜非单性结实基因存在连锁关系,遗传距离为9.7cM,命名为AGG/CAA325。
     基于同一群体,获得了与雌雄同株黄瓜单性结实性连锁的ISSR分子标记,其遗传距离为27.5cM,命名为I75580;此外,还获得了与雌雄同株黄瓜单性结实性相关的SSR特异片段CSWTA06350。
     以黄瓜单性结实雌性系‘6401’和非单性结实自交系‘6429’为亲本构建的F2分离群体,用BSA方法获得了与全雌黄瓜单性结实性连锁的ISSR分子标记,遗传距离为22.5cM,命名为I61470。
Cucumber (Cucumis sativus L.) is an important vegetable in China, parthenocarpy is an important yield-related economic trait in cucumber, and it is one of the breeding objective traits of cucumber varieties special for protected cultivation. To evaluate correctly the parthenocarpy of germlasm, to realize the mechanism of physiology and inheritance of the parthenocarpy and to screen the molecular markers related to the parthenocarpy is the basis of genetic improvement in cucumber. In this disseration, based on the evaluation of parthenocarpy of 75 cucumber germplasm under different condition, using mixed major gene plus polygenes genetic models of quantitative traits, a joint analysis of multi-generations from crossing a highly parthenocarpic gynoecious line'6401'and a monoecious lines'6457'with two non-parthenocarpic inbred lines'6429'and'6426'was carried out to investigate the inheritance of the parthenocarpy in cucumber. The development and endogenous hormone of super ovaries and molecular markers of related to parthenocarpy were studied for genetic improvement to the parthenocarpy in cucumber. The main results are as following:
     1 Evaluation of parthenocarpy in cucumber germplasm
     Parthenocarpy of 75 cucumber germplasm and cultivars was evaluated under greenhouse condition in spring season. The results showed that the parthenocarpy percentage was continuously distributed from 0 to 100%, and there were significant differences on parthenocarpy among accessions. While 40 accessions were found strongly parthenocarpic (53.3%),24 were medium (32%) and 11 were weakly parthenocarpic (14.7%).20 out of the 24 cultivars were found as strong parthenocarpic (83.3%), and the rest was mid-parthenocarpic. The degree of parthenocarpy was expressed by the fruit set capability,. The cucumber plants get stronger parthenocarpic with the nodes increase and the best evaluation should be done under 20th nodes.
     Parthenocarpy of 55 germplasms was evaluated in spring under the plastic tunnel in Najing. There were 4 accessions which parthenocarpic fruit set were more than 70%, while 28 accessions with 40%-70%, and 23 accessions with less than 40%. The parthenocarpy of 4 accessions performed relatively unvariable, these germplasms are elite for the purpose of breeding and genetic analysis.
     2 Study on development and endogenous hormone of super ovaries in cucumber
     The development and endogenous hormone levels in the super ovaries of the strongly parthenocarpic inbred line'6457'under greenhouse in spring season were studied. The results showed that the length of the super ovaries at anthesis was much more than 9cm, accounted for 74.6%, the average length was 14.4cm, and concentrated at 13.0~17.0cm typically; While that of the normal ovaries is less than 9cm, accounted for 25.4%, the average length was 5.8cm, and concentrated at 5.0~7.0cm typically. The length of the super ovaries at anthesis was 3 times as that of the normal ovaries. The percentage of the plants with super ovary was 64%. The development of the pistil and fruit with super ovary present a good similarity with that of the normal, but the blooming time of the super ovary was four or five days later than that of the normal. The physiological mechanism of the super ovaries was concerned with the higher GA3 content as well as the ZT/ABA and GA3 /ABA.
     The super ovary could be induced by all kinds of concentrations of TDZ (10mg/L, 5mg/L,2.5mg/L,1.25mg/L, Omg/L). The best concentration for super ovary was 2.5mg/L. The blooming time of the treatment was four or five days later than that of the control. The average length of the ovary at anthesis was 11.2cm, and the super ovary percentage was 75%. While the treatment of 2.5mg/L TDZ could accelerate the fruit development rapidly. The average length of the fruit was 23.6cm at the 11 days after treatment, while that of the control was only 13.2cm.
     3 Inheritance of parthenocarpy in cucumber
     A joint analysis of six-generations from crossing a highly parthenocarpic gynoecious line'6401'with two non-parthenocarpic inbred lines'6429'and'6426'was carried out to investigate the inheritance of the parthenocarpy in cucumber. Results showed that the inheritance of gynoecious parthenocarpy was fitted the same genetic model in different genetic backgrounds. Parthenocarpy is incompletely recessive and controlled by two additive-dominant-epistatic major genes and additive-dominant polygenes (E-1-1 model) in the two crosses. Dominant effect of the first major gene and dominant×dominant interaction between the two major genes as well as polygene effects were higher. The major gene heritabilities of B1, B2, and F2 were 0.6%~51.1%,59.6%~75.4%, and 41.3%~71.4% respectively. While the corresponding polygene heritabilities were 0.2%~19.9%, 0.0%~12.7%, and 3.2%~35.5% respectively.
     A joint analysis of six-generations from crossing a highly parthenocarpic monoecious lines'6457'with two non-parthenocarpic inbred lines'6429'and'6426'was carried out to investigate the inheritance of the parthenocarpy in cucumber in different backgrounds and seasons. The results showed that inheritance of parthenocarpy was controlled by two major genes and polygenes. The additive effects of the two major genes were great. The major gene heritabilities of B1, B2, and F2 were 72.2%~88.8%,52.5%~93.1%, and 88.6%~95.4% respectively. While the corresponding polygene heritabilities were 0.0%~11.2%, 0.0%~43.1%, and 0.0%~1.5% respectively.
     A joint analysis of four-generations from crossing a highly parthenocarpic gynoecious line'6401'and monoecious line'6457'with a non-parthenocarpic inbred line'6429'was carried out. The results showed that under the same genetic backgroud, inheritance of parthenocarpy in monoecious and gynoecious cucumber was controlled by two major genes and polygenes. The inheritance of parthenocarpy in gynoecious cucumber was controlled by two additive-dominant-epistatic major genes and additive-dominant-epistatic polygenes (E-1-0 model), the major gene heritability of F2 was 83.5%. While the inheritance of parthenocarpy in monoecious cucumber was controlled by two additive-dominant-epistatic major genes and additive-dominant polygenes (E-1-1 model), the major gene heritability of F2 was 42.1%.
