三维几何模型的流式传输
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在万维网刚刚出现的时候,人们曾梦想建立一个能自由游历的三维虚拟世界。在此网络虚拟环境中,通过“三维图形界面”,用户不再受限于物理时空的约束,可以方便地进行交流、研讨、训练、娱乐,甚至协同完成同一件比较复杂的产品设计或进行同一艰难任务的演练。但迄今为止,这个梦想仍然没有实现。目前面临的情况是:一方面,图形表示的直观性能帮助人们理解抽象而复杂的事物,人们越来越离不开三维几何图形;另一方面,三维几何模型数据的复杂性给数据在网络上的传输带来了困难,可能让使用者失去等待的耐心。造成目前窘境的根本原因是:通过互联网来存取异地的三维几何模型,使得本已十分有限的网络带宽变得更加紧张;更重要的是,互联网目前的速度远不能满足复杂三维几何模型实时传输的需求。从而,研究如何在网络上高效提供和实时传输用户所需的三维几何信息是促进网络图形学技术迅速发展的当务之急。
     流式传输是当前最流行的网络媒体传输形式。作为新兴的数字媒体,三维几何模型将点播视频时的被动接受变为主动控制,体现了比图像和视频等传统媒体更高的优越性。但因为三维几何模型自身的复杂性,既有的流媒体技术难以高效地传输三维几何模型。因此,本文研究三维几何模型的流式传输技术:用户不必等待完整的文件下载完毕,就可以实现三维几何模型的尽快“真实”交互和连续“实时”传输。在确立了“三维几何模型的流式传输”概念后,本文深入地研究了其关键技术:三维几何模型的渐进式压缩、视点相关的流式传输、具有错误控制功能的流式传输和基于当前/下一代网络的高效安全的分布式通信框架。
     首先,以三角形网格模型为研究对象,本文提出了一种三维几何模型渐近式压缩算法。该算法能有效减小三维几何模型的占用空间,并将其转变为适合于网络传输的表示。该算法对三角形网格进行渐进式度驱动拓扑压缩,并根据网格模型几何信息中切向和法向要素重要程度不同这一事实,采用不同的量化方法对切向信息和法向信息进行几何压缩。实验表明,本文的渐进式度驱动算法在拓扑压缩和几何压缩两个方面都具有很好的编码效率。特别是,与SIGGRAPH 2001上发表的原渐进式度驱动算法相比,测试模型的几何压缩性能提高了4%~20%;并具有更好的率失真曲线。
     其次,本文提出了一种基于网格有意义分割的视点相关的流式传输算法。以视觉分割领域的最小值规则为基础,网格有意义分割将三维几何模型视作不同子部分的集合体,并将对象上的凹部看成组成要素的边界。通过计算各顶点的最小主曲率值,算法将具有较低负值的顶点集标识为凹部,并进一步提取出凹部的特征轮廓线;对于所有的特征轮廓线,在排序后,按照优先级从高到低的顺序依次进行闭合处理和显著性测试,进而将通过测试的闭合轮廓线视作不同子块间分割的边界边。接下来,对各分割子块进行基于半边折叠的渐进式压缩,进而利用一种新型数据结构实现随机访问和视点相关的流式传输。从而,该算法可以根据视点信息灵活控制模型各子部分的分辨率,更加有效地降低传输模型数据时对网络带宽的需求。
     再次,采用两种技术来实现具有错误控制的流式传输,减小和预防包丢失等错误带来的影响。一种是降低错误扩散范围的网格分割机制。新的网格分割算法扩展了分解二维图形轮廓的捷径规则,将其拓展到三维网格分割领域。在分割算法执行过程中,先用垂直于局部骨架段的切割面扫描模型骨架的排序分支,通过测量切割面的拓扑和几何属性来确定用分割关键点标识的大致分割位置,而后利用大致分割位置附近的模型表面凹部特征来定义子块间的具体合理边界,从而得到鲁棒的有意义分割结果。另一种是加入冗余信息的容错算术编码方案。本文提出了一种面向三维几何模型压缩的容错扩展多步量化EMQ(extended multiplequantization)算术编码算法。通过插入周期性的起止位,该容错的EMQ算术编码算法进一步分割了传输的比特流,并提供了基本的错误检测和校正功能。
     最后,本文提出一种传输三维几何模型的新型分布式通信框架。该框架采用面向服务的客户端、中间服务层和企业信息系统三层软件结构,其中的客户端和中间服务层均采用了“模型-视图-控制器”设计模式。在该分布式通信框架设计中,我们开发了一种带纹理的三维几何模型的自适应生成算法,阐述了流式传输三维几何场景的有效组织结构以及合理的分发机制,提出了一种服务质量控制方案来确保客户端的实时交互性。并利用虚拟战场环境的应用实例对该框架进行了充分测试。测试结果表明,该框架可以满足远程用户实时访问的需求,恢复出的模型具有较好的逼真度。简而言之,该分布式通信框架具有合理的体系结构,并具有适应性好和可扩展性强等特点。
     本论文的研究成果对丰富计算机网络和图形学有重大的学术价值,对研究和开发网络虚拟博物馆、计算机辅助异地协同设计、科学计算远程可视化和因特网地理信息系统等应用具有重要的指导意义和参考价值。而且,其研究成果已在实际工程项目中获得了重要应用,取得了显著的效益。
At the emergence of the World Wide Web, people ever dreamed about building a free-surfing three-dimensional (3D) virtual world. In this world, users could conveniently commune, deliberate, educate, entertain, even cooperate to design one sophisticated product or drill one difficult task by easy 3D graphical interface, while no longer constrained by physical space-time conditions. However, the vision has not come true until now. At present, the actual status can be illustrated as the following: on the one hand, peoples are more depending on the 3D graphics due that the graphical representation, especially the abstract and sophisticated things, is intuitional and easy to understand, on the other hand, the complexity of 3D geometrical data results in difficulty of network transmission, even out of user patience for waiting the data. The prime bottleneck preventing remote rending applications from extensive use is the antinomy between the network transmission and the geometrical data. In fact, the finite network bandwidth is more insufficient for 3D models, and the speed of current internet is far from the real-time transmitting requirement of large-scale 3D geometrical models. Consequently, the research on effective provision and real-time transmission of 3D geometrical information required by the user is one urgent affair, which can greatly promote the development of network graphics. This demand has not been fulfilled by software standards or their implementations, leaving a wide potential field for technical innovations.
     Currently, streaming is one of the most popular forms for network media transmission. As one burgeoning digital media, 3D geometrical model is more advantaged than traditional media, e.g., image and video, since it is initiative command rather than passive acceptance when ordering program of visualization. However, existed streaming media technique does not offer efficient transfers due to the complexity of 3D geometry. Thereby, the 3D streaming technologies are thoroughly investigated in the dissertation, whose main goal is to provide 3D contents in real time for users over a network connection, such that the interactivity and visual qualities of contents may match as closely as if they were stored locally, especially making interactions with 3D data possible without a complete download. Following the first established concept, streaming transmission of 3D geometry models, the key technique is studied. In the concrete, the researched themes include new pioneering designs and solutions for progressive compression, view-dependent and error-controlling streaming technologies for 3D models as well as technologies and applications for distribution frameworks, networking technologies for efficient and robust data communication mechanisms on current and next generation networks.
