武汉市南湖大型底栖动物生态学和优势种群的遗传多样性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江中下游湖泊普遍存在富营养化、生物多样性下降和生态功能退化的现象,严重影响湖泊的可持续发展。大型底栖动物是湖泊生态系统中的重要组成部分,发挥着多种重要的生态功能。由于水生态系统环境的恶化,大型底栖动物的自然资源日益受到破坏,而我国在大型底栖动物生态学研究相对较少,水栖寡毛类和水生昆虫类遗传多样性方面的研究还未见报道。因此,有必要对湖泊大型底栖动物的生态学和遗传多样性进行研究,以查明在人类活动下大型底栖动物的结构特点,提供解决湖泊富营养化和湖泊渔业持续发展理论依据,并为大型底栖动物资源保护和系统发育的研究奠定基础。
     为此,本研究对长江中游富营养化的浅水湖泊(南湖)环境现状进行了调查,查明了大型底栖动物的群落结构及环境变化对其影响,计算大型底栖动物群落的生产力,对水栖寡毛类颤蚓科动物和摇蚊幼虫的RAPD扩增条件进行优化,并分析了大型底栖动物优势种的遗传多样性,主要研究结果如下:
     1、武汉南湖水体的理化性状分别为:采样点平均水深为2.31m,年均水温为17.97℃,年均SD为33.63cm,pH平均为8.25,DO含量平均为8.17mg/L,电导率均值为393.44μs/cm:水体中NH_4~+-N平均浓度为3.603mg/L,NO_3~--N为2.072mg/L,NO_2~--N为0.155mg/L,TN为7.033mg/L;PO_4~(3-)-P平均为0.184mg/L,TP为0.761mg/L;N∶P比平均为9.357。沉积物中TN为4.765‰,TP含量平均为0.528‰,沉积物中N∶P比平均为8.74。浮游植物共发现66种,密度和生物量分别为2.489×10~6ind/L和7.94mg/L;浮游动物共发现56种,密度和生物量分别为26285 ind/L和3.46 mg/L。根据水体中的营养盐含量,南湖为重营养型湖泊,营养盐的几个指标均已超过Ⅴ级地表水质标准。
     2、南湖大型底栖动物共发现30种,其中寡毛类10种,软体动物4种,水生昆虫14种,其它动物2种,定量采样中只发现寡毛类和水生昆虫。寡毛类的年平均密度为3381 ind/m~2,变幅为1606-6134 ind/m~2,生物量为9.70 g/m~2,变幅为2.67-26.64g/m~2,其密度的季节变化为春季>夏季>秋季>冬季,生物量的季节变化为春季>夏季>冬季>秋季。水生昆虫的年平均密度为1056 ind/m~2,变幅为918-1178 ind/m~2,生物
Most of lakes, in the middle and later reachs of the Yangtze River basin, were faced the water eutrophicated, bio-diversity decreased and eco-function degenerated, which impaired the continuance development of laky economy severely. Macrozoobenthos is an important components of lake ecosystem and play multiple functions in aqutic ecosystem. However, the natural resources of macrozoobenthos decreased gradually for the destruction of aquatic ecosystem environment. The researches on macrozoobenthos ecology were rather less. No report of the genetic diversity of aquatic oligochaeta and insecta was found in China. It is necessary to study the ecology of macrozoobenthos and the genetic diversity of aquatic oligochaeta and insecta, because the result will help people find out the characters of macrozoobenthos community in the lake under of anthropogenic activity, and provide the theoretical basis for solving the problem of lake eutrophication and the continuous development of fisheries. The result will also benefit to the resource protection and the study of molecular phylogenetic relationship of macrozoobenthos.Therefore, the basic situation of eutrophicated shallow lake (Nanhu Lake), in the middle reaches of the Yangtze River basin, had been investigated, the communities structure and the impaction of environmental deterioration of macrozoobenthos had been analyzed, and the secondary production of macrozoobenthos had been calculated. RAPD makers was used to detect genetic diversity of five dominant species. The main results are as following:1. The physical and chemical indices of the water were measured in Nanhu Lake. The results show: The annual average water depth, water temperature and Secchi Degree of ten sampling stations in the lake were 2.31 m, 17.97 ℃ and 33.6 cm, respectively. Mean value of pH was 8.25; the average content of DO was 8.17 mg/L; conductivity was 393.44μs/cm. The mean concentration of NH_4~+-N, NO_3~--N, NO_2~--N and TN were 3.603 mg/L, 2.072 mg/L, 0.155 mg/L, and 7.033 mg/L, respectively. The content of PO_4~(3-)-P and TP averaged 0.184 mg/L and 0.761 mg/L, respectively. The N:P ratio was 9.357. Sixty-six species of phytoplankton were found, and its density and biomass were 2.489 ×10~6 ind/L and 7.94 mg/L, respectively. Fifty-six species of zooplankton were found, and its density and biomass were 26285 ind/L and 3.46 mg/L, respectively. The content of TN and TP in sediment were 4.765‰ and 0.528‰, respectively. Nanhu Lake was hypereutrophic