     A joint analysis of four-generations from crossing two monoecious inbred lines were carried out to study inheritance of parthenocarpy in cucumber at Jiangning (Nanjing) and Changli (Hebei). The results showed that the interaction between genotype and environment was detected, and the inheritance of parthenocarpy in monoecious cucumber was fitted E-1-1 model, and controlled by two additive-dominant-epistatic major genes and additive-dominant polygenes under different eco-environments. While the F1 tendency and genetic parameters of the parthenocarpy were different, and the major gene heritabilities of F2 were 42.1%~97.5%.
     Parents that both are highly parthenocarpic should be chosen in breeding programs for cucumber with highly parthenocarpy. Selection of parthenocarpy can be carried out in the earlier generations of conventional crossing breeding.
     4 Studies on the molecular markers linked to parthenocarpy in cucurmber
     Extreme parthenocarpy and extreme non-parthenocarpy DNA pools, which came from F2 population between a highly parthenocarpic monoecious line '6457' and non-parthenocarpic line '6429', were developed separately according to the bulked segregant analysis (BSA). AFLP technique was employed to sreen molecular markers linked to the parthenocarpy. In extreme non-parthenocarpy DNA pool, a 325bp specific fragment was amplified with the primer E41/M47. This marker was testified with individual DNA of the F2 population. Linkage analysis using the software of MapMaker 3.0 indicated its genetic distance to the non-parthenocarpy was 9.7 cM, and this AFLP marker was designed as AGG/CAA325.
     In extreme parthenocarpy DNA pools from the same population, a 580bp specific fragment was amplified with the ISSR primer I-75, its genetic distance to the parthenocarpy was 27.5 cM, and this ISSR marker was designed as I75580. In addition, an SSR specific fragment CSWTA06350 was related to parthenocarpy in monoecious cucumber.
     Extreme parthenocarpy and extreme non-parthenocarpy DNA pools, which came from F2 population between a highly parthenocarpic gynoecious line'6401'and non-parthenocarpic line'6429', were developed separately according to the bulked segregant analysis (BSA). In extreme parthenocarpy DNA pool, a 580bp specific fragment was amplified with the ISSR primerⅠ-61, its genetic distance to the parthenocarpy was 22.5 cM, and this ISSR marker was designed asI6147o.
引文
1. Acciarri N, Restaino F, Vitelli G, Perrone D, Zottini M, Pandolfini T, Spena A, Rotino G L. Genetically modified parthenocarpic eggplants:improved fruit productivity under both greenhouse and open field cultivation. BMC Biotechnology,2002,2:4~10
    2. Adana N M, William C K. Growth regulator activity and parthenocarpic fruit production in snake melon and cucumber grown at high temperature. J Amer Soc Hort Sci,1975,100(4):406~409
    3. Ban Y, Tanaka T, Yabe K. Availability of stigma excision on the selection of parthenocarpic eggplants. Research Bulletin of the Aichi Agriculture Research Center,2003,35:59~64
    4. Beyer E M Jr, Quebedeaux B. Parthenocarpy in cucumber:mechanism of action of auxin transport inhibitors. J Amer Soc Hort Sci,1974,99(5):385~390
    5. Brandeen J M, Staub J E, Wye C. Towards an expanded and integrated linkage map of cucumber (Cucumis sativus L.). Genome,2001,44:111~119
    6. Burge G K. Fruit set in the pepino. Sci Hort,1989,41,63~68
    7. Cantliffe D J. Alteration of growth and flowerling habit in cucumber by chlorflurenol. Can J PI Sci, 1974,54:771-776
    8. Cantliffe D J. The induction of fruit set in cucumber by chlorflurenol. Hortscience,1977,7: 474~476
    9. Chiwocha S, Abrams S R, Ambrose S J, Cutler A J, Loewen M, Ross S, Kermode A R. A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry:an analysis of hormone regulation of thermodor mancy of lettuce (Lactuca sativa L.) seeds. The Plant Journal,2003,35:405~417
    10. Cockerham C C. Analysis of quantitative gene action. Brookhaven Symp Biol,1956,9:53~58
    11. Collison C H, Martin E C. The effects of overhead irrigation on the pollination of pickling cucumber. Pickle Pak Sci,1973,3(1):1-3
    12. Collonnier C, Sihachakr D. Somatic hybridization for improvement of eggplant (S. melongena L.), Xth meeting on Genetics and Breeding of Capsium and Eggplant, Paris, France, September 7-11, 1998:195~199
    13. Comsock R C, Robinson H F. The component of quantitative variance in population. Biometrics, 1948,4:254~266
    14. Cuartero J. Problems of determining parthenocarpy in tomato plants. Sci Hort,1987,32:9~15
    15. Danin-Poleg Y, Reis N, Staub J E. Simple sequence repeats in cucumis mapping and map merging. Genome,2000,43:963-974
    16. Darvis A, Soller M. Selective DNA pooling for determination of linkage between a molecular marker and a quantitative trait locus. Genetics,1994,138:1365~1373
    17. De Ponti O M B, Garretsen F. Inheritance of parthenocarpy in pickling cucumbers(Cucumis sativus L.) and linkage with other characters. Euphytica,1976a,25(3):633-642
    18. De Ponti O M B. Breeding parthenocarpic pickling cucumber(Cucumis sativus L.):necessity, genetical possibilities, environmental influences and selection criteria. Euphytica,1976b,25(1): 29~40
    19. Denna D W. Effects of genetic parthenocarpy and gynoecious flowering habit on fruit production and growth of cucumber(Cucumis sativus L.) J Amer Soc Hort Sci,1973,98:602~604
    20. Dijkhuizen A. RFLP variation and genetic relationships in cultivated cucumber. Euphytica,1996, 90(1):97~87
    21. Donzella G, Spena A, Rotino G L. Transgenic parthenocarpic eggplants:superior germplasm for increased winter production. Molecular Breeding,2000,6:79~86
    22. El-Shawaf I I S, Baker L R. Inheritance of parthenocarpic yield in gynoecious pickling cucumber for once-over mechanical harvest by diallel analysis of six gynoecious lines. J Amer Soc Hort Sci, 1981a,106:359~364
    23. El-Shawaf I I S, Baker L R. Combining ability and genetic variances of G x H F1 hybrids for parthenocarpic yield in gynoecious pickling cucumber form once~over mechanical harvest. J Amer Soc Hort Sci,1981b,106:365~370
    24. Elasser G, Rudich J, Palevitch D, Kedar N. Induction of parthenocarpic fruit development in cucumber(Cucumis sativus L.) by growth regulators. HortScience,1974,9:238~239
    25. Fanourakis N E, Simon P W. Analysis of genetic linkage in the cucumber. The Journal of Heredity, 1987,78:238~242
    26. Fazio G, Chung S M, Staub J E. Comparative analysis of response to phenotypic and marker assisited selection for multiple lateral branching in cucumber(Cucumis sativus L.). Theor Appl genet,2003,107(5):875~883
    27. Fazio G, Staub J E, Chung S M. Development and characterization of PCR markers in cucumber. J Amer Soc Hort Sci,2002,127(4):545~557
    28. Ficcadenti N, Sestili S, Pandolfini T. Genetic engineering of parthenocarpic fruit development in tomato. Molecular Breeding,1999,5:463~470
    29. Fu F Q, Mao W H, Kai Shi K, Zhou Y H, Asami T,Yu J Q. A role of brassinosteroids in early fruit
    development in cucumber. Journal of Experimental Botany,2008,59(9):2299 2308
    30. Garcia-Martinez J L, Sponsel V M, Gaskin P. Gibberellins in developing fruits of Pisum sativum L cv. Alaska:Studies on their role in pod growth and seed development. Planta,1987,170:130~137