     Firstly, a progressive compression algorithm for triangle meshes is proposed, which can effectively reduce the storage size of triangle models by encoding it in a compact format and is suitable for network. The compression is driven by progressive degree-based topological encoding and a simple multi-granularity quantization in geometrical encoding, which allows making better of the dynamic range (different number bits in normal/tangential components) than with a fixed-bit representation. Experiments have shown that the presented method outperforms in the compression ratio. Particularlly, our proposed coder outperforms the original, proposed in SIGGRAPH 2001, in the rate-distortion curve and geometry coding efficiency, and the range of improvements is typically around 4%~20%.
     Secondly, a view-dependent mesh streaming algorithm has been proposed in this dissertation, which first attempts to effectively integrate the mesh compression with meaningful segmentation. The proposed algorithm first divides a mesh model into several meaningful components based on the minima rule from cognitive theory. The minima rule states that human perception usually divides a surface into parts along the concave discontinuity of the tangent plane. Our segmentation method extracts features, based on the minimal principal curvature value of surface vertices, to find candidate contours located in the valley. These open contours are prioritized to select the most salient one. Then, the selected open contour is automatically completed to form a loop around a specific part of the mesh by principal component analysis of its vertices. And then, the approach encodes each partition independently by a progressive half-edge collapse compression algorithm. The whole scene is organized by a new data structure, called hierarchical element tree, to progressively transmit and render selective meaningful parts in a view-dependent and random-access way. Therefore, the method can flexibly manipulate the resolution of different parts by elimination of insignificant details, and can reduce the required bandwidth by transmitting only high-resolution of visible parts while cutting out unusable details of invisible parts.
     Thirdly, two error-controlling mesh streaming approaches have been respectively adopted to reduce and prevent the error effects caused by package missing on network. The one is mesh segmentation scheme to depress channel error propagation. The typical 2D silhouette parsing short-cut rule is introduced to 3D mesh segmentation domain. Guided by the extended 3D short-cut rule theory, the method makes use of new geometrical and topological functions of skeleton to define initial cutting critical points by sweeping a given mesh perpendicular to every skeleton branch, and then employs salient contours with negative minimal principal curvature values to determine natural final boundary curves among parts. And sufficient experiments have been carried out on many meshes, and shown that our algorithm can provide more reasonable perceptual results in more robust way. The other is error detection through checks in the residual redundancy on the arithmetic coded data. An error resilient 3D mesh coding algorithm is developed, which employs Extended Multiple Quantization (EMQ) arithmetic coder method, inspired by the error-resilience mechanisms presented in Joint Photographic Experts Group (JPEG) 2000 image coding standards. With periodic arithmetic coder restarting and termination markers, the error resilient EMQ coder further divides bit stream into little independent parts and enables basic transmission error containment.
     Fourthly, the adaptive progressive remote rendering architecture (APRR), a new service-oriented architecture for progressive delivery and adaptive rendering of 3D contents, is proposed. APRR framework is designed by three common tiers, including client, middle server, and enterprise information system. The front two tiers, client and middle server, are implemented by famous "model-view-controller" design pattern. Especially, the middle service tier is comprised by loose-coupled and high-encapsulated functional modules, i.e., adaptive generation of 3D geometrical models with textures, hierarcial organization of 3D scene, and reaonable delivery mechanism of 3D modalities. The client tier is controled by a quality of service (QoS) controller for remote rendering of 3D contents, aiming at higher real-time performance just as rendering local 3D scenes. The prototype of APRR is developed and tested by a virtual military environment. The results have shown the advantages of APRR framework, which can greatly enrich the perception and performance of 3D objects in distributed applications. In a nutshell, APRR framework has many better properties, such as logical software architecture, easy flexibility and expansibility.
     The achievements of the dissertation have the significant academic values to enrich the computer network and computer graphics science and technology, and have the instructional meanings to develop the other projects, such as, networked Virtual Meseum, distributed collaborative Computer Aided Design, internet Geographic Information System, remote Visualization in Scientific Computing. This dissertation not only has made major progress in principle, but also has the important applications in the practical engineering projects. In fact, there are many economical/social benefits to be obtained remarkably.
引文
[1]I.Sutherland.SketchPad:A man-machined graphical communication system.Ph.D Dissertation,Massachusetts Institute of Technology,USA,1963
    [2]ISO/IEC 14772-1,The virtual reality modeling language(VRML).1997
    [3]M.Pesce,P.Kennard,A.Parisi.Cyberspace.In:Proceedings of First International Conference on the World Wide Web,1994,54-65
    [4]T.Varady,R.R.Martin,J.Cox.Reverse engineering of geometric models:an introduction.Computer-Aided Design,1997,29(4):255-268
    [5]P.Schroder,W.Sweldens.Digital geometry processing.In:Proceedings of SIGGRAPH,Course Notes,Los Angeles,California,2001
    [6]张三元,查红彬,鲍虎军,叶修梓.数字几何处理及其应用的最新进展.计算机辅助设计与图形学学报,2005,17(6):1129-1138
    [7]The Digital Michelangelo Project,Stanford Computer Graphics Laboratory,2006.http://graphics.stanford.edu/projects/mich/
    [8]国家自然科学基金支持虚拟奥运博物馆建设,国家自然科学基金,2007.http://www.nsfc.gov.cn/Portal0/InfoModule_375/11301.htm
    [9]G.Enrico,F.Marton.Far voxels:a multiresolution framework for interactive rendering of huge complex 3d models on commodity graphics platforms.ACM Transactions on Graphics,2005,24(3):878-885
    [10]M.Isenburg,P.Lindstrom,J.Snoeyink.Lossless compression of floating-point geometry.Journal of Computer-Aided Design,2005,37(8):869-877
    [11]K.W.Brodlie,D.A.Duce,J.R.Gallop,R.B.Walton,J.D.Wood.Distributed and collaborative visualization.Computer Graphics Forum,2004,23(2):223-251
    [12]F.Goetz,B.Eβmann,T.Hampel:Collaboration by illustration:real-time visualization in Web3D.In:Proceedings of the Web3D,2006,47-56
    [13]R.M.Satava.Emerging technologies for surgery in the 21st century.Arch Surgery,1999,13(4):1197-1202
    [14]P.A.Longley,M.F.Goodchild,D.J.Maguire,D.W.Rhind.Geograhical information systems,volume 1,principles and technological issues,Second Edition.
    唐中实,黄俊丰,尹平,朱丽云,王越国,王淑伟,李小已等译.地理信息系统(上卷)——原理与技术(第二版).ISBN:712100338,北京:电子工业出版社,2004
    [15]Google Earth,Google Inc.,2006.http://ditu.google.com/
    [16]D.Brutzman.X3d earth project proposal,Web3D,2006.http://www.web3d.org/news/presentations/X3dEarth 2006July31.pdf
    [17]A.-M.Tomas,H.Eric.Real-time rendering,Second Edition.ISBN:1568811829, USA:A.K.Peters Ltd,2002.