    according to the nutritional indices of the water.2. A total of 30 macrozoobenthos taxa were recorded in Nanhu Lake, including 10 species of oligochaeta. 4 species of molluscat 14 species of aquatic insecta, 1 species of hirudinea and 1 species of decapoda. There were only oligochaeta and insecta found in the quantitative investigation of macrozoobenthos. The abundance of oligochaeta was 3381 ind/m2 and ranged from 1606 ind/m2 to 6134 ind/m2, the biomass was 9.70 g/m2 and ranged from 2.67 g/m2 to 26.64 g/m2. The seasonal variation of abundance of oligochaeta was that in Spring > Summer > Autumn > Winter, and the biomass variation was in Spring > Summer > Winter> Autumn. The abundance of insecta was 1056 ind/m2 and ranged from 918 ind/m2 to 1178 ind/m2, and had no distinct difference among seasons. The biomass of insecta was 8.09 g/m2 and ranged from 4.68 g/m2 to 13.26 g/m2and the highest in spring. The deterioration of aquatic environment resulted in the great changes of macrozoobenthos communities structure. The chironomidae groups decreased from 15 species at 16 years ago to 9 species now. Oligochaeta was mainly composed of polluted species, and mollusca was scarce. The diversity of macrozoobenthos was rather low.3. The dominant species of macrozoobenthos was Limnodrilus hoffmeisteri, Branchiura sowerbyi, Tanypus punctipennis, Propsilocerus akamusi and Chironomus semireductus in Nanhu Lake. The distribution of former four species was congregated significantly. Five dominant species were fixed with different preservation solutions, the result show: L. hoffmeisteri, B. sowerbyi, T. punctipennis and C. semireductus were suitable fixed in 8% formaldehyde solution. P. akamusi could be preservated in 8% formaldehyde solution, or in 75% ethanol, or in 75% ethanol after fixed 24 hours in 8% formaldehyde solution, but the effect was the best in 8% formaldehyde solution.4. Annual secondary production of dominant groups of macrozoobenthos in Nanhu Lake were estimated from field data. The annual P/B coefficient and production (wet weight) of five dominant species were as follow: L hoffmeisteri, 72.691 gm^yr*1, 8.74; B. sowerbyi, 5.191 gm"2yr'\ 4.82; T. punctipennis, 6.184 gm"2yr'\ 3.77; P. akamusi, 6.184 gm^yr'1, 2.70; C. semireductus, 2.625 gm'^yr'1. The production of total macrozoobenthos was 109.718 gm^yr'^wet weight), or 20.784 gm"2yr"x (dry weight), and the energy reserves was 110.6 Kcal m^-yr'1. The fishery production of macrozoobenthos was 6.588 g-m'^yr'1 in Nanhu Lake.5. The genomic DNA of C. semireductus and B. sowerbyi were used as template DNA to optimize the RAPD-PCR reaction conditions for chironomidae and tubificidae groups, respectively. For a 25 ^L reaction system, the optimized reaction systems of
    RAPD amplification for chironomidae group were as follow: the optimal condition included 10 X Reaction Buffer 2.5 juh, 2.0 mmol/L MgCl2,0.2 mmol/L dNTPs, 1.5U Taq DNA polymerase, 30 ng template DNA, 0.2 pimolfL random primer. The optimized reaction systems of RAPD amplification for tubificidae group were: the optimal condition included 10 X Reaction Buffer 2.5 fiL, 2.5 mmol/L MgCl2,0.2 mmol/L dNTPs, 1.0U Taq DNA polymerase, 30 ng template DNA, 0.3 (xmoVh random primer. The optimal program for efficient amplification included 45 cycles of denaturation at 94 °C for 1 min (94 °C for 5 min for the first cycle), annealing at 37 ^C for 1 minute, and extension at 72 °C for 2 minutes (10 minutes for the final cycle), then the last products were stored at 4"C.6. Random amplified polymorphic DNA (RAPD) markers was used to detect genetic diversity of five dominant populations of macrozoobenthos. Sixteen random primers were used for the RAPD of chironomidae groups, and eighteen for tubificidae groups. The results were: the percent of amplified polymorphic bands of T. punctipennis, P. akamusi, C. semireductus, L koffmeisteri and B. sowerbyi were 41.03%, 44.0%, 41.79%, 46.01%, and 51.20%, respectively. Shannon genetic diversity of their intra-populations were 0.2570, 0.2472, 0.1943, 0.3153, and 0.3355, respectively. The intra-populations genetic similarity of them were 0.8730,0.8731,0.9066,0.8285, and 0.8310.
