黄瓜属种间杂种(Cucumis hytivus Chen and Kirkbride)的细胞分子遗传及其系统亲缘关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全文以黄瓜属双二倍体Cucumis hytivus Chen and Kirkbride(2n=38)及其回交后代为主要研究材料,从细胞分子遗传学角度初步探讨了双二倍体染色体组间的交换重组,及渐渗杂交对黄瓜遗传基础的影响,对种间正反杂交后代的形态及育性差异进行了深入研究。采用RAPD和SSR两种分子标记对黄瓜属系统亲缘关系进行再评价。
     1 双二倍体C.hytivus及其回交后代的细胞分子遗传研究
     通过对双二倍体C.hytivus花粉母细胞(PMCs)的减数分裂终变期和中期Ⅰ的染色体行为进行了观察,46.3%的细胞出现单价体或多价体,其染色体构型为0.56Ⅰ+17.36Ⅱ+0.35Ⅲ+0.26Ⅳ+0.046Ⅴ+0.056Ⅵ。在其与栽培黄瓜回交获得的三倍体(2n=26)PMCs中,发现同型二价染色体(野生种C.hystrix染色体内部配对)和异型三价体(野生种C.hystrix单条染色体和栽培黄瓜二价染色体联会配对),但频率较低,细胞染色体构型平均为11.53Ⅰ+7.16Ⅱ+0.05Ⅲ。
     对双二倍体C.hytivus进行DNA指纹图谱分析,共获得6个特征性RAPD条带和4个SSR位点,分别是A-15/2000bp,480bp,G-02/1750bp,AP-03/700bp,AP-07/640bp,AP-20/700bp,CMCT160a+b/380bp,CSCTTT15a/280bp,CMCCA145/190bp,CMGA165/190bp。将其中3个特征性RAPD标记转化成SCAR标记,深入研究其特异性和准确性。SAP-03/700标记表现出特异性,而且在栽培黄瓜及野生黄瓜C.sativus var.hardwickii中分别扩增出一条不同带。SAP-07/640标记表现为非特异性标记,在野生种C.hystrix和双二倍体C.hytivus中扩增出同样的目的片段。SAP-20/700标记表现为假阳性标记。通过对SAP-03/700标记在双二倍体、栽培黄瓜及野生黄瓜中扩增出的3条不同带的序列深入研究,结果表明3条带的两端分别有200bp左右序列一致,中间部分不同。通过对SAP-03/700标记同源序列的查询,发现与黄瓜线粒体基因组有200 bp左右的同源序列,但序列方向相反。
     将双二倍体、回交三倍体与不同生态型栽培黄瓜进行杂交,结果表明杂交的座果率很高,为83-100%。以双二倍体与栽培黄瓜杂交获得含有胚的果实比率较高(60-67%),平均每个果实中含有10-20个,胚胎拯救成活率接近100%,染色体数统计为26条。以栽培黄瓜与双二倍体杂交,仅获得1个含有大约180个胚的果实,胚胎拯救成活率接近80%,染色体数26条,另有2个果实分别产生60粒(HH1群体)和15粒(HH2群体),染色体数为14条。回交三倍体与栽培黄瓜间杂交产生的胚或种子的果实极少,只有6个果实,其中1个果实中含有23粒饱满种子(HH3群体),另5个果实共产生5粒饱满种子,染色体数均为14条。回交三倍体的自交座果率比杂交座果率低,为48-75%,果实中没有任何成熟胚或饱满种子。
     HH1群体形态呈现较大变异,4株表现原始亲本野生种的多分枝习性,6株的果刺
    
    摘要
    颜色表现野生种黑色性状,其果皮成熟颜色均为桔黄色,不同于两原始亲本,但两性状
    表现出紧密连锁关系.采用SSR和RAPD两种标记对HHI群体的遗传变异进行深入研
    究,19个SSR标记共产生63个等位基因,其中24个表现出遗传变异,占到38.1%,
    稍高于n种不同生态型栽培黄瓜的遗传多样性37.7%.其中有8个等位基因可能来自
    于野生种。在400条随机引物中,24条产生位点变异,在统计的186个位点中,共有
    31.7%的位点出现遗传分离,稍低于不同栽培黄瓜的遗传多样性33.0%.但两者的结果
    都显著高于由不同生态型栽培黄瓜产生的H圣121群体的遗传变异,SSR标记27.1%和
    RApD标记23.9%,这表明通过远缘杂交及渐渗杂交过程扩大黄瓜遗传基础是具有潜力
    的。
    2黄瓜属双二倍体C hytivus及其后代耐低温及光合性能的研究
     对双二倍体C hytivus及其后代幼苗对低温逆境的适应能力进行了研究.结果表明:
    在低温条件下,可能由于亲本染色体组间的功能不协调,双二倍体幼苗出现代谢异常,
    丙二醛(MDA)、肺氨酸含量变化大,冷害指数达到3.5,表现为对低温的适应性相对
    较弱.但双二倍体与黄瓜的回交自交后代却表现出较强的抗性,超出了参试黄瓜品种.
    经4d变温处理后,其冷害指数仅为 1.。,MDA含量为9.2拼mol.岁,在所有供试材料中
    为最低。这表明通过回交和自交,杂种代谢系统已基本恢复正常,具有进一步研究和应
    用的价值.
     通过对双二倍体C妙tiv。、原始亲本、回交三倍体、单体异附加系517及其它黄瓜
    栽培品种的光合能力测定.结果表明双二倍体和亲本北京截头对光照强弱变化应急能力
    最强.采用二项式曲线对测定的数据进行模拟,求得各试材在30℃下的补偿点.双二倍
    体为22.0林mol·m一2·s一’,低于其两原始亲本野生种(27.1林mol·m一s一’)和北京截头(26.0
    林mol.m一2了,),表现出较强的耐弱光能力.但回交三倍体和单体异附加系517的光补偿
    点较高,分别是犯.3 omol·m‘,45”和41.7、mol·m一,·s一,.
    3黄瓜属植物种间正反杂交的差异研究
     对栽培黄瓜与野生种c娜trix杂交而成的二倍体(2n=19)、双二倍体(2n==38)
    及其正反交植株的形态和育性差异进行了比较研究.结果表明:正反交二倍体植株的主
    蔓直径,叶柄长,第一朵雄花尊筒和花冠长度,叶形状和大小较相似
1 Studies of cytological and molecular genetics on the amphidiploid species C. hytivus and its progenies
    The behavior of chromosome at diakinesis and Metaphase I in meiosis was observed in C. hytivus. About 46.3% of pollen mother cells (PMCs) had the univalent or multivalent and the average chromosome configuration was 0.56I + 17.36II + 0.35III + 0.26IV + 0.046V + 0.056VI. In PMCs of the progeny of the allotriploid backcrossed C. hytivus with cucumber, heterobivalent formed within the C. hystrix chromosomes and trivalent formed with two cucumber chromosomes and one C. hystrix chromosome, but the frequency was low. The average chromosome configuration of C. hystrix was 11.53I + 7.16II + 0.05III at meiotic.