    普建涛译.实时计算机图形学,第2版.北京:北京大学出版社,2004
    [18]M.Slater,A.Steed,and Y.Chrysanthou.Computer graphics and virtual environments from realism to real-time.England:Pearson Education,ISBN:711 14824,2002.
    程成,徐玉田译.计算机图形学与虚拟环境.北京:机械工业出版社,2004
    [19]J.D.Foley,A.van Dam,S.K.Feiner,and J.F.Hughes.Computer graphics.Second Edition in C,USA:Pearson Education,1996.
    唐泽胜,董士海,李华,吴恩华,汪国平等译.计算机图形学原理及实践——C语言描述(第二版).ISBN:71113026,北京:机械工业出版社,2004
    [20]D.Luebke,M.Reddy,J.Cohen,A.Varshney,B.Watson,and R.Huebner.Level of detail for 3D graphics.ISBN:1558608389,USA:Morgan Kaufmann,2002
    [21]M.Deering.Geometry compression.In:Proceedings of SIGGRAPH,ACM Press.Los Angeles,CA,USA.1995,13-20
    [22]X3D Developers,Web3D,2007.http://www.web3d.org/x3d/
    [23]ISO/IEC 14496-1.1999.Information Technology-Coding of audiovisual objects,Part 1:Systems,January.
    [24]3DIF,3d industrial forum,2007.http://www.3dif.org/
    [25]OPENHSF,Openhsf initiative,2007.http://www.openhsf.org/
    [26]D.Brutzman,M.Zyda,WATSEN,K.,M.Macedonia.virtual reality transfer protocol(vrtp) design rationale.In:Proceedings of WET-ICE,1997,179-186
    [27]W.Broll.Dwtp-an internet protocol for shared virtual environments.In:Proceedings of Symposium of VRML,1998,49-56
    [28]G.Al-Regib,Y.Altunbasak.3TP:3-D models transport protocol.In:Proceedings of the Web3D.Monterey,California,USA,2004,155-163
    [29]G.Al-Regib,Y.Altunbasak.3TP:an application-layer protocol for streaming 3-D graphics.IEEE Transactions on Multimedia,2005,7(6):1149-1156
    [30]R.C.Gonzalez,R.E.Woods.Digital image processing(second edition).
    阮秋琦,阮宇智等译.数字图像处理(第二版).ISBN:7505382365,北京:电子工业出版社,2003
    [31]Streaming Media Homepage,Streaming Media company,2007.http://www.streamingmedia.com/
    [32]H.Hoppe.Progressive meshes.In:Proceedings of SIGGRAPH.ACM Press.New Orleans,LA,USA,1996,99-108
    [33]S.Y.Hu.A Case for 3D streaming on peer-to-peer networks.In:Proceedings of the eleventh international conference on 3D web technology,2006,57-63
    [34]L.L.Peterson,B.S.Davie.Computer networks:a system approach,third edition. ISBN:1558608338,Morgan Kaufmann Publisher,2003
    [35]G.Al-Regib,Y.Altunbasak,J.Rossignac.Error-resilient transmission of 3D models.ACM Transactions on Graphics,2005,24(2):182-208
    [36]J.Chen,B.Wu,M.Delap,B.Knutsson,H.Lu,C.Amza.Locality aware dynamic load management for massively multiplayer games.In:Proceedings of ACM PPoPP,2005,289-300
    [37]C.Gotsman,S.Gurnhold,L.Kobbelt.Simplification and compression of 3D meshes.Geometric Modelling,2002:319-361
    [38]刘新国.三维几何压缩[博士学位论文].杭州:浙江大学,2001
    [39]J.-E.Marvie,K.Bouatouch.Remote rendering of massively textured 3d scenes through progressive texture maps.In:Proceedings of IASTED Conf.ⅦP,vol.2,2003,756-761
    [40]J.Zhang,C.B.Owen.Octree-based animated geometry compression.In:Proceedings of IEEE Data Compression Conference,2004,508-517
    [41]S.Rusinkiewicz,M.Levoy.QSplat:a multiresolution point rendering system for large meshes.In:Proceedings of SIGGRAPH,2000,343-352
    [42]S.Rusinkiewicz,M.Levoy.Streaming QSplat:A viewer for networked visualization of large,dense models.In:Proceedings of ACM Symposium on Interactive 3D Graphics,2001,63-68
    [43]H.Lee,M.Desbrun,P.Schroder P.Progressive encoding of complex isosurfaces.In:Proceedings of SIGGRAPH,San Diego,USA,2003,471-476
    [44]彭维,莫蓉,李波.Internet环境三维流式传输算法研究.小型微型计算机系统,2001,22(8):924-928
    [45]李起成,汪国平.数字博物馆中的三维模型渐进传输方法.计算机工程,2006,32(19):221-223
    [46]马志刚,张凯,汪国平,董士海.三维地形场景流式传输.北京大学学报(自然科学版),2006,24(1):116-120
    [47]S.Singhal,M.Zyda.Networked virtual environments:design and implementation.ISBN:0201325578,Addison-Wesley Professional Publisherm,1999
    [48]C.J.Bouras,A.Panagopoulos,T.Tsiatsos.Implementation of 3D mesh streaming and compression techniques in NVEs.Computer Animation and Virtual Worlds 2006,17(2):127-140
    [49]D.Cohen-Or,Y.Chrysanthou,F.Durand,N.Greene,V.Koltun,C.Silva.Visibility problems,techniques and applications.In:Proceedings of SIGGRAPH,Course Notes 30,Los Angeles,California,2001
    [50]D.Schmaltieg,M.Gervautz.Demand-driven geometry transmission for distributed virtual environments.Computer Graphics Forum,1996,15(3):421-433
    [51]D.Schmalstieg.The remote rendering pipeline managing geometry and bandwidth in distributed virtual environments.Ph.D Dissertation,Vienna University of Technology,Austria,1998
    [52]J.Chim,R.W.H.Lau,H.V.Leong,A.Si.Cyberwalk:a web-based distributed virtual walk-through environment.IEEE Transactions on Multimedia,2003,5(4):503-515
    [53]Activeworlds,AW,2007.http://www.activeworlds.com/
    [54]Second life,LindenLab,2007.http://secondlife.com/
    [55]There.corn,ForterraSystmes,2007.http://www.there.com
    [56]P.Cignoni,L.D.Floriani,P.Lindstrom,V.Pascucci,J.Rossignac,C.Silva.Multi-resolution modeling,visualization and streaming of volume meshes,In:Proceedings of STAR of EuroGraphics,2004
    [57]S.Olbrich,H.Pralle.Virtual reality movies real-time streaming of 3d objects.Computer Networks,1999,31(21):2215-2225
    [58]Remote and Distributed Visualization(DiVA),Berkeley National Laboratory,2007.http://vis.lbl.gov/Research/DiVA/index.html
    [59]A.Neeman,P.Sulatycke,K.Ghose.Fast remote isosurface visualization with chessboarding,in Proceedings of Eurographics Symposium on Parallel Graphics and Visualization(EGPGV),2004,75-82
    [60]A.Gerndt,B.Hentschel,M.Wolter,T.Kuhlen,C.Bischof.Viracocha:an efficient parallelization framework for large-scale CFD post-processing in virtual environments.In:Proceedings of SC,2004,50-58
    [61]杨小辉,方宗德,杨青.网络环境下工程分析可视化数据简化与压缩.机械科学与技术,2006,25(1):46-49
    [62]C.R.Johnson,R.Moorhead,T.Munzner,H.Pfister,P.Rheingans,T.S.Yoo.NIH-NSF Visualization Research Challenges Report.Note:http://tab.computer.org/vgtc/vrc/index.html,IEEE Press,2006
    [63]N.-S.Lin,T.-H.Huang,B.-Y.Chen.View-dependent jpeg 2000 based mesh streaming.In:proceedings of SIGGRAPH Conference,Abstracts and Applications(Posters Program),2006