引文
1.万华丽.黄浦江上游底栖动物的指示生物生态研究.上海环境科学,1995,14(1):11-14
    2.于业绍,周琳,黄则平.海水比重、温度和底质对青蛤稚贝生长、存活的影响.海洋渔业,19(1):13-16
    3.马克平.生物群落多样性的测度方法.见:钱迎倩,马克平.生物多样性研究的原理和方法.北京:中国科技出版社.1994,141-165
    4.马春艳,孔杰,孟宪红,刘萍,张秀梅.中国对虾5个地理群体的RAPD分析.水产学报,2004,28(3):245-249
    5.马徐发,熊邦喜,王明学,王银东,王卫民,刘小玲,徐木生,张林林,胡秋生,王喜波。湖北道观河水库大型底栖动物的群落结构及物种多样性.湖泊科学,2004,16(1):49-55
    6.尤仲杰,王一农,丁伟,徐海军.几种环境因子对不同发育阶段的泥螺Bullacta exarata的影响.浙江水产学院学报,1994,13(2):78-85
    7.王士达,王俊才.辽宁省摇蚊科幼虫的研究.水生生物学报,1991,15(1):35-44
    8.王士达.官厅水库主要污染物质对底栖动物的影响.见:中国科学院水生生物研究所编.环境污染与生态学文集.南京:江苏科学技术出版社,1981.58-65
    9.王庆燕,朱英杰.乌鲁木齐河底栖动物种群结构及评价.干旱环境监测,1995,12(4):216-219
    10.王备新,杨莲芳.用河流生物指数评价秦淮河上游水质的研究.生态学报,2003,23(10):2082-2091
    11.王备新,杨莲芳.线粒体DNA序列特点与昆虫系统学研究.昆虫知识,2002,39(2):88-92
    12.王备新.大型底栖无脊椎动物水质生物评价研究.[博士学位论文].南京:南京农业大学,2003
    13.王建国,黄恢柏,杨明旭,唐振华,赵凤霞.庐山地区底栖大型无脊椎动物耐污值与水质生物学评价.应用与环境生物学报,2003,9(3):279-284
    14.王洪铸.中国小蚓类研究.北京:高等教育出版社.2002
    15.王玲玲,宋林生,节红雷,胥炜,李俊强,常亚青.AFLP和RAPD标记技术在栉孔扇贝遗传多样性研究中的应用比较.动物学杂志,2003,38(4):35-39
    16.王晓梅,杨秀容.DNA分子标记研究进展.天津农学院学报,2000,7(1):21-24
    17.王爱民,邓凤姣,张锡元,阎冰,叶力,毛勇,张木先.马氏珠母贝遗传多样性的RAPD分析.武汉大学学报(自然科学版),2000,46(4):467-470
    18.王爱珍.利用底栖动物对綦江河进行污染评价.重庆环境科学,1989,11(3):46-49
    19.王银东,熊邦喜,马徐发,胡秋生,王喜波.道观河水库细鳞鲴的年龄与生长.华中农业大学学报,2004,23(2):241-243
    20.王骥,王建.浮游植物的采集、计数和定量方法.水库渔业,1982,4:58-63
    21.史玉强,李开国,沈玉兰.大伙房水库底栖动物(1980-1992)群落结构特征及水质生物学评价.中国环境科学,1994,14(5):385-389
    22.史玉强.辽宁大伙房水库底栖动物演替与水质生物学评价.大连水产学院学报,1998,3(1):47-53
    23.石大康.底栖动物在评价漓江水质污染中的作用.环境科学,1986,6(2):54-58
    24.任淑智.北京小型湖泊底栖无脊椎动物群落结构特征与营养状况的研究.应用生态学报,1991b,2(3):221-225
    25.任淑智.北京地区河流中大型底栖无脊推动物与水质关系的研究.环境科学学报,1991c,11(1):31-46
    26.任淑智.京津地区及邻近地区底栖动物群落特征与水质等级.生态学报,1991a,11 (3):262-268