    RAPD and SSR markers were used to investigate the DNA fingerprints of C. hytivus. Six specific RAPD bands (A-15/2000bp, 480bp, G-02/1750bp, AP-03/700bp, AP-07/640bp, and AP-07/700bp) and four specific SSR sites (CMCT160a+b/380bp, CSCTTT15a/280bp, CMCC- A145/190bp, and CMGA165/190bp) were found. The specificity of 3 SCAR markers converted from the specific RAPD markers of C. hytivus were analyzed. SAP-03/700 primer pair was specific to C. hytivus, while it produced one different band in cucumber cultigens and C. sativus var. hardwickii, respecitively. SAP-07/640 primer pairs yielded the same band in C. hystrix and C. hytivus and it was not specific. SAP-20/700 was false positive marker and yielded no band in the 16 accessions. Compared with the sequence of 3 different bands yielded by SAP-03/700 primer pair in C. hytivus, C. sativus var. sativus and C. sativus var. hardwickii, ~ 200 bp sequence at the ends of the bands were similar while the middle parts were different. In addition, about 200 bp of SAP-03/700
     was homologous with cucumber mitochrodial genome, but the directions were contrary.
    The fruit set percentage and number of seeds produced in the crosses between amphidiploid C. hytivus, allotriploid, and different ecotype cucumber cultigens were high (83-100%). The ratio of fruit with embryo was 60-67% in the cross between amphidiploid C. hytivus and cucumber cultigens. Each fruit had about 10-20 embryos, all of which could survive and develop into whole plants through embryo rescue. The chromosome number of these plantlets was 26. When cucumber cultigens crossed with amphidiploid C. hytivus, only one fruit with about 180 embryos was obtained and 80% of the embryos could survive through embryo rescue, and the chromosome number of them was 26. The other two fruits produced 60 seeds (as HH1 population) and 15 (as HH2 population) with 14 chromosomes, respectively. Few fruits with embryos or seeds were obtained in reciprocal crosses between allotriploid and cucumber cultigens. One fruit had 23 seeds (as HH3 population) and the
    
    
    other five had one seed each. All of them had 14 chromosomes. The fruit set percentage of allotriploid selfed was lower (48-75%) and all fruit had no embryo and seed which could develop into plantlets. In HH1 population, some plants showed the origional parent C. hystrix traits such as black spines on fruit, multiple branching habits, while some had unique morphological characteristics such as orange skin of fruit. The black spines trait was tightly linkage with the orange skin trait. Nineteen SSR primer pairs produced 63 alleles in HH1 and 24 alleles (38.1%) were segregated, which was similar to the genetic diversity (37.7%) about 11 different ecotype cucumber cultgens. Eight of them might come from C. hystrix. Twenty-four arbitrary primers produced varied primed sites and among the 186 primed sites generated 31.7% were segregated. This was similar to the genetic diversity (33.0%) of the different ecotype cucumber cultgens. Both of them were significantly higher than the genetic variation (SSR: 27.1%, RAPD:
     23.9%) of HHzl population produced from cross between Chinese cucumber CC3 and American pickling cucumber "A309". The results suggested that the genetic base of cucumber could be improved through interspecific hybridization and introgression.
    2 Studies on the response
引文
蔡得田,袁隆平,卢兴桂.二十一世纪水稻新战略Ⅱ.利用远缘杂交和多倍体双重优势进行超级稻育种.作物育种,2001,27:110-116.
    蔡旭.植物遗传育种学.北京:科学出版社,1988.427-458.
    陈凡国,陈秀玲,夏光敏.小麦与玉米杂交产生小麦单倍体的研究进展.生物学通报,1999,34:15-16.
    陈劲枫,林茂松,钱春桃等.甜瓜属野生种及其与黄瓜中间杂交后代抗根结线虫初步研究.南京农业大学学报,2001,24:21-24.
    陈佩度,王兆悌,王苏玲等.将大赖草种质转移给普通小麦的研究Ⅲ.抗赤霉病异附加系的选育.遗传学报,1995,22:206-210.
    陈青君,张福墁,王永健等.黄瓜对低温弱光反应的生理特征研究.中国农业科学,2003,36:77-81.
    程俊源,孙国庆,刘录祥等.K型小麦雄性不育的研究.见:黄铁城,张爱民主编.杂种小麦研究进展,1993,80-82.
    董玉琛,郑殿升.中国小麦遗传资源.北京:中国农业出版社,1998,58-69.
    樊路.小麦远缘杂交的现实意义.北京农业科学,1998,16:4-6.
    冯东昕,李宝栋.主要瓜类作物抗霜霉病育种研究进展.中国蔬菜,1997,(2):45-48.
    伏军.水稻育种中的稻属种间远缘杂交.作物研究,1999(2):1-3.
    高丽红,陈青君,张福墁.不同类型黄瓜品种设施栽培的适应性研究.中国蔬菜,2002,(3):20-23.
    高庆荣,孙兰珍.K,V型小麦雄性不育系育性恢复性能的初步研究.见:黄铁城,张爱民主编.杂种小麦研究进展,1993,92~92.
    顾兴芳,封林林,张春震等.黄瓜低温发芽能力遗传分析.中国蔬菜,2002,(3):5-7.
    郭奕明,杨映根,郭仲琛.玉米花药培养和单倍体育种的研究新进展.植物学通报,2001,18:23-30.
    韩毅科,杜胜利,王鸣等.黄瓜染色体加倍研究.天津农业科学,2002,8:1-4.
    侯锋,李淑菊.我国黄瓜育种研究进展与展望.中国农业科学,2000,33:100-102.
    侯兴亮,李景富,许向阳.番茄耐弱光性的研究进展.中国蔬菜,1999,(4):48-51.
    何忠华,杨宝.蔬菜优良新品种手册.北京:中国农业出版社,1998.
    胡道芬.植物花培育种进展.北京:中国农业出版社,1996.
    华北农业大学,中国科学院遗传研究所,广东农林学院等编.植物遗传育种学.北京:科学出版社,1976,279-301.