    [64]L.McMillan.Image-Based Rendering:A new interface between computer vision and computer graphics.SIGGRAPH Computer Graphics Newsletter:Applications of Computer Vision to Computer Graphics,1999,33(4):61-64
    [65]OpenGL Vizserver 3.4,Silicon Graphics Inc.,2007.http://www.sgi.com/sofeware/vizserver
    [66]Deep Computing Visualization,IBM Inc.,2007.http://www.ibm.com/servers/deepcomputing/
    [67]HP Remote Graphics Service(HP RGS),HP Inc.,2007. http://www.cisl.ucar.edu/hss/dasg/services/docs/HPRG.html
    [68] A. Kalaiah, A. Varshney. Statistical geometry representation for efficient transmission and rendering. ACM Transactions on Graphics, 2005, 24(2): 348-373
    [69] F. Lamberti, A. Sanna. A streaming-based solution for remote visualization of 3D graphics on mobile devices. IEEE Transactions on Visualization and Computer Graphics, 2007,13(2): 247-260
    [70] E. Teler, D. Lischinski. Streaming of complex 3d scenes for remote walkthroughs. Computer Graphics Forum, 2001, 20(3): 17-25
    [71] D. Koller, M. Turitzin, M. Tarini, G. Croccia, P. Cignoni, R. Scopigno. Protected interactive 3D graphics via remote rendering. ACM Transaction on Graphics, 2004, 23(3): 695-703
    [72] Y. Mann, D. Cohen-Or. Selective pixel transmission for navigating in remote virtual environments. Computer Graphics Forum, 1997,16(3): 201-206
    [73] J. Sahm, Ingo Soetebier, H. Birthelmer. Efficient representation and streaming of 3D scenes. Computers & Graphics, 2004, 28(1): 15-24
    [74] M. Guthe, R. Klein. Streaming HLODs: an out-of-core viewer for network visualization of huge polygon models. Computers & Graphics, 2004,28(1): 43-50
    [75] G. Popescu, Z. Liu. On scheduling 3D model transmission in network virtual environments. In: Proceedings of the Sixth IEEE International Workshop on Distributed Simulation and Real-Time Applications, 2002, 127-133
    [76] S. Gumhold, S. Noll. Introduction to situatoin and task awareness computing. Computer & Graphics, 2004,28(1): 1-2
    [77] W. Tutte. A census of planar triangulations. Canadian Journal of Mathematics, 1962,14: 21-38
    [78] A. Gersho, R.M. Gray. Vector quantization and signal compression. ISBN:0792391810, SPRINGER Publishers, 1992
    [79] J.L. Peng, C.-S. Kim, C.-C. J.Kuo. Technologies for 3D mesh compression: a survey. Journal of Visual Communication and Image Representation, 2005, 16(6): 688-733
    
    [80] 王文成..几何模型压缩.中国计算机图形学研讨会, 杭州,浙江,中国,2005
    [81] P. Alliez, C. Gotsman. Recent advances in compression of 3D meshes. Advances in Multiresolution for Geometric Modeling, 2005,1: 3-26
    [82] M. Chow. Optimized geometry compression for real-time rendering. In: Proceedings of IEEE Visualization, 1997, 347-354.
    [83] G. Turan. On the succinct representations of graphs. Discrete Applied Mathematics. 1984,22(8): 289-294.
    [84] G. Taubin, J. Rossignac. Geometric compression through topological surgery. ACM Transactions on Graphics,1998,17(2):84-115.
    [85]C.L.Bajaj,V.Pascucci,G.Zhuang.Single resolution compression of arbitrary triangular meshes with properties.Computational Geometry Theory and Applications,1999,14(2):167-186
    [86]C.Youma,C.Gotsman.Triangle mesh compression.In:Proceedings of Graphics Interface,Canadian Human-Computer Communications Society Press,Vancouver,BC,Canada,1998,26-34
    [87]P.Alliez,M.Desbrun.Valence-driven connectivity encoding of 3D meshes.In:Proceedings of EUROGRAPHICS.CGF Press.Manchester,UK,2001,480-489
    [88]M.Isenburg.Compressing polygon mesh connectivity with degree duality prediction.In:Proceedings of IEEE Visualization,Boston,USA,2002,141-146
    [89]S.Gumhold,W.Strainer.Real time compression of triangle mesh connectivity.In:Proceedings of SIGGRAPH,Florida,USA,1998,133-140
    [90]J.Rossignac.Edgebreaker:Connectivity compression for triangle meshes.IEEE Transactions on Visualization and Computer Graphics,1999,5(1):47-61
    [91]A.Szymczak,D.King,J.Rossignac.An edgebreaker-based efficient compression scheme for regular meshes.In:Proceedings of 12th Computational Geometry,Ottawa,Canada,2000,257-264
    [92]B.Kronrod,C.Gotsman.Optimized compression of triangle mesh geometry using prediction trees.In:Proceedings of 1st International Symposium on 3D Data Processing,Visualization and Transmission,2002,602-608
    [93]D.Cohen-Or,R.Cohen,T.Ironi.Multi-way geometry encoding.Technical report,Israel:The School of Computer Science,Tel-Aviv University,2002
    [94]J.Popovic,H.Hoppe.Progressive simplicial complexes.In:Proceedings of SIGGRAPH,1997,217-224
    [95]G.Taubin,A.Gueziec,W.Horn,F.Lazarus.Progressive forest split compression.In:Proceedings of SIGGRAPH.Florida,USA,1998,123-132
    [96]R.Pajarola,J.Rossignac.Compressed progressive meshes.IEEE Transactions on Visualization and Computer Graphics,2000,6(1):79-93
    [97]D.Cohen-Or,D.Levin,O.Remez.Progressive compression of arbitrary triangular meshes.In:Proceedings of IEEE Visualization,San Francisco,California,USA,1999,67-72
    [98]C.Bajaj,V.Pascucci,G.Zhuang.Progressive compression and transmission of arbitrary triangular meshes.In:Proceedings of IEEE Visualization,San Francisco,California,USA,1999,307-316
    [99]秦绪佳,刘新国,鲍虎军,彭群生.网格的渐进几何压缩.软件学报,2002,13(9):1804-1812
    [100]P.Alliez,M.Desbrun.Progressive encoding for lossless transmission of triangle meshes. In: Proceedings of SIGGRAPH, Los Angeles, CA, USA, 2001,198-205
    [101] O. Devillers, P. Gandoin. Geometric compression for interactive transmission. In: Proceedings of IEEE Visualization, 2000, 319-326
    [102] P.M. Gandoin, O. Devillers. Progressive lossless compression of arbitrary simplicial complexes. In: Proceedings of SIGGRAPH, San Antonio, Texas, USA, 2002, 372-379
    
    [103] J.L. Peng, C.J. Kuo. Geometry-guided progressive lossless 3D mesh coding with octree decomposition. ACM Transactions on Graphics, 2005,24(3): 609-616