    27.任瑞文,卢强,徐晓立.提高RAPD稳定性的几点经验与探讨.生物技术,2001,11(2):40-41
    28.关福田,韩一萍,曲维功.寻氏肌蛤生境及生长的初步研究.水产学报,1989,13(3):181-188
    29.刘必谦,戴继勋,喻子牛.RAPD标记在大连湾牡蛎种群研究中的应用.青岛海洋大学学报,1998,28(1):82-88
    30.刘必谦,戴继勋.巨蛎属牡蛎遗传多样性研究.水产学报,1998,22(3)194-197
    31.刘亚军,喻子牛,姜艳艳,张留所,孔晓瑜,宋林生.栉孔扇贝16S rRNA基因片段序列的多态性研究.海洋与湖沼,2002,33(5):477-483
    32.刘国才,赖伟,殷浩文,顾福康.上海苏州河大型底栖动物的研究.中国环境科学,2001,21(2):112-114
    33.刘建康主编.高级水生生物学.北京:科学出版社.1999
    34.刘保元,王士达,王永明.利用底栖动物评价图门江污染的研究.环境科学学报,1981,1(4):337-348
    35.华丹,顾若波,白云飞,闻海波.RAPD分析野生和养殖三角帆蚌的遗传多样性.水产学报,2003,27(6):540-544
    36.朱江.北京地区蜉蝣目稚虫的分布与水质关系的研究.环境科学学报,1994,14(3):308-315
    37.朱新源.应用模糊聚类分析对北京东南郊的河流污染状况进行分类.生态学报,1982,2(3):201-210
    38.朱慧君.用浮游及底栖动物评价饮马河水质.江苏环境科技,2003,16(1):18-20
    39.毕远溥,董婧,王文波,林军.小窑湾海水养殖环境现状的研究.海洋环境科学,2001,20(4):30-33
    40.许木启,黄玉瑶.受损水域生态系统恢复与重建研究.生态学报,1998,18(3):547-558
    41.许巧情,王洪铸,张世萍.河蟹过度放养对湖泊底栖动物群落的影晌.水生生物学报,2003,27(1):41-46
    42.许典球.官亭水库黄尾鲴食性的初步研究.水生生物学报,1988,12(1):43-53
    43.闫云君.浅水湖泊大型底栖动物生态能量学及生产量的研究.[博士学位论文].武汉:中科院水生生物研究所,1998
    44.闫隆飞,张玉麟.分子生物学.北京:中国农业大学出版社,1997,493
    45.何毛贤,马琦,邓凤姣,沈亦平,李立家,张锡元.褶纹冠蚌肝脏线粒体DNA的初步研究.武汉大学学报(自然科学版),1994,(6):104-108
    46.何毛贤,张锡元.褶纹冠蚌基因组中c-myc和c-ras基因同源物的初步研究.南海研究与开发,1996,(4):20-22
    47.何志辉.湖泊的营养分类.水利渔业,1982,4:46-51
    48.何明海.东山湾潮下带多毛类的分布.台湾海峡,1990,9(3):206-211
    49.吴洁,王国龙.西湖与青山水库底栖动物群落的研究.环境监测管理与技术,2000,12(增刊):17-19
    50.吴耀泉,张宝琳,孙道元.胶州湾菲律宾蛤仔死壳分布与生态环境关系的研究.海洋湖沼通报,1993,4:61-67
    51.宋林生,李俊强,李红蕾,崔朝霞,李成华,胥炜,常亚青.用RAPD技术对我国栉孔扇贝野生种群与养殖群体的遗传结构及其遗传分化的研究.高技术通讯,2002,(7):83-86
    52.宋林生,相建海,李晨曦.用RAPD标记研究对虾属六个种间的亲缘关系.动物学报,1998,50(3):353-359
    53.宋福.用大型底栖无脊椎动物进行水质评价的简易方法.生物学通报,1992;(6):42-43
    54.张水元,刘瑞秋,黎道丰.保安湖沉积物和间隙水中氮和磷的含量及其分布.水生生物学报,2000,24(5):434-438