    贾士荣,傅幼英,林云.黄瓜子叶原生质体培养中的体细胞胚胎发生和植株再生.生物工程学报,1985,1:54-58.
    贾士荣,罗美云,林云.黄瓜胚性细胞悬浮培养及其原生质体植株再生.植物学报,1988,3:463-467.
    康国斌,许勇,雍伟东等.低温诱导的黄瓜ccr18基因的cDNA克隆及其表达特性分析.植物学报,2001,43:955-959.
    李加旺,张文珠,忠魁.黄瓜资源筛选与育种研究及其发展趋势.天津农业科学,1999,5:36-38.
    李树德.中国主要蔬菜抗病育种进展.北京:科学出版社,1995,375-490.
    李再云,M Ceccarelli,S Minelli等.高频率产生芸薹属非整倍体和纯合植株及结合原位杂交分析.中国科学(C辑),2002,32:218-225.
    梁明山,陈斌,吴书惠.油菜叶绿体DNA的提取和纯化.中国油料,1995,17:57-59.
    梁正兰.棉花远缘杂交的遗传与育种.北京:科学出版社,1999.1-17.
    
    
    刘大均.向小麦转移外源抗病性的回顾和展望.南京农业大学学报,1994,17:1-7.
    刘大均.细胞遗传学.北京:中国农业出版社,1999.
    刘少林,靖深蓉,郭立平等.用改进的高盐低pH法分离和纯化棉花叶绿体及叶绿体DNA.棉花学报,1997,9:239-241.
    刘守斌,唐朝晖,尤明山等.簇毛麦基因组特异性RAPD标记的筛选、定位及应用.遗传学报,2002,29:453-457.
    刘树兵,王洪刚.抗白粉病小麦—中间偃麦草(Thinopyrum intermedium,2n=42)异附加系的选育及分子细胞遗传鉴定.科学通报,2002,47:1500-1504.
    陆瑞菊,陈佩度,刘大均.将大赖草稗质转移给普通小麦的研究Ⅳ.通过花药培养选育双重二体异附加系和代换一附加系.南京农业大学,1995,18:1-6.
    吕德扬,Cocking EC.黄瓜子叶原生质体苗的再生.科学通报,29:434-436.
    吕淑珍,侯锋.对黄瓜杂种一代几个遗传性状的初步研究.中国农业科学,1981,14:33-37.
    吕芝香,乙引.NaCl对小麦叶片脯氨酸氧化酶火星和游离脯氨酸积累的影响.植物生理学报,1992,18:376-382.
    马德华,庞金安,霍振荣.黄瓜耐低温研究进展.天津农业科学,1997,3:1-8.
    马德华,庞金安,霍振荣等.黄瓜对不同温度逆境的抗性研究.中国农业科学,1999,32:28-35.
    马育华主编.田间试验和统计方法.北京:中国农业出版社.
    木原均.核质杂种与核质杂种优势.国外农学.麦类作物,1982,4:4-10.
    庞金安,马德华,李淑菊.黄瓜光合作用的研究.天津农业科学,1997,3:8-15.
    钱春桃.甜瓜属种间杂交新种Cucumis hytivus Chen & Kirkbride的细胞遗传学研究.南京农业大学[硕士论文],2002.
    钱春桃,陈劲枫,庄飞云等.弱光条件下甜瓜属种间杂交新种的某些光合特性.植物生理学通讯,2002,38:336-338.
    孙文献,陈佩度,刘大钧.将大赖草种质转移给普通小麦的研究Ⅵ.端体异附加系的选育与鉴定.遗传学报,1998,25:259-264.
    孙勇如.植物体细胞杂交的进展.生物工程学报,1989,5:191-194.
    汪军妹,沈秋泉,杨建明,杨文新.大麦加倍单倍体(DH群体)的建立及其在遗传育种中的应用.大麦科学,4:10-13.
    汪小全,邹喻苹,张大明等.RAPD应用于遗传多样性和系统学研究中的问题.植物学报,1996,38:954-962.
    王永健,张海英,张峰等.低温弱光对不同黄瓜品种幼苗光合作用的影响.园艺学报,2001,28:230-234.
    武东亮,辛志勇,陈孝等.抗黄矮病普通小麦.偃麦草异附加系、异代换系的选育和鉴定.中国科学(C辑),1999,29:62-67.
    杨宝军,窦全文,刘文轩等.普通小麦-大赖草易位系NAU601和NAU618的选育及双端二体测交分析.遗传学报,2002,29:350-354.
    杨玲.不同低温处理对黄瓜子叶极性脂组成的影响.园艺学报,2001,28:36-40.
    余诞年,吴定华,陈竹均.番茄遗传学.长沙:湖南科学技术出版社,1999,200-226.
    袁力行,傅骏骅,Warburton M等.利用RFLP、SSR、AFLP和RAPD标记分析玉米自交系遗传多样性的比较研究.遗传学报,2000,27:725-733.
    张成合,张书玲,申书兴等.‘青露’菜薹三倍体的获得及其胚胎学观察.园艺学报,2001,28:
    
    317-322.
    张海英,王永健,许勇等.黄瓜种质资源遗传亲缘关系的RAPD分析.园艺学报,1998,25:345-349.
    张宏,罗恒,吉万全等.一个小麦一中间偃麦草异代换系抗条锈病的遗传研究.麦类作物学报,2003,23:31-33.
    张鲁刚,王呜,陈杭等.中国白菜RAPD分子遗传图谱的构建.植物学报,2000,42:485-489.
    张兴国,陈劲枫,刘佩瑛.黄瓜原生质体培养与融合研究.园艺学进展(Ⅱ),1998:434-438.
    张兴国,刘佩瑛 a.黄瓜原生质体培养再生胚状体和植株研究.西南农业大学学报,20:288-292.
    张兴国,刘佩瑛 b.黄瓜和南瓜原生质体融合研究.西南农业大学学报,20:293-297.
    张学勇,董玉深,李培.E和St基因组特异RAPD片段在部分小麦族植物中的分布.遗传学报,1998,25:131-141.
    中国科学院上海植物生理研究所,上海市植物生理学会编.现代植物生理学实验指南.科学出版社,1999,305,303.
    中国农业科学院蔬菜花卉所主编.中国蔬菜品种资源目录(第一册).北京:万国学术出版社,1998,238-291.
    中国农业科学院蔬菜花卉所主编.中国蔬菜品种资源目录(第二册).北京:气象出版社,1998,146-162.
    周长久.现代蔬菜育种学.北京:科学技术文献出版社,1996,147-150.
