基于可控拉深筋技术的高强度钢板拉深性能优化及回弹分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在能源短缺和温室效应等环保问题的双重压力下,汽车轻量化步伐不断加快。采用高强度钢板不仅可以实现汽车的轻量化,而且能提高汽车的安全性能,因此高强度钢板等轻量化材料在汽车车身上的应用逐年增加。由于高强度钢板的成形性能一般较普通钢板差,塑性变形能力低,冲压成形时更容易出现破裂、起皱以及回弹等缺陷,因此寻求新的成形工艺方法提高高强度钢板等轻量化材料的成形性能已经成为当前的研究热点。
     板料冲压成形具有高度的几何非线性、材料非线性、边界非线性等特点,影响冲压件成形质量的工艺参数诸多,主要包括压边力、拉深筋形式及分布方式和润滑条件等。上述工艺参数中,拉深筋是控制材料流动的重要手段,其设计得合理与否是拉深成败的关键,它可以在相对较小压边力条件下提供较大的拉深阻力。国内外学者对拉深筋在板料冲压成形中的作用和影响规律进行了大量研究,但大多限于固定拉深筋的研究,其几何尺寸在整个拉深成形过程中不发生改变,因此固定拉深筋在提供拉深阻力方面基本是恒定的。有研究表明零件的拉深成形过程中如果能够提供可变的拉深阻力,零件能获得更优的应变路径,其拉深性能可以得到改善,在这方面国内外大量研究人员主要是依靠变压边力工艺实现拉深阻力的变化,而对于通过实时调整拉深筋的高度以控制拉深阻力变化的研究工作很少。
     基于上述研究背景及高强度钢板成形性能低的特点,本文提出一种新的成形技术——可控拉深筋技术,将其应用到高强度钢板成形过程中。在拉深筋几何尺寸中,高度对拉深阻力的影响较大,而且拉深过程中最容易被调节。因此本文提出的可控拉深筋技术是通过实时调节拉深筋高度来改变高强度钢板拉深过程中的拉深阻力,实现提高高强度钢板成形性能的目的。
     本文以JAC590Y高强度钢板为研究对象,结合数值模拟、优化理论与算法、液压与电气控制等关键技术,通过有限元分析及物理实验的方法,较为系统地研究了可控拉深筋技术对高强度钢板拉深性能及回弹方面的影响规律。主要对下列三个方面进行了研究:
     ①可控拉深筋技术对高强度钢板拉深性能的影响及优化
     1)首先对高度阶跃变化的拉深筋与固定拉深筋高强度钢板盒形件进行模拟分析与实验验证,结果表明可控拉深筋在改善高强度钢板拉深性能方面具有综合优势,并验证有限元分析的可靠性;
     2)在可控拉深筋技术中,拉深筋高度变化与凸模行程的匹配运动轨迹对高强度钢板的拉深性能有重要影响。根据拉深过程中成形力的需求特点,设计六种拉深筋形式下的三种不同类型的拉深筋高度连续变化运动轨迹,通过正交试验确定相应的试验方案,采用Dynaform软件进行模拟计算,比较各种类型运动轨迹下的极限拉深深度、应变分布以及流入量状况,确定了最优的拉深筋运动轨迹类型(最优轨迹类型)为上升——停止——下降的轨迹,并得到了影响零件极限拉深深度的主要因素和较佳的因素水平组合;
     3)基于最优轨迹类型得到的数值模拟数据,建立各拉深筋形式下的可控拉深筋运动轨迹与极限拉深深度的GA-BP神经网络,经测试样本验证,构建的GA-BP神经网络具有较好的预测能力,可以代替真实模型预测各因素对高强度钢板拉深性能的影响,通过建立的GA-BP神经网络与拉丁超立方抽样法相结合建立最优轨迹类型的可控拉深筋主要影响因素H 1和H 2与极限拉深深度之间的响应面;
     4)提出了分区域的可控拉深筋优化策略,研究表明长筋比短筋后上升,或长筋比短筋先下降,高强度钢板的极限拉深深度能够进一步提高,为考虑控制的方便性和材料流动的稳定性,采用短筋和长筋相同的运动速度为宜。
     ②可控拉深筋技术对高强度钢板成形回弹规律的研究
     首先对不同的固定拉深筋高度对高强度钢板回弹的影响状况进行研究,结果表明拉深筋高度对高强度钢板的回弹有较大的影响,随着拉深筋高度增大,回弹量相应减小。然后设计与拉深过程中类似的三种轨迹对U型高强度钢板冲压件的回弹状况进行分析,研究结果表明可控拉深筋的运动轨迹对高强度钢板回弹量有重要影响,拉深筋上升——停止的轨迹有利于回弹的减小,而有利于高强度钢板拉深性能改善的上升——停止——下降的轨迹对高强度钢板的回弹量减小效果最差。
     ③可控拉深筋实验装置与控制系统的设计
     基于可控拉深筋运动原理与传统的拉深模具结构,设计了可控拉深筋高强度钢板盒形件拉深实验装置,通过该实验装置对固定拉深筋以及高度阶跃式变化的拉深筋进行试验验证。同时,比较驱动拉深筋运动的不同机构形式的优缺点,选择杠杆机构与液压系统联合作用模式,并设计相关的液压与电气控制原理图。
     通过对可控拉深筋技术的研究,表明该技术可以极大地改善高强度钢板等难成形材料的拉深性能,为高强度钢板冲压成形提供了新的优化途径,同时为该技术应用于实际生产奠定技术基础。本文的研究结果对于拓宽高强度钢板新的工艺研究、扩大高强度钢板材和超高强度钢板的应用范围有着较为重要的学术意义和工程应用价值。
The pace of lightweight automobile has been quickened under the dual pressures of energy shortage and greenhouse effect. Lightweight automobile can be realized and the safety performance of automotive can be improved by using the high strength steel(HSS). So the lightweight material such as HSS for the autobody parts has been widely used year by year. These defects such as crack, wrinkle and springback will appear in the stamping process of HSS because of its high strength and low plasticity. So the new forming technology which will improve the formability of HSS is becoming the research focus.