    31. Garcia-Martinez J L. Gibberellin metabolism and control of fruit growth. Acta Hort,1998,463:39
    32. George W L, Scott J M, Splittstoesser W E. Parthenocarpy in tomato. Hort Rev,1984,6:65~84
    33. Gorquet B, Van Heusden A W, Lindhout P. Parthenocarpic fruit development in tomato. Plant Biol, 2005,7:131~139
    34. Gustafson F G. Parthenocarpy:natural and artificial. Bot Rew,1942,8:598~654
    35. Gustafson F G. The cause of natural pathenocarpy. American Journal of Botany,1939,26:135~138.
    36. Hawthorn L R, Wellington R. Geneva, a greenhouse cucumber that develops fruit without pollination. NY (Geneva) Agr Exp Stat Bull,1930,580:1~11
    37. Homan D N. Auxin transport in the physiology of fruit development. Plant physiol,1964,39: 982~986
    38. Horejsi T, Staub J, Thomas C. Linkage of random amplified polymorphic DNA marker to downy mildew resistance in cucumber(Cucumis sativus L.). Euphytica,1999,115:105~113
    39. Jaime P, Jan J R, Fernando N. The inheritance of parthenocarpy and associated traits in pepino. J Amer Soc Hort Sci,1988,123(3):376-380
    40. Juan C S, Omar R R, Mariano F, Jose L G M. Auxin-induced fruit-set in tomato is mediated in part by gibberellins. The Plant Journal,2008,56:922~934
    41. Kataoka K, Uemachi A, Yazawa S. Fruit growth and pseudoembryo development affected by uniconazole, an inhibitor of gibberellin biosynthesis, in pat-2 and auxin-induced parthenocarpic tomato fruits. Sci Hort,2003,98:9~16
    42. Katzir N. Length Polymorphism and Homologies of Microsatelliter in several Cucurhitaceae Speicies. Theor Appl genet,1996,93(8):1282~1290
    43. Kean D, Baggett J R. The inheritance of parthenocarpy in the Oregon T5-4 tomato. J Amer Soc Hort Sci,1986,111(4):596~599
    44. Kempthorme O. An Introduction to Genetics Statistics. New York:John Wiley & sons,1957
    45. Kennard W C, Havey M J. Quantitative trait analysis of fruit quality in cucumber, QTL detection, confirmation, and comparison with mating-design variation. Theor Appl Genet,1995,91:53~61
    46. Kennard W C. Linkages among RFLP, RAPD isozyme disease resistance and morphological markers in narrow and wide crosses of cucumber. Theor Appl Genet,1994,89:42~48
    47. Kim I S, Okubo H, Fujieda K. Studies on parthenocarpy in Cucumis sativus L. Ⅲ. The influence of fruiting node and growth temperature on parthenocarpic fruit set in late parthenocarpiy type cucumber. J Korean Soc Hort Sci,1994a,35 (2):89~94
    48. Kim I S, Okubo H, Fujieda K. Studies on parthenocarpy in Cucumis sativus L. Ⅳ. Effects of exogenous growth regulators on induction of parthenocarpy and endogenous hormonal levels in cucumber ovaries. J Korean Soc Hort Sci,1994 b,35 (3):187~195
    49. Kim I S, Okubo H, Fujieda K. Endogenous levels of IAA in relation to parthenocarpy in cucumber (Cucumis sativus L.). Sci Hort,1992,52:1~8
    50. Kim J K, Kim J H, Kang K K, Kim H J, Nou I S. Breeding of parthenocarpic cherry tomato by iaaM gene transformation, and characterization of fruits in transgenic plants. Korean Journal of Horticultural Science and Technology,2003,21(4):279~285
    51. Knerr L B, Staub J E. Inheritance and linkage relationships of isozyme loci in cucumber(Cucumis sativus L). Theor Appl genet,1992,84:217~224
    52. Koshioka M, Nishijima T, Yamazaki H. Analysis of gibberellins growing fruits of Lycopersicon esculentum L. After pollination or treatment with 4-chlorophenoxyacetic acid. Hort Sci,1994,69(1): 171~179
    53. Kurtar E S. An investigation on parthenocarpy in some summer squash(Cucurbita pepo L.) cultivars. Pakistan Journal of Agronomy,2003,2(4):209~213
    54. Kvasnikov B V, Rogova N T, Tarakonova S I, Ignatova I. Methods of breeding vegetable crops under the covered ground. Trudy-po-Prikladnoi-Botanike-Genetiki-I-Selektsii,1970.42:45~57
    55. Lee T H, Kato T, Kanayama Y, Ohno H, Takeno K, Yamaki S. The role of indole-3-acetic and acid invertase in the development of melo(Cucumis melo L. cv. Prince) fruit. J Jap Soc Hort Sci,1977, 65:723~729
    56. Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassicea. Theor Appl Cenet,2001,103:455~461
    57. Mapelli S, Frova C, Torti G, Soressi G P. Relationship between set, development and activities of growth regulators in tomato fruits. Plant Cell Physiol,1978,19:1281~1288
    58. Marino F, Fernado N, Jose L G M. The gene pat-2, which induces natural parthenocarpy, alters the gibberellin content in unpollinated tomato ovaries. Plant Physiol,2000,122:471~479