    庄飞云,陈劲枫,钱春桃等.甜瓜属种间杂交及其后代对低温的适应性反应.南京农业大学学报,2002,25:27-30.
    周伟军,唐桂香,张国庆,Harberg P.甘蓝型油菜小孢子秋水仙碱处理提高双单倍体频率研究.中国农业科学,2002,35:410-414.
    Akashi Y, Fukuda N, Wako T, Masuda M, and Kato K.Genetic variation and phylogenetic relationships in east and south Asian melons, Cucumis melo L., based on the analysis of five isozymes.Euphytica, 2002, 125: 385-396.
    Alan Walters S, and Wehner TC. Incompatibility in diploid and tetraploid crosses of Cucumis sativus and Cucumis metuliferus. Euphytica, 2002, 128: 371-374.
    Bannerot, H, Boulidard L, Cauderon Y, and Tempe J. Cytoplasmic male sterility transfer from Raphanus to Brassica. Cruciferae, European Association for Research in Plant Breeding, Vegetable Crops Section. Papers presented at Eucarpia Meeting, Dundee, Scotland. 1974, 25.52-54.
    Barone A, Li J, Sebastiano A, Cardi T Frusciante L. Evidence for tetrasomic inheritance in a tetraploid Solanum commersonii (+) S. tuberosum somatic hybrid through the use of molecular markers. Theor. Appl. Genet., 2002, 104: 539-546.
    Barone A, Sebastiano A, Carputo D, della Rocca F, Frusciante L. Molecular marker-assisted introgression of the wild Solanum commersonii genome into the cultivated S. tuberosumgene pool. Theor. Appl. Genet., 2001, 102: 900-907.
    Ben Chaim A, Grube RC, Lapidot M et al. Identification of quantitative trait loci associated with resistance to cucumber mosaic virus in Capsicum annuum. Theor. Appl. Genet., 2001, 102:1213-1220.
    Bennetzen JL. The contributions of retroelements to plant genome organization, function and evolution. Trends Microbiol., 1996, 4:347-353.
    Boynton JJ, Harris EH, Burkhart BD, Lamerson PM, and Gillham NW. Transmission of mitochondrial and chloroplast genomes of Chlamydomonas. Proc. Natl. Acad. Sci. USA, 1987, 84: 2391-2395.
    
    
    Bradeen JM, Staub JE, Wye C et al. Towards an expanded and integrated linkage map of cucumber (Cucumis sativus L.). Genome, 2001, 44: 111-119.
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the priciple of protein dye binding. Anal. Biochem., 1976, 72: 248-254.
    Burstin J, Deniot G, Potier J, Weinachter C, Aubert G, and Baranger A. Microsatellite polymorphism in Pisum sativum. PI. Breed., 2001, 120: 311-317.
    Burza W, Malepszy S. Direct plant regeneration from leaf explants in cucumber (Cucumis sativus L.) is free of stable genetic variation. Plant Breeding, 1995, 114:341-345.
    Bwauchamp CH, Fridovich I. Superoxide dismutase: Improved assays and an assay application to acrylamide gels. Anal. Biochem., 1972,44:276-287.
    Cade RM, Wehner TC, Blazich FA. Somatic embryos derived from cotyledons of cucumber. J. Am. Soc. Horti. Sci., 1990, 115: 691-696.
    Caglar G, Abak K. In vitro colchicine application of haploid cucumber plants. Report Cucurbit Genetics Cooperative, 1997,20: 21-23.
    Catano-Anolles G, Bassam BJ, Gresshoff PM. DNA fingerprinting using very short arbitary oligonucleotida primers. Bio. Technology, 1991,9:553-557.
    Ceolni C, Biagetti M, Ciafi M et al.. Wheat chromosome engineering at the 4x level: the potential of different alien gene transfers into durum wheat. Euphytica, 1996, 89: 87-97.
    Charters Y M, Robertson A, Wilkinson M J, Ramsay G. PCR analysis of oilseed rape cultivars (Brassica napus L. ssp. oleifera) using 5'-anchored simple sequence repeat (SSR) primers. Theor. Appl. Genet., 1996,92:442-447.
    Chauhan RS, Farman ML, Zhang HB, Leong SA. Genetic and physical mapping of a rice blast resistance locus, Pi-CO39 (t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea. Mol. Gen. Genet., 2002, 267: 603-612.
    Chee PP. High frequency of somatic embryogenesis and recovery of fertile cucumber plants. HortScience, 1990,25: 792-793.
    Chen J, Staub JE, Qian Ch et al. Reproduction and cytogenetic characterization of interspecific hybrids derived from Cucumis hystrix Chakr. X C. sativus L. Theor. Appl. Genet., 2003, 106: 688-695.
    Chen JF, Adelberg JW, Staub JE et al. A new synthetic amphidiploid in Cucumis from C. sativus L.XC. Hystrix Chakr. F] interspecific hybrid. Proceeding of '98 Cucubitaceae, California, 1998: 336-339.
    Chen JF, and Adelberg J. Interspecific hybridization in Cucumis-progress, problem, and perspectives. HortScience, 2000, 35: 11-15.
    Chen JF, and Kirkbride J. A new synthetic species of Cucumis (Cucurbitaceae) from interspecific hybridization and chromosome. Brittonia, 2000, 52:315-319.
    Chen JF, Isshiki S, Tashiro Y, and Miyazaki S. Biochemical affinities between Cucumis hystrix Chakr. and two cultivated Cucumis species. Euphytica, 1997b, 97: 139-141.
    Chen JF, Isshiki S, Tashiro Y, and Miyazaki S. Studies on a wild cucumber from China (Cucumis hystrix Chakr.). I. Genetic distances C. hystrix and two cultivated Cucumis species (C. sativus L. and C. melo L.) based on isozyme analysis. J. Jpn. Soc. Hort. Sci., 1995, 64 (suppl. 2) : 264-265.
    Chen JF, Staub JE, Tashiro Y et al. Successful interspecific hybridization between Cucumis sativus L.and
    
    Cucumis hystrix Chakr. Euphytica, 1997a, 96: 413-419.
    Cho YG, McCouch SR, Kuiperet M et al. Integrated map of AFLP, SSLP and RFLP markers using a recombinant inbred population of rice (Oryza sativa L.). Theor. Appl. Genet., 1998, 97: 370-380.
    Comai L. Genetic and epigenetic interactions in allopolyploid plants. Plant Molecular Biology, 2000 43: 387-399.