     Sheet metal forming is a complicated deformation problem, which involves material nonlinearity, geometrical nonlinearity and boundary nonlinearity. The factors including blankholder force, the shape and layout of drawbead, lubrication have great influence on the quality of stamped parts. The drawbead, which provides the larger drawing resistance in the conditions of smaller blankholder force, is a important method to control the material flow. The reasonable design of drawbead is the key to success or failure of drawing. Up till now, although the scholars at home and abroad have done a large amount of research work on studying the influence law of drawbead in sheet metal forming, their researches are mostly limited to the fixed drawbead whose geometry size and drawing resistance is almost invariant in sheet metal forming. The research shows that part optimal strain path will be obtained and the drawability will be improved by the variable darwing resistance in sheet metal forming. Now the scholars at home and abroad mostly are always adopting the variable blankholder force to obtain the variable darwing resistance, but the research on the variable flow resistance by adjusting the height of drawbead has been seldom studied.
     Because the height has great influence on darwing resistance and can be controlled easily, a new controllable drawbead technology was put forward to improve the formability of HSS by the real-time height adjustment of drawbead based on the low formability of HSS.
     The JAC590Y HSS was selected as research object, and its drawability and springback laws were systematically studied based on the controllable drawbead technology by the method of finite element analysis and physics experiment combined with the key technologies such as numerical simulation, optimization algorithm and hydraulic and electric control technology. Three following ascepts were mainly investigated.
     ①The effect of controllable drawbead technology on drawability of HSS and the optimization of controllable drawbead trajectory
     1)Firstly, the height step-like change and fixed drawbead of HSS box was simulated and experimental verification. It shows that the controllable drawbead has the comprehensive advantage in the aspects of improving the drawability of HSS and reliability of simulation results are verified by physics experiment.