    59. Mather, K. Biometrical Genetics:The study of continuous variation. Methuen, London.1949.
    60. Matsuura S, Petrino M G, Kakunaga T. An approach for rapid checking of seed purity by RFLP analysis of nuclear DNA in F1 hybrid of cucumber. J Jap Soc Hort Sci,1994,63(2):379~383
    61. Mazzucato A, Testa G, Biancari T, Soressi G P. Effect of gibberellic acid treatments, environmental conditions, and genetic background on the expression of the parthenocarpic fruit mutation in
    tomato. Protoplasma,1999,208:18~25
    62. Meglic V, Staub J E. Inheritance and linkage relationships of allozyme and morphological loci in cucumber (Cucumis sativus L). Theor Appl genet,1996,92:865~872
    63. Meshcherov E T, Juldasheva L W. Parthenocarpy in cucumber. Trudy-po-Prikladnoi-Botanike-Genetiki-I-Selektsii,1974,51:204~213
    64. Mezzetti B, Costantini E, Chionchetti F. Genetic transformation in strawberry and raspberry for improving plant productivity and fruit quality. Acta Hort,2004b,649:107~110
    65. Mezzetti B, Landi L, Pandolfini T, Spena A. The DefH9-iaaM auxin-synthesizing gene increases plant fecundity and fruit production in strawberry and raspberry. BMC Biotechnology,2004a,4: 4~13
    66. Mezzetti B, Landi L, Scortichini L. Genetic engineering of parthenocarpic fruit development in strawberry. Acta Hort,2002,567 (1):101~104
    67. Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease genes by bulked segregant analysis:a rapid method to detect markers in specific resistance genomic regions using segregating populations. Proc Natl Acad Sci USA,1991,88:9829~9832
    68. Muehlbauer G J, Specht J E, T'homas-Compton M A, Staswick P E, Bernard R L. Near-isogenic lines a potential resource in the integration of conventional and molecular marker linkage maps Crop-Sci. Madison, Wis. Crop Science Society of America,1988,28 (5):729~735
    69. Murray H G, Thompson W F. Rapid isolation of higher weight DNA. Nucl Acids Res,1980,8:4321
    70. Ngo P, Ozga J A, Reinecke D M. Specificity of auxin regulation of gibberellin 20-oxidase gene expression in pea pericarp. Plant Mol Biol,2002,49:439~446
    71. Nijs A P M den, Balder J. Growth of parthenocarpic and seed-bearing fruits of zucchini squash. Cucurbit Genetics Cooperative,1983, (6):84~85
    72. Nir C,Yehiam S,Beata D. Induction of parthenocarpy in tomato via specific expression of the rolB gene in the ovary. Planta,2003,217:726~735
    73. Nitsch J P. Physiology of flower and fruit development. Plant physiol,1965,15:1537~1647
    74. Nitsch, J P. Plant hormones in the development of fruits. Quart Rev Biol,1952,27:33~57
    75. O'Neill D P, Ross J J. Auxin regulation of the gibberellin pathway in pea. Plant Physiol,2002,130: 1974~1982
    76. Olimpieri I, Siligato F, Caccia R, Mariotti L, Ceccarelli N, SoressiG P, Mazzucato A. Tomato fruit set driven by pollination or by the parthenocarpic fruit allele is mediated by transcriptionally regulated gibberellin biosynthesis. Planta,2007,226:877~888
    77. Ozga J A, Yu J, Reinecke D M. Pollination, development and auxin-specific regulation of
    gibberellin 3β-hydroxylase gene expression in pea fruit and seeds. Plant Physiol,2003,131: 1137~1146
    78. Pandolfini T, Rotino G L, Camerini S. Optimisation of transgene action at the post-transcriptional level:high quality parthenocarpic fruits in industrial tomatoes. BMC Biotechnology,2002,2:1~11
    79. Park Y H, Sensoy S, Wye C. A genetic map of cucumber composed of RAPDs, RFLPs, AFLPs, and loci conditioning resistance to papaya ringspot and zucchini yellow mosaic viruses. Genome,2000, 43 (6):1003~1010
    80. Pierce L K, Wehner T C. Review of genes and linkage groups in cucumber. HortScience,1990, 25(6):605~615
    81. Pereto J G, Beltran J P, Garcia-Martinez J L. The source of gibberellins in the parthenocarpic development of ovaries on topped pea plants. Planta,1988,175:493~499
    82. Pike L M, Peterson C E. Inheritance of parthenocarpy in the cucumber (Cucumis sativus L.). Euphytica,1969,18:101~105
    83. Potts W C, Reid J B, Murfet I C. Internode length in Pisum. Gibberellins and the slender phenotype. Plant Physiol,1985,63:357~364
    84. Quebedeaux B, Beyer E M Jr. Chemically induced parthenocarpy in cucumber by a new inhibitor of auxin transport. HortScience,1972,7:474~476
    85. Quebedeaux B, Beyer E M Jr. Induction of parthenocarpy by N-1-naphthylphthalamic acid in cucumbers. HortScience,1974,9:396~397
    86. Regulation of gibberellin biosynthesis genes during flower and early fruit development of tomato. Plant J,1999,17:241~250
    87. Restaino F, Perrone D, Correale A. New parthenocarpic genotypes of eggplant suitable for greenhouse cultivation. In:A Palloix and MC Daunay Xth Meeting on Genetics and Breeding of Capsicum and Eggplant. Paris:INRA Paris,1998,273
    88. Restaino F, Onofaro Sanaja V, Mennella G. Facultative parthenocarpic genotypes of eggplant obtained through induced mutations. Ⅷth Eucarpia Congress, Angers, France,1992,297~298
    89. Restaino F, Perrone D, Correale A. New parthenocarpic genotypes of eggplant suitable for greenhouse cultivation//Palloix A, Daunay M C. Xth meeting on genetics and breeding of capsicum and eggplant Paris:NRA Paris,1998,273
    90. Reynolds A G, Wardle D A, Zurowski C. Phenylureas CPPU and TDZ affect yield components, fruit composition, and storage potential of four seedless grape selections. J Amer Soc Hort Sci, 1992,117:85~89