    Corriveau J, and Coleman A. Rapid screening method to detect biparental inheritance of plasid DNA and results from over 200 angiosperm species. Am. J. Bot, 1988, 75: 1443-1458.
    Cregen Perry B, Arvind A. Microsatellire fingerprinting and mapping of soybean. Methods in molecular and cellular biology, 1994, 5: 49-61.
    Dane F. Cytogenetics of the genus Cucumis. In: Tsuchiya, T. and P.K. Gupta (ed.), Chromosome engineering in plants: genetics, breeding, evolution. Part B, 1991. 201-214.
    Danin Poleg Y, Reis N, Baudracco Arnas S, Pitrat M, Staub JE, Oliver M, Arus P, deVicente CM, Katzir N. Simple sequence repeats in Cucumis mapping and map merging. Genome, 2000, 43: 963-974.
    Danin-Poleg Y, Reis N, Tzuri G, and Katzir N. Development and characterization of microsatellite markers in Cucumis. Theor. Appl. Genet, 2001, 102: 61-72.
    De Jong JH, Wolters AMA, Kok JM et al.. Choromosome pairing and potential for intergeneric recombination in some hypotetraploid somatic hybrids of Lycopersicon esculentum (+) Solanum tuberosum. Genome, 1993,36: 1032-1041.
    Deakin JR, Bonn GW, and Whitaker TW. Inter-specific hybridization in Cucumis. Econ. Bot., 1971, 25: 195-211.
    den Nijs APM, and Visser DL. Relationships between African species of the genus Cucumis L. estimated by the production, vigour and fertility of F1 hybrids. Euphytica, 1985, 34:279-290.
    Dijkhuizen A, Kennard, W.C., Havey, M.J., and Staub, J.E. RFLP variability and genetic relationships in cultivated cucumber. Euphytica, 1996, 90: 79-89.
    Dijkuizen A, Staub JE. QTL conditioning yield and fruit quality traits in cucumber (Cucumis sativus L.). Report Cucurbit Genetics Cooperative, 1999, 22: 8-10.
    Dllas JF. Detection of DNA "fingerprints" of cultivated rice by hybridization with a human minisatellite probe. Proc. Natl. Acad. Sci. USA, 1988, 85: 6831-6835.
    Doganlar S, Frary A, Daunay MC et al. A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics, 2002, 161: 1697-1711.
    Erickson L, and Kemble R. Paternal inheritance of mitochondria in rapeseed (Brassica napus). Mol. Gen. Genet, 1990, 222: 135-139.
    Fatta Del Bosco S, Tusa N, and Conicella C. Microsporogenesis in a Citrus interspecific tetraploid somatic hybrid and its fusion parents. Heredity, 1999, 83: 373-377.
    Fellner M, Binarova P, and Lebeda A. Isolation and fusion of Cucumis sativus and Cucumis melo protoplast. In: Gomez-Guillamon ML, Soria C, Cuartero J. Tores JA, and Fernandez-Munoz eds. Cucubits towards 2000. Proc. 6th Eucarpia Mtg. On Cucubit Genetics and Breeding, Malaga, Spain. 1996. 202-209.
    Gambley RL, Dodd WA. An in vitro technique for the production de novo of multiple shoots in cotyledon explants of cucumber (Cucumis sativus L.). Plant Cell, Tissue and Organ Culture, 1990,20: 177-183.
    Garcia-Mas J, Oliver M, Gomez-Paniagua H, and de Vicente MC. Comparing AFLP, RAPD and RFLP
    
    markers for measuring genetic diversity in melon. Theor. Appl. Genet, 2000, 101: 860-864.
    Garriga-Caldere F, Huigen DJ, Filotico F, Jacobsen E, Ramanna MS. Identification of alien chromosomes through GISH and RFLP analysis and the potential for the establishment of potato lines with monosomic additions of tomato chromosomes. Genome, 1997, 40: 666-673.
    Garriga-Caldere F, Huigen DJ, Jacobsen E, et al. Origin of an alien disomic addition with an aberrant homologue of chromosome-10 of tomato and its meiotic behavour in a potato background revealed through GISH. Theor. Appl. Genet., 1999, 98: 1263-1271.
    Gupta PK, Balyan HS, Edwards KJ et al. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor. Appl. Genet., 2002, 105: 413-422.
    Haider AH SN, Ramanna MS, Jacobsen E, and Visser RGF. Genome differentiation between Lycopersicon esculentum and L. pennellii as revealed by genomic in situ hybridization. Euphytica, 2002, 127:227-234.
    Hallden C, Hansen M, Nilsson NO et al. Competition as a source of errors in RAPD analysis. Theor. Appl. Genet., 1996, 93: 1185-1192.
    Havey MJ. Predominant paternal transmission of the cucumber mitochondrial genome. J. Hered., 1997, 88: 232-235.
    Havey MJ, McCreight JD, Rhodes B, and Taurick G. Differntial transmission of the Cucumis organellar genome. Theor. Appl. Genet., 1998, 97: 122-128.
    Heslop-Harrison JS. Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. Plant Cell, 2000, 12: 617-636.
    Heyn FW. Cytoplasmic genetic male sterility in Brassica napus. Curciferae Newsl, 1978, 3: 34-35.
    Horejsi T, Box JM, and Staub JE. Efficiency of randomly amplified polymorphic DNA to sequence characterized amplified region marker conversion and their comparative polymerase chain reaction sensitivity in cucumber. J. Amer. Soc. Hort. Sci., 1999, 124: 128-135.
    Immer FR, and Henderson, MT. Linkage studies in barley. Genetics, 1943, 28: 419-440.
    Islam AKMR, and Shepherd KW. Alien genetic variation in wheat improvement. In: Chromosome engineering in plants, part A. Gupta PK and Tsuchiya T eds. 1991, 291-312.
    Jarl CI, Bokelmann GS, De-Haas JM. Protoplast regeneration and fusion in Cucumis: melon×cucumber. Plant Cell, Tissue and Organ Culture, 1995, 43: 259-265.
    Jeffrey C. A review of the Cucurbitaceae. Bot. J. Linn. Soc., 1980, 81: 233-247.
    Jeffreys AJ, Wilson V, Thein SL. Hypervariable minisatellite regions in human DNA. Nature, 1985, 314: 67-73.
    Jia SR, Fu YY, and Lin Y. Embryogenesis and plant regeneration from cotyledon protoplast culture of cucumber (cucumis sativus L). J. Plant Physiol., 1986, 124: 393-398.