     2)The trajectory of drawbead height variation matching punch travel has great influence on the drawability of HSS. Three different types of height continuous change drawbead trajectories with six different drawbead forms were designed accroding to the need of forming force in the drawing process. The test schemes were determined by orthogonal test design and the processes were simulated by the software Dynaform. The drawing depth, strain distribution, material inflow are analyzed in different trajectories. The optimal type trajectory, ascent——halt——descent, is determined and the major influencing factors of drawing depth and the optimal combination of each factor level are obtained.
     3)The GA-BP neural networks of controllable drawbead trajectory factors—limite drawing depth with six drawbead forms are constructed based on the simulation results of the optimal drawbead trajectory. Through the verification of test samples, the GA-BP neural networks have good prediction ability. So the GA-BP neural networks can replace the real model to predict the effects of factors on the drawability of HSS. And the response surfaces composed of main influence factors H1&H2 and limit drawing depth with the optimal controllable drawbead trajectory are established based on the GA-BP neural networks and Latin Hypercube.
     4)The regional separation optimization strategy of controllable drawbead was proposed. The simulation results show that the limite drawing depth of HSS will be further improved by long drawbead increasing later than short drawbead or long drawbead decreasing earlier than short drawbead. It should adpot the same velocity of the long drawbead and the short drawbead to ensure the convenient control and material flow stability.
     ②Study on springback of HSS based on the controllable drawbead technology
     Firstly, the influences of different fixed drawbead heigth on springback of HSS were studied. The results show drawbead heigth has great influence on springback of HSS and springback decreased with drawbead heigth increased. Then three different controllabe drawbead trajectories similar to the trajectories in the drawing process were designed. The influence of these trajectories on springback of HSS U-shaped part was studied by numerical simulation. The results show controllabe drawbead trajectories have great influence on springback of HSS. The trajectory of ascent——halt can decrease springbak, but the trajectory of ascent——halt——descent which improve the drawability of HSS is worst on decreasing springbak.
     ③Design of experiment device and control system
     The HSS box drawing experimental device with the controllable drawbead driven by hydraulic and electric control system was designed based on the controllable drawbead movement principle and the conventional structure of drawing die. The tests of step-like changed in drawbead height and fixed drawbead were carried out by the experimental device. The driving mode with the Leverage and hydraulic unit is chosen by comparing the advantages and disadvantages of different motion mechanisms. The corresponding hydraulic and electrical control principle diagrams are designed.
     The controllable drawbead technology has great potential for improving the drawability of light materials, such as HSS, which are difficult to deform. The technology provide a new optimization method for the forming of HSS. And the research results laid a technology foundation for further application of controllable drawbead technology in practical production. Furthermore, the research on the controllable drawbead can give a new development in technology of HSS and has both important academic meaning and engineering value to enlarge application range of HSS and AHSS.
引文
[1]唐靖林,曾大本.面向汽车轻量化材料加工技术的现状及发展[J].金属加工,2009, (11):11-16.
    [2]马鸣图.先进汽车用钢[M].北京:化学工业出版社,2007.
    [3]康永林.现代汽车板工艺及成形理论与技术[M].北京:冶金工业出版社,2009.
    [4]吕盾,陈炜,姜银方,等.变压边力控制技术的研究现状和发展趋势[J].模具工业,2006,2(4): 37-41.
    [5] Cherrill A P, Zhang S, Ousterhout K h. Variable force binder for a draw press[J]. Journal of Materials Processing Technology,1998,73(3):7-17.
    [6] Gunnarsson L, Schedin E J. Improving the properties of exterior body panels in automobiles using variable blank holder force[J]. Journal of Materials Processing Technology,2001,114(7): 168-173.
    [7]王武荣,陈关龙,林忠钦.基于破裂失效准则的变压边力理论及其工程应用[J].上海交通大学学报,2007,41(4):619-623.