    [104] Z. Kami, C. Gotsman. Spectral compression of mesh geometry. In: Proceedings of SIGGRAPH, New Orleans, Louisiana, USA, 2000, 279-286
    [105] O. Sorkine, D. Cohen-Or, S. Toledo. High-pass quantization for mesh encoding. In: Proceedings of the Eurographics/ACM SIGGRAPH symposium on Geometry processing, Aachen, Germany, 2003, 42-51
    [106] A. Khodakovsky, P. Schroder, W. Sweldens. Progressive geometry compression. In: Proceedings of SIGGRAPH. New Orleans, Louisiana, USA, 2000, 271-278
    [107] A. Khodakovsky, I. Guskov. Compression of normal meshes. In: Proceedings of Geometric Modeling for Scientic Visualization, Springer-Verlag, 2004,189-204
    [108] I. Guskov, K. Vidimce, W. Sweldens, P. Schroeder. Normal meshes. In: Proceedings of SIGGRAPH, New Orleans, Louisiana, USA, 2000, 95-102
    [109] A. Khodakovsky, N. Litke, P. Schroder. Globally smooth parameterizations with low distortion. ACM Transactions on Graphics, 2003,22 (3): 350-357
    [110] S. Valette, A. Gouaillard, R. Prost. Compression of 3D triangular meshes with progressive precision. Computers & Graphics, 2004,28(1): 35-42
    [111] J. Jessl, M. Bertram, H. Hagen. Web-based progressive geometry transmission using subdivision-surface wavelets. In: Proceedings of the Web3D, 2005,29-35
    [112]X.F. Gu, S.J. Gortler, H. Hoppe. Geometry images. In: Proceedings of SIGGRAPH, San Antonio, Texas, USA, 2002, 355-361
    [113] P. Sander, Z. Wood, S. Gortler, J. Snyder, H. Hoppe. Multi-chart geometry images. In: Proceedings of Eurographics Symposium on Geometry Processing, 2003, 146-155
    
    [114] E. Praun, H. Hoppe. Spherical parametrization and remeshing. ACM Transactions on Graphics, 2003, 22(3): 340-349
    [115] A. Gueziec, G. Taubin, B. Horn, F. Lazarus. A framework for streaming geometry in VRML. IEEE Computer Graphics and Applications, 1999,19(2): 68-78
    [116] M. Isenburg, S. Gumhold. Out-of-core compression for gigantic polygon meshes. ACM Transactions on Graphics, 2003, 22(3): 935-942
    [117] M. Isenburg, P. Linstrom. 2005. Streaming meshes. In: Proceedings of IEEE Visualization, 2005,231-238
    
    [118]M. Isenburg. Compression and streaming of polygon meshes. [PH. D Thesis], University of North Carolina,USA,2005
    [119]M.Isenburg,Y.Liu,J.Shewchuk,J.Snoeyink.Streaming computation of Delaunay triangulations.ACM Transactions on Graphics,2006,25(3):1049-1056
    [120]L.D.Floriani,P.Magillo,F.Morando,and E.Puppo.Dynamic view-dependent multiresolution on a client-server architecture.Computer-Aided Design,2000,32(13):805-823
    [121]J.El-sana and N.Sokolovsky.View-dependent rendering for large polygonal models over networks.International Journal of Image and Graphics,2003,3(2):265-290
    [122]H.Hoppe.View-Dependent refinement of progressive meshes.In:Proceedings of SIGGRAPH,New York,1997,189-198
    [123]R.Southern,S.Perkins,B.Steyn,A.Muller,P.Marais,E.H.Blake.A stateless client for progressive view-dependent transmission.In:Proceedings of Web3D Symposium,2001,43-49
    [124]J.Kim,S.Lee.Truly selective refinement of progressive meshes.In:Proceedings of Graphics Interface,Ottawa,Canada,2001,101-110
    [125]J.Kim,S.Lee,L.Kobbelt.View-dependent streaming of progressive meshes.In:Proceedings of Shape Modeling International,2004,209-220
    [126]J.Kim,S.Lee,L.Kobbelt.View-dependent mesh streaming with minimal latency.International Journal of Shape Modeling,2005,11(1):63-89
    [127]D.S.P.To,R.W.H.Lau,M.Green.A method for progressive and selective transmission of multi-resolution models.In:Proceedings of ACM Symposium on Virtual Reality Software and Technology,1999,88-95
    [128]J.C.Xia,A.Varshney.Dynamic view-dependent simplification for polygonal models.In:Proceedings of IEEE Visualization,1996,327-334
    [129]冀俊,李胜,刘学慧,吴恩华.细节高度复杂表面模型的视点相关渐进传输.软件学报,2006,17(10):2192-2198
    [130]S.Yang,C.-S.Kim,C.-C.J.Kuo.View-dependent progressive mesh coding for graphic streaming.In:Proceedings of SPIE Multimedia Systems and Applications Ⅳ,2001,154-165
    [131]S.Yang,C.-S.Kim,C-C J.Kuo.View-dependent progressive mesh coding based on partitioning.In:Proceedings of VCIP,2002,268-279
    [132]S.Yang,C.-S.Kim,C.-C.J.Kuo.A progressive view-dependent technique for interactive 3d mesh transmission.IEEE Transactions on Circuits and Systems for Video Technology,2004,14(11):1249-1264
    [133]J.-Y.Sim,C.-S.Kim,C.-C.J.Kuo,S.-U.Lee.Rate-distortion optimized compression and view-dependent transmission of 3-D normal meshes.IEEE Transactions on Circuits and Systems for Video Technology,2005,15(7): 854-868
    [134]马志刚,王楠,汪国平,董士海.多码流渐进几何压缩.计算机辅助设计与图形学学报,2006,18(2):200-207
    [135]刘波,张鸿宾.支持随机浏览的渐进几何压缩.计算机研究与发展,2005,48(2):1350-1354
    [136]S.Choe,J.Kim,H.Lee,S.Lee,H.-P.Seidel.Mesh compression with random accessibility.In:Proceedings of Israel-Korea Bi-National Conference,2004,81-86
    [137]J.Kim,S.Choe,S.Lee.Multiresolution random accessible mesh compression.Computer Graphics Forum,2006,25(3):323-332
    [138]I.Yosic,P.Frossard and P.Vandergheynst.Progressive coding of 3-D objects based on overcomplete decompositions.IEEE Transactions on Circuits and Systems for Video Technology,2006,16(11):1338-1349
    [139]B.-Y.Chen.Java-based Multiresolution streaming mesh with QoS-like controlling for web graphics.[Ph.D Dissertation],Tokyo,Japan,2002
    [140]B.-Y.Chen,T.Nishita.Multiresolution streaming mesh with shape preserving and Qos-like controlling.In:Proceedings of the Web3D,2002,35-42
    [141]S.Varakliotis,S.Hailes,J.Ostermann.Progressive coding for QoS-enabled streaming of dynamic 3-D meshes.In:Proceedings of IEEE International Conference on Communications,2003,1323-1329
    [142]秦爱红,彭浩宇,石教英.三维几何数据压缩算法的累计误差消除方法.计算机辅助设计与图形学学报,2005,17(9):1900-1905
    [143]C.L.Bajaj,S.Cutchin,V.Pascucci,G.Zhuang.Error resilient transmission of compressed VRML.[Technical Report],TICAM,The University of Texas at Austin,1998.