    Kamstra SA, Kuipers AGJ, De Jeu MJ et al.. The extent and position of homoeologous recombination in a distant hybrid of Alstroemerica: a molecular cytogenetic assessment of first generation backcross progenies. Chromosoma, 1999, 108: 52-63.
    Kamstra SA, Ramanna MS, De Jeu MJ, Kuipers GJ, Jacobsen E. Homoeologous chromosome pairing in the distant hybrid Alstroemeria aurea×A. inodora and the genome composition of its backcross derivatives determined by fluorescent in situ hybridization with species-specific probes. Heredity, 1999, 82: 69-78.
    Karlov GI, Khrustaleva LI, Lim KB, Van Tuyl JM. Homoeologous recombination in 2n-gamete
    
    producing interspecific hybrids of Lilium (Liliaceae) studied by genomic in situ hybridization (G1SH). Genome, 1999,42:681-686.
    Kasna KJ, Kao KN. High frequency haploid production in barley (Hordeum vulgare L.). Nature, 1970, 225: 874-876.
    Katzir N, Danin-Poleg Y, Tzuri G, Karchi Z, Lavi U, and Cregan PB. Length polymorphism and homologies of microsatellites in several Cucurbitaceae species. Theor. Appl. Genet., 1996, 93: 1282-1290.
    Kema GHJ, Goodwin SB, Hamza S, et al. A combined amplified fragment length polymorphism and randomly amplified polymorphism DNA genetic linkage map of Mycosphaerella graminicola, the Septoria tritici leaf blotch pathogen of wheat. Genetics, 2002, 161: 1497-1505.
    Ki-Byung Lim, Jae-Dong Chung, Bernadette C.E. et al.. Introgression of Lilium rubellum Baker chromosomes into L. longiflorum Thunb.: a genome painting study of the F1 hybrid, BC1 and BC2 progenies. Chromosome Research, 2000, 8: 119-125.
    Kirkbride JH, Jr. Biosystematic monograph of the genus Cucumis (Cucurbitaceae). Parkway Publishers, Boone, North Carolina, 1993. 84-88.
    Kishaba AN, Bonn GW, and Toba HH. Resistance to Aphgossypii in muskmelon. J. Econ. Entomol., 1971, 64: 935-937.
    Knerr LD, Staub JE, Holder DJ, and May BP. Genetic diversity in C. sativus L. assessed by variation at 18 allozyme coding loci. Theor. Appl. Genet., 1989, 78: 119-128.
    Kubo T, Nishizawz S, Sugawara A et al. The complete nucleotide sequence of the mitochondrial genome of sugarbeet (Beta vulgaris L.) reveals a novel gene for t RNACYS (GCA). Nucleic Acids Res., 2000,28: 2571-2576.
    Kunzel G, Korzun L, and Meister A. Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics, 2000, 154: 397-412.
    Ladyman JAR, and Girard B. Cucumber somatic embryo development on various gelling agents and carbohydrate sources. HortScience, 1992, 27: 164-165.
    Ladyzynski M, Korzeniewska A, Malepszy S. Recurrent regeneration through somatic embryogenesis reduces yield in cucumber. HortScience, 2001,36: 987.
    Larkin PJ, Banks PM, Lagudah ES et al.. Disomic Thinpyrum intermedium addition lines in wheat with barley yellow dwarf virus resistance and with rust resietance. Genome, 1995, 38: 385-394.
    Leppick EE. Searching gene centers of the genus Cucumis. Euphytica, 1966, 15: 323-328.
    Li Z, Wu JG, Liu Y, Liu HL, and Heneen WK. Production and cytogenetics of the intergeneric hybrids Brassica juncea×Orychophragmus violaceus and B. carinata×O. violaceus. Theor. Appl. Genet., 1998, 96:251-265.
    Lim KB, JD Chung, BCE van Kronenburg et al.. Introgression of Lilium rubellum Baker chromosomes into L. longiflorum Thunb.: a genome painting study of the F1 hybrid, BC1 and BC2 progenies. Chromosome Research, 2000, 8: 119-125.
    Lim KB, Ramanna MS, de Jong JH, Jacobsen E van Tuyl JM. Indeterminate meiotic restitution (IMR): a novel type of meiotic nuclear restitution mechanism detected in interspecific lily hybrids by GISH. Theor. Appl. Genet., 2001, 103: 219-230.
    Lou H, and Kako S. Somatic embryogenesis and plant regeneration in cucumber. HortScience, 1994,
    
    29: 906-909.
    Lower RL, and MD Edwards. Cucumber breeding. In: MJ Basset eds. Breeding vegetable crops. AVI, Westport, Conn. 1986, 173-207.
    Lu MZ, Szmidt AE, and Wang XR. Inheritance of RAPD fragments in haploid and diploid tissues of Pinus sylvestris L.. Heredity, 1995, 74: 582-589.
    Malepszy S, Burza W, and Smiech M. Characterization of a cucumber (Cucumis sativus L.) somaclonal variant with paternal inheritance. J. Appl. Genet., 1996, 37: 65-78.
    Mallick MFR, and Masui M. Origin, distribution and taxonomy of melons. Scientia Horticulturae, 1986, 28:251-261.
    Mark F van der, Bergervoet JHW, Custers JBM. Transformation of cucumber with Agrobacterium rhizogenes. Report Cucurbit Genetics Cooperative, 1989, 12:35-36.
    Mason R, Holsinger K, and Jansen R. Biparental inheritance of the chloroplast genome in Coreopsis (Asteraceae). J. Hered., 1994, 85:171-173.
    Mather, K. Measurement of linkage in heredity. Methuer and Co. Ltd., London. 1938. Matsuura S. Paternal inheritance of mitochondrial DNA in cucumber (C. sativus L.). Rep. Cucurbit Genet.Coop., 1995, 18:31-33.
    McCoy TJ, Echt CS, and Mancino LC. Segregation of molecular markers supports an allotetraploid structure for the Medicago saliva×Medicago papillosa interspecific hybrid. Genome, 1991, 34: 574-578.
    McElhinney MW. Palaeomagnetism and plate tectonics. Cambridge University Press, Cambridge, 1973. 358.
    Menz MA, Klein RR, Mullet JE et al.. A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP(R), RFLP and SSR markers. Plant Molecular Biology., 2002,48:483-499.
    Mohiuddin AKM, Choedhury MKU, Abdullah AC, and Napis S. Influence of sliver nitrate (ethylene inhibitor) on cucumber in vitro shoot regeneration. Plant Cell, Tissue and Organ Culture, 1997, 51: 75-78.