    [8]单体坤,李淑惠,陈关龙.变压边力下高强度钢板的回弹研究[J].塑性工程学报, 2005, 12(6):56-58.
    [9]刘林虎.基于压边力设计的高强度钢板成形性能研究[D].上海:上海交通大学,2005.
    [10]胡星.基于材料硬化的高强度钢板压边力设计方法[D].上海:上海交通大学,2007.
    [11]孙成智,陈关龙,林忠钦,等.控制压边力改善铝合金板成形性能的研究[J].材料科学与工艺,2005,13(4):445-448.
    [12]谭志耀.超高强度钢板热冲压成形基础研究[D].上海:同济大学,2006.
    [13]周全.汽车超高强度硼钢板热成形工艺研究[D].上海:同济大学,2007.
    [14]朱巧红.热成形模具热平衡分析及冷却系统设计优化[D].上海:同济大学,2007.
    [15] D H Lloyd. Metallurgical Engineering in the Pressed Metal Industry[J]. Sheet metal industry, 1966,43:434.
    [16] M J Paiter, R Pearce. Metal flow through a drawbead[J]. Sheet metal industries,1976,(7):12-20.
    [17] H D Nine. New drawbead concepts for sheet metal forming[J]. Journal of applied metal working,1982,2 (3):185-192.
    [18] N M Wang, V C Shah. Drawbead design and performance[J].Journal of material shaping technology,1991,(9):21-26.
    [19] M D Gregory, John Aschey. Effects of bead surface preparation on friction in the drawbead test. SAE Transactions,910511,100 (5):520-530.
    [20] John A Schey. Geometric factors affecting results from the drawbead simulation (DBS) test[J]. Lubrication engineering,1994,50 (3):255-260.
    [21] John A Schey. Speed effects in drawbead simulation[J]. Journal of materials processing Technology,1996,57 (1-2):146-154.
    [22]邢忠文,杨玉英,郭刚.薄板冲压成形中的拉伸筋阻力及其影响因素研究[J].模具工业,1994,158(4):30-33.
    [23]杨玉英,金朝海,王荣芳,等.拉深筋成形二维弹塑性有限元数值模拟[J].塑性工程学报,2001,8(1):31-34.
    [24] Weidemann C. The blankholder action of drawbeads[C]. Proceedings of 10th biennial IDDRG congress,1978,1(1):79-85.
    [25] Wang N M. A mathematical model of drawbead forces in sheet metal forming[J]. Journal of applied metal working,1982,2(3):193-199.
    [26] Levy B S. Development of a predictive model for drawbead restraining force utilizing work of Nine and Wang [J]. Journal of applied metal working,1983,3(1):38-44.
    [27] Stoughton T B. Model of drawbead forces in sheet metal forming[C]. Proceedings of 15th biennial IDDRG congress,1988,1(5):205-215.
    [28] Ghoo B Y, Keum Y T. Expert drawbead models for sectional FEM analysis of sheet metal forming processes [J]. Journal of materials processing technology,2000,1(105):7-16.
    [29]李尚建,李赞,唐薇.拉深筋阻力的计算[J].金属成形工艺,1993,11(6):257-261.
    [30]包友霞.车身覆盖件冲压成形中拉深筋的优化设计方法研究[D].上海:上海交通大学,2000.
    [31]李大永,胡平,李运兴.拉伸筋阻力的一种简便解析模型[J].机械工程学报, 2000,36(5):46-49.
    [32]史东才,郭成,程羽等.拉深筋约束力模型及试验研究[J].西安交通大学学报, 2006,40(7):819-822.
    [33] Maker B, Samanta S K, Grab G, etal. An analysis of drawbeads in sheet metal forming:part II-experimental verification[J]. Journal of engineering materials and technology, 1987,109(2):164-170.
    [34] Cao J, Boyce M C. Drawbead penetration as a control element of material flow[J]. SAE transactions of materials and manufacturing,1993,1(1):694-702.