    91. Robinson R W, Cantliffe D J, Shannon S. Morphactin-induced parthenocapy in the cucumber.
    Science,1971,171:1251~1252
    92. Robinson R W, Reiners S. Parthenocarpy in summer squash. HortScience,1999,34 (3):715~717
    93. Robinson R W. Genetic Parthenocarpy in Cucurbita. Report Cucurbit Genetics Coperative,1993, 16:55~57
    94. Rotino G L, Acciarri N, Sabatini E. Open field trial of genetically modified parthenocarpic tomato: seedlessness and fruit quality. BMC Biotechnology,2005,5:32~39
    95. Rotino G L, Perri E, Zottini M. Genetic engineering of parhenocarpic plants. Nature Biotechnology, 1997,15:1398~1401
    96. Rudich J, Halevy A H, Kedar N. The level of photoperiod and ethephon. Plant physiol,1972,50: 585-590
    97. Rudich, J. Parthenocarpy in cucumber(Cucumis sativus L) as affected by genetic parthenocarpy, thermo-photoperiod, and femaleness. J Amer Soc Hort Sci,1977,102(2):225~228
    98. Rylski I. Effects of seasons on parthenocarpic and fertilized summer squash (Cucumis pepo L.). Expl Agric,1974,10:39~44
    99. Sakata Y, Kubo N, Morishita M. QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L.). Theor Appl Genet,2005,112:243~250
    100. Santes C M, Garcia-Martinez J L. Effect of the growth retardant 3,5-dioxo-4-butyryl-cyclohexane carboxylic acid ethylester, an acylcyclohexanedione compound, on fruit growth and gibberellin content of pollinated and unpollinated ovaries in pea. Plant Physiol,1995,108:517~523
    101. Serquen F C, Bacher J, Staub J E. Mapping and QTL analysis of horticultural traits in a narraw cross in cucumber(Cucumis sativus L.) using random amplified polymorphic DNA markers. Molecular Breeding,1997,3(4):257~268
    102. Serrani J C, Fos M, Atare's A, Garcia-Martinez J L. Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv. Micro-Tom of tomato. J Plant Growth Regul,2007a, 26:211~221
    103. Serrani J C, Sanjuan R, Ruiz-Rivero O, Fos M, Garcia-Martinez J L. Gibberellin regulation of fruit-set and growth in tomato. Plant Physiol,2007b,145:246~257
    104. Shishido Y, Hori Y, Shikano S. Effects of benzyladenine on translocation and distribution of photoassimilates during fruit setting and development in cucumber plant. J Jap Soc Hort Sci,1990, 59:129~135
    105. Sjut V, Bangerth F. Effect of pollination or treatment with growth regulators on levels of extractable hormones in tomato ovaries and young fruits. Plant Physiol,1981,53:76-78
    106. Sjut V, Bangerth F. Induced parthenocarpy-a way of changing the levels of endogenous hormones in tomato fruits (Lycopersicon esculentum Mill.).1. Extractable hormones. Plant Growth Regul, 1982,1983,1:243~251
    107. Srivastava A, Handa A K. Hormonal regulation of tomato fruit development:a molecular perspective. J Plant Growth Regul,2005,24:67~82
    108. Staub J E, Serquen F C. Towards an integrated linkage map of cucumber (Cucumis sativus L.):map merging experiments, Acta Hort,2000,510:357~366
    109. Staub J E, Meglic V. Molecular genetic markers and their legal relevance for cultivars discrimination. A case study in cucumber. Hort Technollogy,1993,3:291~300
    110. Staub J E. Comparation of isozyme amd random amplified polymorphic DNA data for determining intraspecific variation in cucumis. Genetic Kesources and Crop Enalrtion,1997,44 (3):257~269
    111. Stebe I, Walter F S, George W. Factors controlling the expression of parthenocarpy in'Sererianin' tomato. Sci Hort,1983,19:45~53
    112. Strong, W J. Greenhouse cucumber breeding. Proc Am Soc Hort Sci,1921,18:271~273
    113. Strong, W J. Parthenocarpy in cucumber. Scient Agric,1932,12:665~669
    114. Sturtevant, E I. Seedless fruits. Mem Torrey bot Club,1890,1:141~185