    Motsny II, Simonenko VK. The influence of Elymus sibiricus L. genome on the diploidization system of wheat. Euphytica, 1996, 91: 189-193.
    Murray HG, and Thompson WF. Rapid isolation of higher weight DNA. Nucleic Acids Res., 1980, 8: 4321.
    Naqvi NI, and Chattoo BB. Development of a sequence characterized amplified region (SCAR) based indirect selection method for a dominant blast-resistance gene in rice. Genome, 1996, 39: 26-30.
    Naudin, C. Revue des Cucurbitaceae cultivees au museum en 1859. Ann. Sci. Nat. Sen Bot., 1859, 12: 79-164.
    Neale DB, and Sederoff RR. Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in loblolly pine. Theor. Appl. Genet., 1989, 77: 212-216.
    Nguyen VT, Nguyen BD, Sarkarung S, et al. Mapping of genes controlling aluminum tolerance in rice: comparison of different genetic backgrounds. Molecular Genetics and Genomics, 2002, 267: 772-780.
    Ohmori T, Murata M, Motoyoshi F. Identification of RAPD markers linked to the Tin-2 locus in tomato. Theor. Appl. Genet., 1995, 90: 307-311.
    Oliver M, Garcia-Mas J, Cardus M et al. Construction of a reference linkage map for melon. Genome, 2001,44:836-845.
    Orita MH, Iwahana H, Kanazawa K. Detection of polymorphism of human DNA by gel electrophoresis
    
    as single-strand conformation polymorphism. Proc. Natl. Acad. Sci. USA, 1989, 86: 2766-2770.
    Pangalo KI. Melons and independent genus Melo Adans. Botanichesky Zhurnal, 1950, 35: 571-580.
    Paran I, and RW Michelmore. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor. Appl. Genet., 1993, 85: 985-993.
    Park Young Hoon, Sensoy S, Wye C et al. A genetic map of cucumber composed of RAPDs, RFLPs, AFLPs, and loci conditioning resistance to papaya ringspot and zucchini yellow mosaic viruses. Genome, 2000,43: 1003-1010.
    Parokonny AS, Marshall JA, Bennett MD et al.. Homoeologous pairing and recombination in backcross derivatives of tomato somatic hybrids [ Lycopersicon esculentum (+) L. peruvianum]. Theor. Appl. Genet., 1997,94:713-723.
    Parthasarathy VA, and Sambandam CN. Taxonomy of Cucumis callosus (Rottl.) Cogn.-the wild melon of India. Report Cucurbit Genetics Cooperative, 1980. 3: 66-67.
    Paterson AH, Lander ES, Hewitt JD et al.. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphism. Nature, 1988,335: 721-726.
    Pellan-Delourme R, and Renard M. Cytoplamic male sterility in rapeseed (Brassica napus L.): female fertility of restored rapeseed with "Ogura" and cybrids cytoplasms. Genome, 1988, 30: 234-238.
    Peng L, and Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chani reaction. Science, 1992, 257: 967-971
    Perl-Treves R, and Galun E. The Cucumis plastome: physical map, intrageneric variation and phylogenetic relationships. Theor. Appl. Genet., 1985, 71: 417-429.
    Perl-Treves R, Zamir D, Navot N, and Galun E. Phylogeny of Cucumis based on isozyme variability and its comparison with plastome phylogeny. Theor. Appl. Genet., 1985, 71: 430-436.
    Pierce LK, and Wehner TC. Review of genes and linkage groups in cucumber. HortScience, 1990, 25: 605-615.
    Punja ZK, Tang FA, and Sarmento GG. Isolation, culture and plantlet regeneration from cotyledon and mesophyll protoplasts of two pickling cucumber (Cucumis sativus L.) genotypes. Plant Cell Reports. 1990, 9:61-64.
    Raamsdonk LWD, den Nijs APW, and Jongerius MC. Meiotic analysis of Cucumis hybrids and evolutionary evaluation of the genus Cucumis (Cucurbitaceae). PI. Syst. Evol., 1989, 163: 133-146.
    Ramachandran C, and Narayan RKJ. Chromosomal DNA variation in Cucumis. Theor. Appl. Genet., 1985,69:497-502.
    Ramachandran C, and Seshadri VS. Cytological analysis of the genome of cucumber (C. sativus L.) and muskmelon (C. melo L.). Z. Pflanzenzuchtg, 1986,96: 25-38.
    Riera-Lizarazu O, Vales MI, Ananiev EV et al.. Production and characterization of maize chromosome 9 radiation hybrids derived from an oat-maize addition line. Genetics, 2000, 156: 327-339.
    Robinson RW, and Decker-Walkers DS. Interspecific hybridization, pp. 51-55. ln:R.W. Robinson and D.S. Decker-Walkers (eds.). Cucurbits. CAB Intl., Oxon, U.K. 1997.
    Robinson RW. Genetic resistance in the Cucurbitaceae to insects and spider mites. 1992, p. 309-360. In J Jules (ed.). Plant breeding Rev. 10. John Wiley & Sons, Inc. Newyork.
    Robinson RW, Munger HM, Whitaker TW, and Bohn GW. Genes of the Cucurbitaceae. HortScience, 1976,11:554-568.
    
    
    Rossetto M, McNally J, and Henry RJ. Evaluating the potential of SSR flanking regions for examing taxonomic relationships in the Vitaceae. Theor. Appl. Genet., 2002, 104: 61-66.
    Ryskov AP, Jincharadze AG, Prosnyak MI, Ivanov PL, Limborska SA. M13 phage DNA as a universal marker for DNA fingreprinting of animals, plants and microorganisms. FEBS Letter, 1988: 388-392.
    Sakata K, Antonio BA, Mukai Y et al. INE: A rice genome database with an integrated map view. Nucleic Acids Research, 2000, 28: 97-101.
    Sambrook J, Fritch EF, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 1989.
    Semeniuk P, Moline HE. A comparison of the effect of ABA and an antitranspirant on chilling injury of coleus, cucumber and dieffenhachia. J. Amer. Soc. Hort. Sci., 1986, 11: 866-868.
    Sharopova N, McMullen MD, Schultz L et al. Development and mapping of SSR markers for maize. Plant Molecular Biology, 2002, 48: 463-481.
    Skroch P, Nienhuid J. Impact of scoring error and reproducibility of RAPD data on RAPD based estimates of genetic distance. Theor. Appl. Genet., 1995, 91: 1086-1091.
    Smith JSC, Smith OS. Fingerprinting crop varieties. Adv. Agron., 1992, 47: 85-140.