    [35] Guo Y Q, Batoz J L, Naceur H, etal. Recent developments on the analysis and optimum design of sheet metal forming parts using a simplified inverse approach[J]. Computers and structures,2000,78(3):133-148.
    [36] Naceur H, Guo Y Q, Batoz J L, etal. Optimization of drawbeads restraining force and drawbeaddesign in sheet metal forming process[J]. International Journal of mechanical sciences, 2001,43(10):2407-2434.
    [37] Naceur H, Delameziere A, etal. Some improvements on the optimum process design in deep drawing using the inverse approach[J]. Journal of materials processing technology, 2004,146(2):250-262.
    [38] Ohata T, Nakamachi E, etal. Development of optimum process design system by numerical simulation[J]. Journal of materials processing technology,1996,60(1-4):543-548.
    [39] Yang Y Y, Jin Z H, Wang R F, etal. 2D elastic-plastic FE simulation of the drawbead drawing process[J]. Journal of materials processing technology,2001,120(3):359-370.
    [40]高凯祁,胡世光.遗传算法在覆盖件拉延筋参数优化中的应用[J].中国机械工程, 2002,11(13):937-940.
    [41]郑刚,李光耀,孙光永等.基于近似模型的拉延筋几何参数反求[J].中国机械工程,2006,17(19):1988-1992.
    [42] Weinmann K J, Michler J R. Development of a computer-controlled drawbead simulator for sheet metal forming. CIRP Annals 1994,43(1):257-261.
    [43] Michler J R, Weinmann K J. Feedback control of sheet metal strip drawing by drawbead penetration adjustment. Proceedings of the 1993 ASME.
    [44] Bohn Michael, Jurthe Stefan U, Weinmann K J. New multi-point active drawbead forming die:model development for process optimization. Proceedings of the 1998 SAE,1998:23-26.
    [45] K.Siegert. CNC hydraulic multipoint blankholder system for sheet metal forming processes. Annals of the CIRP 1993,42(1):319-322.
    [46] K.Siegert, M.Ziegler. Pulsating blankholder forces in the deep-draw processes. Annals of the CIRP,1997,46(1):205-208.
    [47] Weinmann K J, Li R. The effect of active drawbeads on depth of draw in the forming of aluminum panels. Proceedings of the 6th ICTP,1999:2031-2038.
    [48] Li R, Weinmann K J. Formability in non-symmetric aluminum panel drawing using active drawbeads[J]. Manufacturing technology,1999,48(1):209-212.
    [49] Li R, Weinmann K J, Chandra A. The use of active drawbeads in the forming of non-symmetric aluminum panels. Trans. NAMRI/SME,XXVII,1999:13-18.
    [50]崔令江.汽车覆盖件冲压成形技术[M].北京:机械工业出版社, 2003.
    [51]杨玉英.大型薄板成形技术[M].北京:国防工业出版社, 1996.
    [52]金淼.板料成形中拉深筋的力学性能及影响因素研究[D].秦皇岛:燕山大学, 2000.
    [53] S Kluge. Spannungsuberlagerung durch einsatz vonzichstaben beim umformen unregelmabiger blehteile, Blech rohre profile 39, 1992, 117-123
    [54]林忠钦等.车身覆盖件冲压成形仿真[M].北京:机械工业出版社,2004.
    [55]梁炳文,胡世光.弹塑性稳定性理论[M].北京:国防工业出版社,1983.
    [56] Keeler S P, Brazier W G. Relation between laboratory Material Characterization and Press-shop Formability[J]. Mieroalloying 75:517-530.
    [57]马鸣图,吴宝榕.双相钢物理和力学冶金[M].北京:冶金工业出版社, 1988:315-381.
    [58]马鸣图, Shi.M.F.先进高强度钢及其在汽车工业中的应用[J].钢铁, 2004, 39(7):68-72.