    115. Sugure S, Mary M P, Randolph G G. Altered flower retention and development patterns in nine tomato cultivars under elevated temperature. Sci Hort,2004,101:95~101
    116. Sun Z Y, Lower R L, Staub J E. Analysis of generation means and components of variance for parthenocarpy in cucumber (Cucumis sativus L.). Plant Breeding,2006a,125:277~280
    117. Sun Z Y, Lower R L, Staub J E. Variance component analysis of parthenocarpy in elite U. S. processing type cucumber (Cucumis sativus L.) lines. Euphytica,2006b,148:331~339
    118. Sun, Z Y, Lower, R L, Staub, J E. Identification and comparative analysis of quantitative trait loci (QTL) associated with parthenocarpy in processing cucumber (Cucumis sativus L.). Plant Breeding, 2006c,125:281~287
    119. Takeno K, Ise H, Minowa H, Kounowan T. Fruit growth induced by benzyladenine in Cucumis sativus L. Influence of benzyladenine on cell division, cell enlagment and indole-3-acetic acid content. J Jap Soc Hort Sci,1992,60:915~920
    120. Tiedjens, A. A. Sex ratios in cucumber flowers as affected by different conditions of soil and light. J Agr Res,1928,36:720~746
    121. Tolon M, Zacarias L, Primo-Millo E. Gibberellins and parthenocarpic ability in developing ovaries of seedless mandarins. Plant Physiol,1992,99:1575~1581
    122. Uzcategui N A, Baker L R. Effects on multiple pistillate flowering on yields of gynoecious pickle cucumbers. J Amer Soc Hort Sci,1979.104:148~151
    123. Vos P, Hogers R, Bleeker M. AFLP:a new technique for DNA fingerprinting. Nucl Acids Res,1995, 23:4407~4414
    124. Vakalounakis D J. Heartleaf, a recessive leaf shape marker in cucumber:linkage with disease resistance and other traits. The Journal of Heredity,1992,83:217~221
    125. Varga A, Bruinsma J. Dependence of ovary growth on ovule development in Cucumis sativus L. Plant Physiol,1990,80:43~50
    126. Walkins J T, Cantliffe D J. Regulation of fruit set in Cucumis sativus L. By auxin and an auxin transport inhibitor. J Amer Soc Hort Sci,1980,105:603~607
    127. Walter S A, Shetty N V, Wehner T C. Segregation and linkage of several genes in cucumber. J Am Soc Hort Sci,2001,126(4):22~450
    128. Wang G, Pan J S, Li X Z, Pan J S, Li X Z, He H L, Wu A Z, Cai R. Construction of a cucumber genetic linkage map with SRAP markers and location of the genes for lateral branch traits, Science in China Ser C (Life Science),2005,43 (3):213~220
    129. Wiebosch W A, Berghoef J A. Parthenocarpic fruiting in pickling cucumber induced by chlorflurenol. Meded Fak Landb Gent,1974,39:625~635
    130. Williams J G K, Kubelik A R, Livak K J. DNA Polymorphism amplified by arbimary primers are useful as genetic markers. Nucleic Acids Res,1990, (18):6531~6534
    131. Yin Z M, Malinowski R, Ziolkowska A, Sommer H, Plader W, Malepszy S. The DefH9-iaaM-containing construct efficiently induces parthenocarpy in cucumber. Cell Mol Biol,2006,11(2): 279~290
    132. Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics,1994,20:176~183
    133.艾希珍,马兴庄,于立明,邢禹贤.弱光下长期亚适温和短期低温对黄瓜生长及光合作用的影响.应用生态学报,2004,15(11):2091~2094
    134.白吉刚,王秀娟,尹谦逊,田明.生长素结合蛋白基因转化黄瓜的研究.中国农业科学,2004,37(2):263~267
    135.曹碚生,陈学好,徐强,顾春山.黄瓜单性结实性世代遗传效应的初步研究.园艺学报,1997,24(1):53~56
    136.曹碚生,缪旻珉,陈学好,徐强.黄瓜单性结果形态及生理机制的研究.江苏农学院学报,1998a,19(1):77~82
    137.曹碚生,缪旻珉,陈学好,徐强.黄瓜子房(幼果)中内源激素含量和过氧化物酶活性变化及其与单性结果的关系.植物生理学通讯,1998b,34(5):347~349
    138.陈飞雪,张桂华,钱文成,韩毅科,陈德富,杜胜利,陈喜文.与黄瓜耐高温QTL连锁的分 子标记分析.南开大学学报(自然科学版),2008,41(4):49~54
    139.陈劲枫,娄群峰,余记柱.黄瓜性别基因连锁的分子标记筛选.上海农业科学,2003,19(4):11~14
    140.陈劲枫,庄飞云,逯明辉.采用SSR和RAPD标记研究黄瓜属(葫芦科)的系统发育关系.植物分类学报,200341(5):427~435
    141.陈学好,曹碚生.黄瓜单性结实研究概况.中国蔬菜,1994,(3):56~59
    142.陈学好,曹碚生,徐强.黄瓜单性结实产量组成的遗传相关与通径分析.江苏农业学报,1995,11(3):32~35
    143.陈学好,陈志明,曹碚生,高红胜,徐强,缪旻珉,孙玉,张德顺.黄瓜单性结实果实发育与碳氮变化的关系.中国蔬菜,2000,(3):11~13