    [144]G.Al-Regib,Y.Altunbasak.An unequal error protection method for packet loss resilient 3D mesh transmission.In:Proceedings of IEEE INFOCOM,New York,NY,2002,2,743-752
    [145]Z.Yan,S.Kumar,C.C.J.Kuo.Error resilient coding of 3-D graphic models via adaptive mesh segmentation.IEEE Transaction on Circuits and System Video Technology,2001,11(7):860-873
    [146]Z.Yan,S.Kumar,C.C.J.Kuo.Mesh segmentation schemes for error resilient coding of 3-D graphic models.IEEE Transaction on Circuits and System Video Technology,2005,15(1):138-144
    [147]S.-B.Park,C.-S.Kim,S.-U.Lee.Error resilient 3-D mesh compression.IEEE Transactions on Multimedia,2006,8(5):885-895
    [148]S.Bischoff,L.Kobbelt.Ellipsoid decomposition of 3D-models.In:Proceedings of International Symposium on 3D Data Processing,Visualization,and Transmission,2002,480-488
    [149]P.Liepa.Filling holes in meshes.In:Proceedings of Eurographics/ACM Siggraph Symposium Geometry Processing,2003,200-207
    [150]A.Sharf,M.Alexa,D.Cohen-Or.Context-based surface completion.In:Proceedings of SIGGRAPH,2004,878-887
    [151]Z.Chen,B.Bodenheimer,J.Barnes.Robust transmission of 3D geometry over lossy networks.In:Proceedings of the 8th International Conference on 3D Web Technology,2003,161-172
    [152]H.Li,M.Li,B.Prabhakaran.Middleware for streaming 3D progressive meshes over lossy networks.ACM Transactions on Multimedia Computing,Communications,and Applications,2006,2(4)282-317
    [153]孙晓鹏,李华.三维网格模型的分割及应用技术综述.计算机辅助设计与图形学学报,2005,17(8):1647-1655
    [154]A.Shamir.A formulation of boundary mesh segmentation.In:Proceedings of 3DPVT,2004,82-89
    [155]P.Sander,J.Snyder,S.Gortler,and H.Hoppe.Texture mapping progressive meshes.In:Proceedings of SIGGRAPH,2001,409-416
    [156]C.-C.Chen and J.-H.Chuang.Texture Adaptation for Progressive Meshes.In:Proceedings of Eurographics,2006,25(3):343-350
    [157]D.Yian,G.Al-Regib.FQM:A fast quality measure for efficient transmission of textured 3D models.In Proceedings of ACM Multimedia,New York,NY,2004,686-692
    [158]I.M.Martin.Adaptive rendering of 3D models over networks using multiple modalities.[Technical Report],IBM Y.J.Watson Research Center RC 21722,97821,2000
    [159]I.M.Martin.ARYE-adaptive rendering and transmission environment.In:Proceedings of the Eighth ACM International Conference on Multimedia,International Multimedia Conference,Marina del Rey,California,2000,413-415
    [160]I.M.Martin.Hybrid transcoding for adaptive transmission of 3D content.In:Proceedings of IEEE International Conference on Multimedia and Expo(ICME),Lausanne,Switzerland,2002,373-376
    [161]I.M.Martin.Adaptive graphics.IEEE Computer Graphics and Applications,2003,2(1):6-10
    [162]G.Taubin,W.Horn,F.Lazarus,J.Rossignac.Geometry coding and VRML.In:Proceedings of IEEE Visualization,1998,1228-1243
    [163]E.Fogel,D.Cohen-Or,R.Ironi,T.Zvi.A web architecture for progressive delivery of 3D content.In:Proceedings of the Web3D,2001,35-41
    [164]J.-E.Marvie,K.Bouatouch.A vrml97-x3D extension for massive scenery management in virtual worlds. In: Proceedings of Web3D, 2004,145-153
    [165] Compressed Binary encoding, Web3D, 2007. http://www.web3d.org/x3d/ specifications/ISO-IEC-19776-3-CD-X3DEncodings-CompressedBinary/
    [166] M. Isenburg, J. Snoeyink. Compressing polygon meshes as compressable ASCII. In: Proceedings of the Web3D, 2002,1-10
    [167] M. Isenburg, J. Snoeyink. Binary compression rates for ASCII formats. In: Proceedings of the Web3D, 2003, 173-178
    [168] N. Magharei, A. h. Rasti, D. Stutzbach , R. Rejaie. Peer-to-peer receiver-driven mesh-based streaming. In: Proceedings of the ACM SIGCOMM, Poster Session, Poster 40,2005
    [169] N. Magharei, R. Rejaie. Understanding mesh-based peer-to-peer streaming. In: Proceedings of the ACM International Workshop on Network and Operating Systems Support for Digital Audio and Video, Newport, RI, 2006, 56-61
    [170] B. Knutsson, H. Lu, W. Xu, Hopkins. Peer-to-peer support for massively multiplayer games. In: Proceedings of INFOCOM, 2004, 96-107
    [171] H. Edelsbrunner. Geometry and topology for mesh generation. ISBN:0521793092, Cambridge University Press, UK, 2001
    [172] J. L. Gross, J. Yellen. Graph theory and its applications. ISBN:0849339820, CRC Press, 1998
    [173] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: measuring error on simplified surfaces. Computer Graphics Forum, 1998,17(2): 167-174
    [174] M. Schindler. A fast renormalization for arithmetic coding. In: Proceedings of IEEE Data Compression Conference, Snowbird, UT, 1998, 572-577
    [175] L. Vincent, P. Soille. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991:583-598
    [176] B. Falcidieno, M. Spagnuolo. Polyhedral surface decomposition based on curvature analysis. In: Proceedings of Modern Geometric Computing for Visualization, Tokyo, Springer-Verlag, 1992, 57-72
    [177] J. Maillot, H. Yahia, V. Verroust. Interactive texture mapping. In: Proceedings of SIGGRAPH, Anaheim, California, 1993, 27-34
    [178] M. Hebert, R. Homan, A. Johnson, et al. Sensor-based interior modeling. In: Proceedings of the American Nuclear Society 6th Topical Meeting on Robotics and Remote Systems, Monterey, California, 1995, 731-737
    [179] V. Krishnamurthy, M. Levoy. Fitting smooth surfaces to dense polygon meshes. In: Proceedings of SIGGRAPH, New Orleans, Louisiana, 1996, 313-324
    [180] K. Wu, M. D. Levine. 3D part segmentation using simulated electrical charge distributions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997:1223-1235
    [181] A. Mangan, R. Whitaker. Partitioning 3D surface meshes using Watershed segmentation. IEEE Transactions on Visualization and Computer Graphics, 1999: 308-321
    [182] S. Pulla, A. Razdan, G. Farin. Improved curvature estimation for watershed segmentation of 3-Dimensional meshes. [Technical Report], Arizona State University, 2001