    Smith S. and Helentjaris T. DNA fingerprinting and plant variety protection. In: Genome mapping in plants. Paterson AH (ed.). R.G Landes Company, 1996. 95-110.
    Serquen FC, Bacher J, and Staub JE. Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativus L.) using random-amplified polymorphic DNA markers. Molecular Breeding, 1997, 3: 257-268.
    Stalker HT. Utilization of wild species for crop improvement. In: Advances in Agronomy. Brady. Academic Press, 1980,33: 111-147.
    Staub JE, Bacher J, and Poetter K. Sources of potential errors in the application of RAPD in cucumber. HortScience, 1996, 31: 262-266.
    Staub JE, Box J, Meglic V, Horejsi TF, and McCreigh JD. Comparison of isozyme and random amplified polymorphic DNA data for determining intraspecific variation in Cucumis. Genet. Res. Crop. Evol., 1997, 44: 257-269.
    Staub JE, Danin-Poleg Y, Fazio G, Horejsi T, Reis N, and Katzir N. Comparative analysis of cultivated melon groups (C. melo L.) using random amplified polymorphic DNA and simple sequence repeat markers. Euphytica, 2000, 115: 225-241.
    Staub JE, Fredrick L, Marty TL. Electrophoretic variation in cross-compatible wild diploid species of Cucumis. Can. J. Bot., 1987, 65, 792-798.
    Staub JE, Knerr LD, and Hopen HJ. Effects of plant density and herbicides on cucumber productivity. J. Amer. Soc. Hort. Sci. 1992, 117:48-53.
    Staub JE, Serquen FC, Katzir N, Paris HS. Towards an integrated linkage map of cucumber: map merging. Acta-Horticulturae, 2000, 510: 357-366.
    Stephen FA, Madden TL, Schaffer AA et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 1997, 25: 3389-3402.
    Stevenson M, Armstrong SJ, Ford-Lloyd BV & Jones GH. Comparative analysis of crossover exchanges and chiasmata in Allium cepa×fistulosum after genomic in situ hybridization (GISH). Chromosome Res., 1998,6:567-574.
    
    
    Sujatha VS, and Seshadri VS. Electrophoretic examination of Cucumis sativus L. and Cucumis melo L.. Cucurbit Genet. Coop. Rpt., 1989, 12: 18.
    Tabei Y, Nishio T, Kurihara K, Kanno T. Selection of transformed callus in a liquid medium and regeneration of transgenic plants in cucumber (Cucumis sativus L.). Breeding Science, 1994,44: 47-51.
    Takaba K, Kanazawa K, Takatsuka K, and Kaneno T. Studies on the breeding of melon resistant to cucumber mosaic virus I. Difference in resistance among melon varieties and the regional differences in their distribution. Bull Veg Ornam Crops Res Stn A, 1979,5: 1-21.
    Terada R, Kyozuka J, Nishibayashi S, and Shimamoto K. Planlet regeneration from somatic hybrids of rice (Oryza sativa L.) and barnyard grass (Echinochloa oryzicola vasing). Mol. Gen. Genet., 1987, 210: 39-43.
    Ulloa GM, Corgan JN, Dunford M. Chromosome characteristics and behavior differences in Allium fistulosum L., A. cepa L., their F1 hybrid, and selected backcross progeny. Theor. Appl. Genet., 1994, 89: 567-571.
    Unseld M, Marienfeld JR, and Brennicke. The mitochondrial genome of Arabidopsis thaliana contaions 57 genes in 366,924 nucleotides. Nat. Genet., 1997, 15: 57-61.
    Verslues PE, Sharp RE. Proline accumulation in maize (Zea mays L.) primary roots at low water potentials.Ⅱ. Metabolic source of increased proline deposition in the elongation zone. Plant Physiology, 1999,119: 1349-1360.
    Wako T, Ohara T, Ishiuchi D, and Kojima A. Petiole-mediated inoculation method for seeding test for gummy stem blight (Didymella broyoniae) resistance in melon. Bull Veg Omam Crops Res Stn A, 2000, 15:71-80.
    Weeden NF, Timmerman GM, Hemmat M, Kneen BE, Lodhi M A. Inheritance and reliability of RAPD markers. In: Hoisington, D., and A. McNab (eds): Proc Symp Appl RAPD Technol Plant Breed, Crop Sci. Soc. Am., Minneapolis, 1992. 12-17.
    Wehner TC, Liu JS, Staub JE. Two-gene interaction and linkage for bitterfree foliage in cucumber. J. Amer. Soc. Hort. Sci., 1998,123: 401-403.
    Wei JZ, Wang RRC. Genome and species-specific markers and genomes relationships of diploid perennial species in Triticeae based on RAPD analysis. Genome, 1996,38: 1230-1236.
    Weising K, Weigand F, Driesel AJ, Kahl G, Zischler H, Epplen JT. Polymorphic simple GATA/GACA repeats in plant genomes. Nucleic Acids Res., 1989, 17: 10128.
    Welsh J, and McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res., 1990, 18:7213-7218.
    Williams CE, Wielgus SM, Haberlach GT, Guenther C, Kim-Lee H, Helgeson JP. RFLP analysis of chromosomal segregation in progeny from an interspecific hexaploid somatic hybrid between Solatium brevidens and Solanum tuberosum. Genetics, 1993, 135:1167-1173.
    Williams EG. Interspecific hybridization in Pasture Legumes. Plant breeding Reviews, 1987, 5: 237-290.
    Williams JGK, Kubelik AR, Livak KJ, et al. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 1990, 18: 6531-6535
    Wilson HD, Doebley J, and Duvall M. Chloroplast DNA diversity among wild and cultivated members of Cucurbita (Cucurbitaceae). Theor. Appl. Genet., 1992, 84: 859-865.
    
    
    Xie JH, and TC Wehner. Gene list 2001 for cucumber. Cucurbit Genet. Coop. Rep., 2001, 24: 110-136.
    Yamada T, Hosaka K, Nakagawa K, Misoo S, Kamijima O. Cytological and molecular characterization of BC1 progeny from two somatic hybrids between dihaploid Solanum acaule and tetraploid S. tuberosum. Genome, 1998,41:743-750.
    Yang HY, and Zhou C. In vitro induction of haploid plants from unpollinated ovaries and ovules. Theor. Appl. Genet., 1982, 63: 97-104.
    Zuo Kai-Jing, Sun Ji-Zhong, Zhang Jin-Fa et al. Genetic diversity evaluation of some Chinese elite cotton varities with RAPD markers. Acta Genetica Sinica, 2000,27: 817-823.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700