    55.张水元,刘衢霞,华俐.武汉东湖沉积物和沉积物间隙水中氮和磷的含量及其分布.水生生物学报,1987,11(2):131-137
    56.张四明,邓怀,晏勇.中华鲟随机扩增多态性DNA及遗传多样性研究.海洋与湖沼,2000,31(1):1-6
    57.张迎春,郑哲民.6种瓢虫的RAPD分析及在分类上应用的研究.西北大学学报,2002,32(4):409-412
    58.张建珍,马恩波,郭亚平,陈东华,王燕.网翅蝗科四种蝗虫的RAPD多态性研究.动物分类学报,2004,19(2):212-217
    59.张建珍,马恩波,郭亚平.稻蝗属部分种类RAPD及其分子系统学关系.遗传学报,2003,30(6):533-539
    60.张建珍,任俐,郭亚平,马恩波.山西省及邻近地区中华稻蝗5个种群RAPD分析及其亲缘关系.遗传学报,2004,31(2):159-165
    61.张波,高兴梅,宋秀贤,马锡年,孙德会.芝罘湾底质环境因子对底栖动物群落结构的影响.海洋与湖沼,1998,29(1):53-60
    62.张觉民,何志辉.内陆水域渔业自然资源调查手册.北京:农业出版社,1991
    63.张晓俊,魏辉,黄玉清,陈元洪,占志雄,胡奇勇.褐飞虱种群的DNA的提取及RAPD分析.江西农业大学学报,2000,22(1):78-81
    64.李太武,杨文新,宋林生,苏用榕,杨志彪,郭皓.皱纹盘鲍(Haliota discus hannai Ino)和杂色鲍(Haliotis diversicolor Reeve)遗传多样性的RAPD研究.海洋与湖沼,2003,34(4):444-449
    65.李太武,杨志彪,孟凡丽,刘艳.缢蛏RAPD扩增条件的优化及遗传分析初报.宁波大学学报(理工版),2002,15(1):45-49
    66.李红雷,宋林生,刘保忠,崔朝霞,相建海,刘升平,曲善村,姜广亮.栉孔扇贝不同种群的遗传结构及其杂种优势.海洋与湖沼,2002,33(2):188-195
    67.李常保,宋建成.RAPD技术与作物改良.生物技术通报,1999,10(6):20-29
    68.杨建敏,郑小东,王如才,宋志乐,孙振兴.3种鲍16S rDNA基因片段序列的初步研究.青岛海洋大学学报,2003,23(1):36-40
    69.杨莲芳,田立新.中国水生昆虫研究史梗概.昆虫知识,1994,31(5):308-314
    70.杨莲芳,李佑文,戚道光,孙长海,田立新.九华河水生昆虫群落结构和水质生物评价.生态学报,1992,12(1):8-15
    71.杨潼,胡德良.利用底栖大型无脊椎动物对湘江干流污染的生物学评价.生态学报,1986,6(3):263-274
    72.汪小全,邹喻萍,张大明.银杉遗传多样性的RAPD分析.中国科学(B辑),1993,26(5):436-441
    73.汪永庆,徐来祥,张知彬.RAPD技术的标准化问题.动物学杂志,2000,35(4):57-60
    74.沈韫芬,章宗涉,龚循矩,顾曼如,施之新,魏印心.微型生物监测新技术.北京:中国建筑工业出版社,1990
    75.邱东茹,吴振斌.富营养浅水湖泊的退化与生态恢复.长江流域资源与环境,1996,5(4):355-361
    76.邱炳文,周勇,周敏,李学垣.武汉南湖富营养化现状,趋势及其综合整治对策.华中农业大学学报,2000,19(4):350-352
    77.邵国生.底栖动物在南洞庭湖岸边污染带水质评价中的应用.环境科学,1989,10(1):77-82
    78.邹曙明,楼允东,孙效文.用RAPD方法研究草鱼,柏氏鲤和三个地理种群鲤的亲缘关系.中国水产科学,2000,7(1):6-11
    79.陆强国.利用底栖动物的群落结构进行洞庭湖水质的生物学评价.环境科学,1986,6(2):59-63
    80.陈天乙,刘孜.摇蚊幼虫对底泥中氮、磷释放作用的研究.昆虫学报,1995,38(4):448-451