    [183] A. Gregory, A. State, M. Lin, et al. Interactive surface decomposition for polyhedral morphing. The Visual Computer, 1999: 453-470
    [184] T. S. Tan, C. K. Chong, K. L. Low. Computing bounding volume hierarchy using simplified models. In: Proceedings of the ACM Symposium on Interactive 3D Graphics, Atlanta, Georgia, 1999, 63-69
    [185] C. Rossi, L. Kobbelt, H. P. Seidel. Extraction of feature lines on triangulated surfaces using morphological operators. In: Proceedings of the AAAI Symposium on Smart Graphics, Stanford, California, 2000, 71-75
    [186] Y. Yu, A. Ferencz, J. Malik. Extracting objects from range and radiance images. IEEE Transactions on Visualization and Computer Graphics, 2001: 351-364
    [187] N. Werghi, Y. Xiao. Posture recognition and segmentation from 3D human body scans. In: Proceedings of International Symposium on 3D Data Processing, Visualization, and Transmission, 2002, 636-639
    [188] A. P. Rondao, C. Francois, M. Benoit, et al. Lapped spectral decomposition for 3D triangle mesh compression. In: Proceedings of International Conference on Image Processing, Barcelona, 2003, 781-784
    [189] B. Levy, S. Petitjean, N. Ray, et al. Least squares conformal maps for automatic texture Atlas generation. In: Proceedings of SIGGRAPH, San Antonio, Texas, 2002, 362-371
    [190] E. Praun, H. Hoppe. Spherical parameterization and remeshing. In: Proceedings of SIGGRAPH, San Diego, California, 2003, 340-349
    [191] X. Li, T. Toon, T. Tan, and Z. Huang. Decomposing polygon meshes for interactive applications. In: Proceedings of the Symposium on Interactive 3D Graphics, 2001,35-42
    [192] S. Katz, A. Tal. Hierarchical mesh decomposition using fuzzy clustering and cuts. In: Proceedings of SIGGRAPH, 2003, 954-961
    
    [193] D. Hoffman, W. Richards. Parts of recognition, Cognition 1984, 18: 65-96
    [194] D. L. Page, A. F. Koschan, M. A. Abidi. Perception-based 3D triangle mesh segmentation using fast marching watersheds. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. II, 2003,27-32
    [195] D. L. Page, M. A. Abidi, A.F. Koschan, Y. Zhang. Object representation using the minima rule and superquadrics for under vehicle inspection. In: Proceedings of 1st IEEE Latin American Conference on Robotics and Automation, 2003, 91-97
    [196] D. Hoffman, M. Signh. Salience of visual parts, Cognition 1997,63: 29-78
    [197] Y. Lee, S. Lee, A. Shamir, D. Cohen-Or, H.-P. Seidel. Mesh scissoring with minima rule and part salience. Computer Aided Geometric Design, 2005, 22: 444-465
    [198] M. Garland, A. Willmott, P. Heckbert. Hierarchical face clustering on polygonal surfaces. In: Proceedings of ACM Symposium on Interactive 3D Graphics, 2001, 49-58
    [199] E. Zuckerberger, A. Tal, S. Shlafman. Polyhedral surface decomposition with applications. Computers &Graphics, 2002,26(5): 733-743
    [200] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Levy, M. Desbrun. Anisotropic polygonal remeshing. In: Proceedings of SIGGRAPH, 2003,485-493
    [201] S. Rusinkiewicz. Estimating curvatures and their derivatives on triangle meshes. In: Proceedings of Symposium on 3D Data Processing, Visualization, and Transmission, 2004,486-95
    [202] A. Hubeli, M. Gross. Multiresolution feature extraction for unstructured meshes. In: Proceedings of IEEE Visualization, 2001, 287-294
    [203] M. Attene, S. Katz, M. Mortara, G. Patane, M. Spagnuolo, A. Tal. Mesh segmentation - a comparative study. In: Proceedings of the IEEE International Conference on Shape Modeling and Applications, 2006,14-25
    [204] M. Singh, G. D. Seyranian, D. Hoffman. Parsing silhouettes: the short-cut rule. Perception and Psychophysics, 1999: 636-660
    [205] D.S. Taubman, M. W. Marcellin. JPEG2000: image compression fundamentals, standards and practice. ISBN: 079237519X, Kluwer Academic Publisher, 2002
    [206] D. N. Cornea, D. Silver, P. Min. Curve-skeleton applications. In: Proceedings of IEEE Visualization, 2005, 95-102
    [207] J. M. Lien, J. Keyser, M.N. Amato. Simultaneous shape decomposition and skeletonization. In: Proceedings of ACM symposium on Solid and physical modeling, 2006, 219-228
    [208] D. N. Cornea, D. Silver, X.S. Yuan, R. Balasubramanian. Computing hierarchical curve-skeletons of 3D objects. The Visual Computer, 2005, 21(11): 945-55
    
    [209] 朱红斌,王文成,吴恩华. 三维模型骨架的矫正.软件学报, 2004, 15(6): 960-968
    [210] F. Dachille, A. Kaufman. Incremental triangle voxelization. In: Proceedings of Graphics Interface, 2000, 205-212
    [211]N. Ahuja, J.-H. Chuang. Shape representation using a generalized potential field model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(2): 169-176
    [212] N. Gagavani, D. Silver. Parameter controlled volume thinning. Graphical Modeling and Image Processing, 1999, 61(3): 149-164
    
    [213] A. Globus, C. Levit, T. Lasinski. A tool for visualizing the topology of three-dimensional vector fields. In: Proceeding of IEEE Visualization, 1991, 33-40
    [214] A. Kalvin, E. Schonberg, J.T. Schwartz, M. Sharir. Two dimensional model based boundary matching using footprints. International Journal of Robotics Research, 1986, 5(4): 38-55
    [215] W. Massey. Algebraic topology: an introduction, seventh edition. ISBN:0387902716, Harcourt, Brace & World, Inc., New York, 1990
    [216] Z. Wood, H. Hoppe, M. Desbrun, P. Schroder. Removing excess topology from isosurfaces. ACM Transactions on Graphics, 2004,23(2): 190-208
    [217] Y. Ohtake, A. Belyaev, H.-P. Seidel. Ridge-valley lines on meshes via implicit surface fitting. ACM Transactions on Graphics, 2004, 23(2): 609-612
    [218] S. Bouix, K. Siddiqi. Divergence-Based Medial Surfaces. In: Proceedings of European Conference on Computer Version, 2000, 603-618
    [219] T. Ju, Q.-Y. Zhou, S.-M. Hu. Editing the topology of 3D models by sketching. ACM Transactions on Graphics, 2007, 26(3): No. 42