    [59]赵选民.试验设计方法[M].北京:科学出版社,2006.
    [60]金淼,郭宝峰,李群.拉深筋结构参数对变形及阻力的影响[J].塑性工程学报, 2008,15(2):105-108.
    [61]金淼,郭宝锋,李硕本,等.半圆形拉深筋尺寸参数对其阻力的影响[J].塑性工程学报, 2003,10(1):32-35.
    [62] Xu Siguang. On the formability of sheet metals: Part A: Prediction of forming limits based on Hill's 1993 yield criterion. Part B: Effect of drawbeads on sheet formability [D]. Michigan:Michigan Technological University,1998.
    [63] Bohn Michael Lawrence. Optimization of the sheet metal stamping process: Closed-loop active drawbead control combined with in-die process sensing [D]. Michigan:Michigan Technological University,1999.
    [64] Emblom William J. Closed-loop control of the sheet metal stamping process with active drawbeads,a flexible blankholder and variable active blank holder forces [D]. Michigan: Michigan Technological University,2006.
    [65]中国科学技术协会.车辆工程学科发展报告(2007-2008)[M].北京:中国科学技术出版社,2008.
    [66] McKay M D, Beckman R J, Conover W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 21(2):239-245.
    [67] RONG Qi-en, CHENG Cui-wei. Latin hypercube sampling in ultimate strength reliability of ship hull grider[J]. Journal of Ship Mechanics, 2002, 6(3): 52-57.
    [68] Kleijnen Jack P C. An overview of the design an analysis of simulation experiments for sensitivity analysisr[J].European Journal of operational research, 2005, 164(2): 287-300.
    [69]丁克勤,柳春图.接管高应变区缺陷的安全评定概率方法研究[J].中国安全科学学报,1999,9(5):63-68.
    [70]张书俊,任钧国,田四朋.固体火箭发动机粘弹性药柱结构可靠性分析[J].固体火箭技术, 2006, 29(3):183-189.
    [71] Holland J H. Adaptation in Natural and Artificial System[M]. Ann Arbor:University ofMichigan Press,1975.
    [72]贾毅,陆鑫达,佘雷.基于遗传算法的动态负载平衡研究[J].计算机工程与应用, 2003, 12(3):84-86.
    [73]李敏强,寇纪淞,林丹等.遗传算法的基本原理与应用[M].北京:科学出版社, 2003.
    [74]陈守爆,邱菊.基于遗传与BP混合算法神经网络预测模型及应用[J].大连理工大学学报2002(5):594-598.
    [75]周明.遗传算法原理及应用[M].北京:国防工业出版社,2002.
    [76]雷英杰,张善文,周创明等.遗传算法工具箱及其应用[M].西安:西安电子科技大学出版社,2004
    [77]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005.
    [78]崔令江,杨玉英,朱玉萍.利用神经网络构建方盒件成形数值模拟模型[J].塑性工程学报, 2005, (1): 20-23.
    [79]阎平凡等.人工神经网络与模拟进化计算[M].清华大学出版社. 2005
    [80]张清贵.人工神经网络导论[M].中国水利水电出版社. 2004
    [81]王武荣,陈关龙,林忠钦,李淑慧.板料成形中的新型可控压边力技术研究[J].塑性工程学报,2007,14(1):102-108.
    [82]仲高艳,康敏.基于神经网络的数控超声加工效果建模与仿真[J].系统仿真学报,2007,19(7):1620-1623.
    [83]彭必友,殷国富,林南,李金燕,宁海石.基于BP神经网络的车身U形类冲压件成形回弹预测[J].西华大学学报(自然科学版),2007,26(3):12-14.
    [84]胡斯尧,李立新,彭娟.基于BP网络的冷弯型钢轧后回弹预报模型[J].武汉科技大学学报(自然科学版),2006,29(5):446-448.
    [85]龙仕彰,胡树根,宋小文.基于人工智能的冲压件回弹控制系统[J].轻工机械, 2007,25(3):81-84.