    144.陈学好,陶俊,曹碚生.园艺作物单性结实的类型.生物学通报,2001,35(9):6~7
    145.陈学好,王佳,徐强,嵇怡,梁国华.一个与黄瓜单性结实基因连锁的ISSR标记.分子遗传育种,2008,6(1):85~88
    146.陈学好,于杰,徐强,郭绍贵.Spd和MGBG对黄瓜子房内源多胺和蛋白质组成的影响及与单性结实的关系.园艺学报,2005,32(4):632~637
    147.陈学军,陈劲枫,方荣,程志芳,王述彬.辣椒始花节位遗传研究.园艺学报,2006a,33(1):152~154
    148.陈学军,陈劲枫.辣椒株高遗传分析.西北植物学报,2006b,26(7):1342~1345
    149.陈学军,程志芳,陈劲枫,娄群峰,耿红.辣椒种质遗传多样性的RAPD和ISSR及其表型数据分析.西北植物学报,2007,27(4):0662-0670
    150.成玉富,薛萍,张金凤.茄子单性结实习性的研究.中国蔬菜,2008,(增刊):29~31
    151.池秀蓉,顾兴芳,张圣平,王晓武,王烨.黄瓜无苦味基因的分子标记研究.园艺学报,2007,34(5):1177~1182
    152.戴惠学.番茄单性结果与内源激素的关系.长江蔬菜,1988,(7):23~25
    153.邓思立,潘俊松,何欢乐,吴爱忠,蔡润.黄瓜M基因连锁的SRAP分子标记.上海交通大学学报,2006,24(3):240~244
    154.邓义才,王得元,李乃坚,蒲汉丽.利用RAPD技术鉴定早青3号.广州农业科学,1999,3:17~18
    155.丁国华,秦智伟,周秀艳,范金霞.黄瓜霜霉病抗病基因的RAPD及SCAR标记.西北植物学报,2007,27(9):1747~1751
    156.杜胜利,张桂华,李淑菊,王鸣.黄瓜抗白粉病基因AFLP标记的SCAR转化.园艺学报2005,32(6):1095~1097
    157.范金霞,秦智伟.DNA分子标记在瓜类育种中的应用.东北农业大学学报,2006,37(2):
    249~253
    158.房经贵,章镇,蔡斌华.葡萄物和遗传机理研究进展及育种技术.中国农业科学,1999,15(3):34~36
    159.冯辉,王五宏,徐娜,鲁博,张婷,陈红波.串番茄主要株型性状的遗传研究.中国农业科学,2008,41(12):4134-4139
    160.盖钧镒,章元明,王建康.QTL混合遗传模型扩展到2对主基因+多基因时的多世代联合分析.作物学报,2000,26(4):385~391
    161.盖钧镒,章元明,王建康.植物数量性状遗传体系.北京:科技出版社,2003
    162.盖钧镒.试验统计方法.北京:中国农业出版社,2000
    163.盖钧镒.植物数量性状遗传体系的分离分析方法研究.遗传,2005,27(1):130~136
    164.高山,许端祥,林碧英,钟开勤.38份瓠瓜种质资源遗传多样性的ISSR分析.植物遗传资源学报,2007,8(4):396~400
    165.耿红,娄群峰,余纪柱,陈劲枫.黄瓜育成品种‘春玉’RADP指纹图谱分析.西北植物学报,2005,25(5):876~880
    166.顾兴芳,张素勤,张圣平.黄瓜果实苦味Bt基因的AFLP分子标记.园艺学报,2006,33(1):140~142
    167.顾兴芳,张圣平,王烨.我国黄瓜育种研究进展.中国蔬菜,2005,(12):1~7
    168.郭得平.蔬菜植物果实发育的激素调控.植物生理学通讯,2001,37(2):178~184
    169.侯锋.黄瓜.天津:天津科学技术出版社,1999
    170.韩建明,侯喜林,史公军,陈沁滨.不结球白菜株高性状主基因+多基因遗传分析.南京农业大学学报,2008,31(1):23~26
    171.嵇怡,徐强,缪旻珉,梁国华,陈学好.与黄瓜矮生基因连锁的I SSR标记及其SCAR转换.园艺学报,2008,35(11):1627~1634
    172.李伟,眭晓蕾,张振贤.温度对黄瓜幼苗光合生理弱光耐受性的影响.应用生态学报,2008,19(12):2643~2650
    173.李冰,潘秀清,武彦荣,高秀瑞.温度和果实发育与茄子单性结实的关系研究.华北农学报,2008,23(6):153~155
    174.李丙智,郭立,王林忠,栾东珍,上官周平.TDZ对苹果叶片光合功能、开花座果及果实发育的影响.北京农学院学报,1999,14(3):11~14
    175.李纪锁,沈火林,石正强.鲜食番茄果实中番茄红素含量的主基因-多基因混合遗传分析.遗传,2006,28(4):458~462
    176.李淑菊,王惠哲,霍振荣,管炜.黄瓜抗炭疽病相关基因AFLP标记的SCAR转化.园艺学报2008,35(1):123~126
    177.李锡香,朱德蔚,杜永臣.黄瓜种质资源遗传多样性的RAPD鉴定与分类研究.植物遗传资源学报,2004,5(2):309~314
    178.李锡香,朱德蔚,杜永臣.黄瓜种质资源遗传多样性及其亲缘关系的AFLP分析.园艺学报,2004,31(3):309~314
    179.李锡香,朱德蔚.黄瓜种质资源描述规范和数据标准.北京:中国农业出版社,2005
    180.李效尊,潘俊松,王刚,田丽波,司龙亭,吴爱忠,蔡润.黄瓜侧枝基因(lb)和全雌基因(f)的定位及RAPD遗传图谱的构建.自然科学进展,2004,11:18~24
    181.李英,喻景权,朱祝军,陈暄,胡文海.CPPU对瓠瓜单性结实的诱导作用及对细胞分裂和内源激素水平的影响.植物生理学报,2001,27(2):167~172
    182.刘榜,张庆德,李奎,彭中镇,喻传洲.微卫星作为遗传标记的优点及前景.湖北农业科学,1997,(2):49~51
    183.刘冲,葛才林,任云英,陈锦秀,杨晓锋,薄天岳.SRAP、ISSR技术的优化及在甘蓝类植物种子鉴别中的应用.生物工程学报,2006,22(4):657~661
    184.刘富中,连勇,陈钰辉,宋燕.温度和蕾期去雄及去柱头处理对茄子单性结实的影响.园艺学报,2005,32(6):1021~1025
    185.刘富中,万翔,陈钰辉,连勇,宋明.茄子单性结实基因的遗传分析及AFLP分子标记.园艺学报,2008,35(9):1305~1309
    186.刘万勃,宋明,刘富中,王怀松.RAPD和ISSR标记对甜瓜种质遗传多样性的研究.农业生物技术学报,2002,(3):231~236
    187.刘晓东.应用生长调节剂对锦橙留树保鲜的影响.浙江农业大学学报,1991,17(1):65~69
    188.刘宏宇,秦智伟,周秀艳.园艺作物单性结实研究进展.北方园艺,2004,(5):4-5
    189.娄群峰,陈劲枫,Molly Jahn,陈龙正,耿红,罗向东.黄瓜全雌性基因的AFLP和SCAR分子标记.园艺学报,2005,32(2):256~261
    190.吕忠恕,王保民,张承烈.柿树开花期子房中生长抑制物质的鉴定及其与子房发育的关系.植物生理学报,1982,8(4):329~334
    191.吕忠恕,王保民,张承烈等.开花前后子房生长调节物质的变化及其与结果及单性结果的关系.植物生理学报,1979,5(3):253~259
    192.罗建华,张海英,毛爱军,张峰,王永健,浦铜良.黄瓜ZYMV-CH抗性遗传与连锁分子标记研究.园艺学报,2006,33(5):1001~1006
    193.罗晓梅,司龙亭,尹维娜.黄瓜黄色线与瓜长比的主基因+多基因的遗传分析.华北农学报.2008,23(2):288~291
    194.马育华.植物育种的数量遗传学基础.南京:江苏科学技术出版社,1982
    195.毛自朝,于秋菊,甄伟,郭俊毅,胡营雷,高音,林中平.果实专一性启动子驱动ipt基因在
    番茄中的表达及其对番茄果实发育的影响.科学通报,2002,47(6):444~448
    196.冒维维,高红胜,薄天岳,马金骏,徐东进,陈学好,贾志明,王永莉.菜薹雄性不育相关基因的ISSR分子标记筛选.分子植物育种,2009,7(1):40~44
    197.孟焕文,程智慧,杨玉梅,张忠新,程小金,黄华宁,刘涛.套袋及遮光对黄瓜果实发育及品质的影响.西北农林科技大学学报(自然科学版),2004,32(12):43~47
    198.潘俊松,王刚,李效尊,何欢乐,吴爱忠,蔡润.黄瓜SRAP遗传图谱的构建及始花节位的基因定位.自然科学进展,2005,15(2):167~172