    [220] M. Grangetto, E. Magli, G. Olmo. Error resilient MQ coder and map JPEG 2000 decoding. In: Proceedings of ICIP, 2004, vol 4, 2551-2554
    
    [221] J. Chou, K. Ramchandran. Arithmetic coding-based continuous error detection for efficient ARQ-based image transmission. IEEE Journal on Selected Areas in Communications, 2000,18(6): 861-867
    [222] E. Gamma, E. Helm, R. Johnson, J. Vlissides. Design Patterns -Elements of Reusable, Object-Oriented Software, Addison-Wesley, 1995
    
    [223] Q. O. Snell, A. R. Mikler, J. I. Gustafson. NetPIPE: A network protocol independent performance evaluator. In: Proceedings of the International Conference on Intelligent Information Management Systems, 1996, 127-138
    [224] M. Isenburg, J. Snoeyink: Compressing texture coordinates with selective linear predictions. In: Proceedings of Computer Graphics International Conference, 2003, 126-133
    [225] M. Isenburg, J. Snoeyink. Compressing the property mapping of polygon meshes. In: Proceedings of Pacific Graphics Conference, 2001,4-11
    
    [226] N. Pham Ngoc, W. van Raemdonck, G. Lafruit, G. Deconinck, R. Lauwereins. A QoS framework for interactive 3D applications. In: Proceedings of the 10th International Conference on Computer Graphics and Visualization, 2002,317-324
    
    [227] M. H. Alsuwaiyel. Algorithms Design techniques and analysis. ISBN:9787121001086,北京:电子工业出版社, 2003
    [228] K. Hans. A new fully polynomial approximation scheme for the knapsack problem. Lecture Notes in Computer Science, 1998,144: 123-134
    [229] M. Alexa, M. Gross, M. Pauly, H. Pfister, M. Stamminger, M. Zwicker. Point-based computer graphics. In: Proceedings of SIGGRAPH, Course note, 2004
    [230] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, C. T. Silva. Point set surfaces. In: Proceedings of IEEE Visualization, 2001, 21-28
    [231] D. Levin. Mesh-independent surface interpolation. Geometric Modeling for Scientific Visualization, 2003: 181-187
    [232] N. Amenta, Y. Kil. Defining point-set surfaces. ACM Transactions on Graphics, 2004,23(3): 264-270
    [233] N. Amenta, Y. Kil. The domain of a point set surface. In: Proceedings of the Eurographics Symposium on Point-Based Graphics, 2004, 139-147
    [234] C. Shen, J. F. O'Brien, J. Shewchuk. Interpolating and approximating implicit surfaces from polygon soup. ACM Transactions on Graphics, 2004, 23(3): 896-904
    [235] S. Fleishman, D. Cohen-Or, C. T. Silva. Robust moving least-squares fitting with sharp features. ACM Transactions on Graphics, 2005,24(3): 544-552
    [236] M. Alexa, A. Adamson. Interpolatory Point Set Surfaces - Convexity and Hermite Data. ACM Transactions on Graphics (Accepted)
    [237] G. Guennebaud, M. Gross. Algebraic point set surface. ACM Transactions on Graphics, 2007, 26(3): No. 23
    [238] V. Pratt. Direct least-squares fitting of algebraic surfaces. In: Proceedings of ACM SIGGRAPH, 1987,145-152
    [239] S. Fleishman, M. Alexa, D. Cohen-Or, C. T. Silva. Progressive point set surfaces. ACM Transactions on Graphics, 2003,22(4): 997-1011
    [240] M. Pauly, R. Kaiser, L. Kobbelt, M. Gross. Shape modeling with point-sampled geometry. ACM Transactions on Graphics, 2003, 22(3): 641-650
    [241] A. Adamson, M. Alexa. Anisotropic point set surfaces. In: Proceedings of the 4th international conference on Computer graphics, virtual reality, visualization and interaction in Africa, 2006, 7-13
    [242] M. Alexa, A. Adamson. On normals and projection operators for surfaces defined by point sets. In: Proceedings of the Eurographics Symposium on Point-Based Graphics, 2004, 149-156
    [243] M. Attene, B. Falcidieno, M. Spagnuolo. Hierarchical mesh segmentation based on fitting primitives.The Visual Computer, 2006,22(3):181-193
    [244] I. Yamazaki, V. Natarajan, Z. Bai, B. Hamann. Segmenting point sets. In: Proceedings of IEEE International Conference on Shape Modeling and Applications, 2006,4-13
    [245] R. Gal, O. Sorkine, T. Popa, A. Sheffer, D. Cohen-Or. 3D collage: expressive non-realistic modeling. In: Proceedings of International Symposium on Non-Photorealistic Animation and Rendering, 2007, 7-14
    [246] M. Pauly, L. Kobbelt, M. Gross. Point-based multiscale surface representation. ACM Transactions on Graphics, 2006,25(2): 177-193
    [247] S. Gumhold. Entropy Extremes for coding and visualization in 3D. [Habilitation Thesis], November 2003
    [248] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek and H. Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for Internet applications. IEEE/ACM Transactions on Networking, 2003,11: 17-32
    [249] J. Keller, G. Simon. Toward a peer-to-peer shared virtual reality. In: Proceedings of International Conference on Distributed Computing Systems, 2002, 695-700
    [250] S. Rueda, P. Morillo, J. M. Orduna, J. Duato. On the characterization of peer-to-peer distributed virtual environments. In: Proceedings of IEEE Virtual Reality, 2007, 107-114
    [251] S.-Y. Hu, S.-C. Chang, J.-R. Jiang. Voronoi state management for P2P MMOGs. [Technical Report], VAST-TR-02-2007, Taiwan, 2007
    [252] M. Wang, B. Li. Lava: A reality check of network coding in. Peer-to-Peer Live Streaming. In: Proceedings of IEEE INFOCOM, 2007, 1082-1090
    [253] F. Bettio, E. Gobbetti, F. Marton, G. Pintore. High-quality networked terrain rendering from compressed bitstreams. In: Proceeding of Web3D, 2007, 37-44
    [254] R. Pajarola, E.Gobbetti. Survey on semi-regular multiresolution models for interactive terrain rendering. The Visual Computer, 2007, 23(8): 583-605
    [255] J. Hadim, T. Boubekeur, M. Raynaud, X. Granier, C. Schlick. On-the-fly appearance quantization on the GPU for 3D broadcasting. In: Proceeding of Web3D,2007, 45-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700