    [86]郑超,刘全坤,胡龙飞,刘克素.基于回弹控制的汽车横梁拉延成形工艺多目标优化研究[J].合肥工业大学学报(自然科学版),2008,31(1):89-92.
    [87]李富柱,郭玉琴,王小椿,宋维.基于模拟退火的覆盖件回弹预测[J].机械工程学报,2006,42(8):220-223.
    [88]孙凌逸,王永军,王俊彪.基于神经网络的拉弯回弹预测技术研究[J].机械科学与技术,2008,27(1):65-68.
    [89]韩飞,莫健华,龚攀.基于遗传神经网络的数字化渐进成形回弹预测[J].华中科技大学学报(自然科学版),2008,36(1):121-124.
    [90]龚志辉,李光耀,钟志华,刘迪辉.基于仿真误差补偿模型的回弹补偿新方法[J].中国机械工程,2008,19(11):1358-1362.
    [91]柴海啸,胡树根,宋小文.基于几何回弹量补偿的模具型面修正方法[J].模具工业,2006,32(11):9-12.
    [92]龚志辉,钟志华.基于逆向工程技术实现汽车覆盖件回弹评测[J].湖南大学学报(自然科学版),2007,34(1):24-27.
    [93]李奇涵,李明哲,王娟,张庆芳.弯曲回弹变压边力曲线的数值模拟与正交优化[J].塑性工程学报,2008,15(5):78-82.
    [94]陈磊,杨继昌,陈炜,张立文.变压边力方式对板料U形回弹影响的有限元模拟研究[J].塑性工程学报,2005,12(5):12-16.
    [95]王健,胡星,刘丽娜,卢又平.基于变压边力技术的微车大梁回弹研究和控制[J].锻压技术,2008,33(5):55-58.
    [96]孙刚,李明哲,崔相吉,邓玉山.不同的多点成形工艺方式对回弹的影响[J].北京科技大学学报,2006,28(3):274-277.
    [97]麻桂艳,付文智,李明哲.中厚板多点成形中回弹的数值模拟[J].锻压技术, 2006,(4):141-144.
    [98]丛莲莲,苏世忠,李明哲.双曲度覆盖件多点成形中回弹的数值模拟[J].塑性工程学报, 2007,14(3):12-15.
    [99]张海明,蔡中义,李明哲.板材多点成形回弹补偿与控制的方法研究[J].塑性工程学报, 2007,14(3):32-35.
    [100]罗云华,王磊.高强钢板冲压回弹影响因素研究[J].锻压技术, 2009, 34(1): 23-26.
    [101]谢晖.基于CAE仿真的冲压回弹影响因素研究[J].湖南大学学报(自然科学版),2003, 30(5):29-33.
    [102]肖景容,姜奎华.冲压工艺学[M].北京:机械工业出版社,1999.
    [103]胡世光,陈鹤峥.板料冷压成形的工程解析[M].北京:北京航空航天大学出版社,2004.
    [104]蔡中义,李明哲,李湘吉.板材成形回弹数值分析的静力隐式方法[J].中国机械工程, 2002, (17): 1458-1461.
    [105] Yang D. Y., Jung D. W., Song I. S., et al. Comparative investigation into implicit explicit and iterative implicit/explicit schemes for the simulation of sheet-metal forming processes[J]. Journal of Materials Processing Technology,1995,(50):39-53.
    [105] Narkeerann N, Michael L. Predicting springback in sheet metal forming: an explicit to implicit sequential solution procedure[J]. Finite Elements in Analysis and Design,1999,33(1):29-42.
    [107] Ming F.Shi, Li Zhang. Issues concerning material constitutive laws and parameters in springback simulations. SAE Technical Paper,1999-01:1002.
    [108]张冬娟,崔振山,李玉强,阮雪榆.材料强化模型对板料回弹量的影响[J].上海交通大学学报,2006,40(10):1671-1674.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700