    199.潘秀清,武彦荣,高秀瑞.茄子单性结实材料D~11的发现.华北农学报,2005,20(6):39
    200.钱忠英,蔡润,何欢乐,潘俊松.全雌性单性结实黄瓜主要农艺性状的遗传相关与通径分析.上海交通大学学报(农业科学版),2002a,20(2):133~135
    201.钱忠英,蔡润,何欢乐,潘俊松.全雌性单性结实黄瓜主要性状配合力分析.上海交通大学学报(农业科学版),2002b,31(3):61~65
    202.邱燕萍,向旭,王碧青,张展薇,袁沛元.荔枝三种结实类型内源激素的平衡与座果机理.果树科学,1998,15(1):39~43
    203.苏绍坤,刘宏宇,秦智伟.农杆菌介导iaaM基因黄瓜遗传转化体系的建立.东北农业大学学报,2006,37(3):289~293
    204.孙春明.黄瓜单性结实研究概述.上海农业科技,2004,(3):69~70
    205.孙敏,乔爱民,王和勇,吴春莲,王颖,汪洪.黄瓜杂交种子纯度的RAPD鉴定.西南农业大学学报(自然科学版),2003,28(1):103~107
    206.孙小镭,王永强,王冰,顾三军,王志峰,曹齐卫.黄瓜嫩果果皮叶绿素含量的遗传.园艺学报,2004,31(3):327~331
    207.田时炳,刘君绍,皮伟,赵晓凤,杨治元.低温下茄子单性结实观察试验初报.中国蔬菜,1999,(5): 28
    208.田时炳,刘富中,王永清,罗章勇,陈义庚,刘君绍,连勇,皮伟,洪云菊.茄子单性结实性的遗传分析,园艺学报,2003,30(4):413-416
    209.王桂玲,秦智伟,周秀艳,赵咫云.黄瓜果瘤的遗传及SSR标记.植物学通报,2007,24(2):168~172
    210.王惠哲,李淑菊,刘秀峰,李平,霍振东,管炜.与黄瓜抗炭疽病相关基因连锁的AFLP标记的筛选.园艺学报,2007,34(1):213~216
    211.王佳,徐强,缪旻珉,梁国华,张明志,陈学好.黄瓜种质资源遗传多样性的ISSR.分析分子植物育种,2007,5(5):677~682
    212.王莉莉,司龙亭,邹芳斌.黄瓜单性结实的遗传分析.湖北农业科学,2008,47(4):437~439
    213.王利英,石瑶,刘文明,于海龙.番茄单性结实遗传效应分析和新材料的选育.天津农业科学, 2008,14(2):38~40
    214.王孝萱,杜永臣,李树德,戴善书,高振华.番茄中的单性结实.中国蔬菜,1999,(5):44~48
    215.王跃进,江淑平,刘小宁,张剑侠.假单性结实无核葡萄胚败育机理研究.西北植物学报,2007,27(10):1987~1993
    216.王志峰,孙日飞,孙小镭.山东省黄瓜地方品种资源亲缘关系的AFLP分析.园艺学报,2004,31(1):103~105
    217.王志峰,孙小镭,孙日飞.山东密刺类黄瓜亲缘关系研究.中国蔬菜,2005,(2):6-8
    218.魏惠军,杜胜利,马德华.分子标记在黄瓜遗传育种研究中的应用.生物技术通报,1999,2:28~30
    219.肖家欣,彭抒昂.柑橘开花前后子房(幼果)钙、硼营养与IAA、GA1/3动态研究.果树科学,2004,21(2):132~135
    220.肖蕴华,吴绍岩.茄子单性结实材料9101的发现.中国蔬菜,1998,(1):9
    221.辛明,秦智伟,周秀艳.黄瓜植株高度遗传分析及其分子标记.东北农业大学学报,2008,39(5):34~38
    222.徐杰.利用ISSR技术检验辣椒品种纯度实验初探.襄樊学院学报,2008,29(5):30~34
    223.徐晓峰,黄学林.TDZ:一种有效的植物生长调节剂.植物学通报,2003,20(2):227~237
    224.薛林宝,赵有为.逆温下番茄单性结实种质材料的特性及其利用.中国蔬菜,1994,(5):58
    225.严慧玲,方智远,刘玉梅,王永健,杨丽梅,庄木,张扬勇,孙培田.甘蓝显性雄性不育材料DGMS79-399-3不育性的遗传效应分析.园艺学报,2007,34(1):93~98
    226.杨若林,孔俊,吴鑫,邓志瑞,陈沁,刘文轩.ISSR标记在辣椒资源遗传多态性分析中的初步应用.上海大学学报(自然科学版),2005,11(4):423~426
    227.叶自新,郭得平,孙耘子.几种生长调节剂防止黄瓜与瓠瓜化瓜及其增产效应.浙江农业大学学报,1996,22:191~195
    228.尹明安,郭立,崔鸿文.TDZ处理对黄瓜果实发育的影响.绵阳经济技术高等专科学校学报,1998,15(2):12~14
    229.余文贵,徐鹤林,杨荣昌,陆春贵.影响番茄单性结实及果实发育的因素.园艺学报,1993,20(4):369~373
    230.张桂华,杜胜利,王鸣,马德华.与黄瓜抗白粉病相关基因连锁的标记的获得.园艺学报,2004,31(2):189~192
    231.张桂华,韩毅科,孙小红.与黄瓜抗黑性病基因连锁的分子标记研究.中国农业科学,2006,39(11):2250~2254
    232.张海英,陈青君,王永健,许勇,张峰.黄瓜耐弱光性的QTL定位.分子植物育种,2004,2(6):795~799
    233.张海英,葛风伟,王永健,许勇,陈青君.黄瓜分子遗传图谱的构建.园艺学报,2004,31(5):617~622
    234.张海英,王永建,许勇.黄瓜育种中“血缘”遗传关系分析研究.华北农学报,2001,16(2):20~26
    235.张海英,王永健,许勇.黄瓜种质资源遗传亲缘关系的RAPD分析.园艺学报,1998,25(4):345~349
    236.张海英,王振国,毛爱军,张峰,王永健,许勇.与黄瓜白粉病抗病基因紧密连锁的SSR标记.华北农学报,2008,23(6):77~80
    237.张海英,张海霞,张峰,王爱军,许勇,王永健,于广建.黄瓜枯萎病抗性基因的连锁分子标记.生物技术通报,2006增刊:122~124
    238.张海英,张洁,毛爱军,张峰,王永健,陈学好,许勇.黄瓜中与西瓜花叶病毒抗性基因连锁的分子标记.中国遗传学会植物遗传和基因组学专业委员会2007年学术研讨会论文摘要集
    239.张海霞,张海英,于广建,张峰,毛爱军,王永健,许勇.与黄瓜抗枯萎病基因连锁的RAPD标记.华北农学报,2006,21(2):121~123
    240.张上隆,陈昆松,叶庆富,陈大明,刘春荣.柑桔授粉处理和单性结实子房(幼果)内源IAA、IBA和ZT含量的变化.园艺学报,1994,21(2):117~123
    241.张素勤,顾兴芳,张圣平,邹志荣.黄瓜白粉病抗性遗传机制的研究.园艺学报,2005,32(5):899~901
    242.张祥胜,冷鹏,王汝平,陈乃存,刘吉学.西葫芦单性结实品种的性状研究.安徽农业科学,2002,30(6):947~949
    243.张映,刘富中,陈钰辉,连勇.低温下茄子单性结实特性的研究.中国蔬菜,2009,(2):16~20
    244.张映,刘富中,陈钰辉,周亚君,连勇.茄子单性结实花粉活力的研究.中国蔬菜,2008(增刊):16~19
    245.张增翠,侯喜林,曹寿椿.不结球白菜维生素C和可溶性糖含量的遗传分析.园艺学报,1999,26(3):170~174
    246.张展薇,邱燕萍,向旭.荔枝单性结实研究初报.果树科学,1990,(4):234~235
    247.章元明,盖钧镒,戚存扣.数量性状分离分析的精确度及其改善途径.作物学报,2001,27(6):787~793
    248.章元明,盖钧镒,王建康.利用回交B1和B2及F2群体鉴定数量性状两对主基因+多基因混合遗传模型.生物数学学报,2000a,15(3):358~366
    249.章元明,盖钧镒.数量性状分离分析中分布参数估计的IECM算法.作物学报,2000b,26(6):699~706
    250.赵咫云,秦智伟,王桂玲.黄瓜果柄性状的SSR标记.东北农业大学学报,2007,38(3):330~340
    251.周晓艳,曲志才,王转斌.黄瓜全雌性状相关的RAPD分子标记筛选.曲阜师范人学学报,2007,33(3):105~108
    252.庄飞云,陈劲枫,Joe Wolucau,娄群峰,钱春桃,罗向东.甜瓜属人工异源四倍体与栽培黄瓜渐渗杂交及其后代遗传变异研究.园艺学报,2006,33(2):14~18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700