    81.陈永久,张亚平.随机扩增多态性DNA影响因素的研究.动物学研究,1997,18(2):221-227
    82.陈其羽,梁彦龄,吴天惠.武汉东湖底栖动物群落结构和动态的研究.水生生物学集刊,1980,7(1):41-56
    83.陈其羽,梁彦龄,宋贵保.武昌东湖软体动物的生态分布及种群密度.水生生物集刊,1975,5(3):371-379
    84.国家环境保护总局.GB3838-2002,地表水环境质量标准.北京:中国科学出版社,2002
    85.林伟,种海莹,唐以杰.硇洲岛潮间带不同生境底栖软体动物物种多样性研究.热带海洋学报,2002,21(3):14-22
    86.林红,杨弘,夏德全,吴婷婷.鱼类RAPD的影响因素及其最优反应体系的研究.江苏农业研究,2000,21(2):25-29
    87.林志华,柴雪良,方军,张炯明,谢起浪.硬壳蛤对环境因子适应性试验.宁波大学学报(理工版),2002,15(1):19-22
    88.金相灿主编.中国湖泊和环境.北京:海洋出版社,1995
    89.俞大维,虞左明.杭州西湖底栖动物群落的研究.水生生物学报,1991,15(1):63-72
    90.姜建国,沈韫芬.用于评价水污染的生物指数.云南环境科学,2000,19(增):251-253
    91.柯欣,杨莲芳,孙长海,田立新.安徽丰溪河水生昆虫多样性及其水质生物评价.南京农业大学学报,1996,19(3):37-43
    92.胡远皆,周志刚.海带孢子体DNA随机扩增反应条件优化.上海水产大学学报,2001,10(3):193-196
    93.赵晓娟.发展中的DNA测序技术.生物工程进展,1997,17(4):51
    94.赵淑清,武维华.DNA分子标记和基因定位.生物技术通报,2000,(6):1-4
    95.郝卫民,王士达,王德铭.洪湖底栖动物群落结构及其对水质的初步评价.水生生物学报,1995,19(2):124-134
    96.唐汇娟.武汉东湖浮游植物生态学研究.[博士学位论文].武汉:中科院水生生物研究所,2002
    97.夏铭.遗传多样性研究进展.生态学杂志,1999,18(3):59-65
    98.贾树林.利用底栖动物监测污染的生态学方法.海洋环境科学,1991,10(1):68-72
    99.郭玉清,张志南,慕芳红.渤海小型底栖动物生物量的初步研究.海洋学报,2002,24(6):76-83
    100.郭先武.武昌南湖三种摇蚊幼虫生物学特性及其种群变动的研究.湖泊科学,1995,7(3):249-255
    101.顾丁锡,舒金华.湖泊水污染预测及其防治方法.北京:中国环境科学出版社,1988
    102.崔奕波.从灰分及氮含量计算鱼体能量含量的一个简易方法.水生生物学报,1990,14(4):376-377
    103.崔奕波.鱼类生长及能量收支的比较.淡水生态与生物技术开放研究实验室年报(88/89),1989b,1-14
    104.崔奕波.鱼类的灰分含量及其与摄食状态的关系,淡水生态与生物技术开放研究实验室年报(88/89),1989a,82-87
    105.曹正光,蒋忻坡.几种环境因子对梨形环棱螺的影响.上海水产大学学报,1998,7(3):200-205
    106.梁利群,孙效文,石连玉,曹鼎臣.不同鲤鱼种间DNA遗传标记多态性.中国水产科学,2000,7(2):18-21
    107.章宗涉,黄祥飞.淡水浮游生物研究方法.北京:科学出版社,1991
    108.阎冰,邓岳文,杜晓东,兰国宝,王爱民.广西地区文蛤的遗传多样性研究.海洋科学,2002,26(5):5-8
    109.阎冰,叶力,邓凤娇,毛勇,张锡元,王爱民.马氏珠母贝与解氏珠母贝的随机扩增多态DNA分析.广西科学,2001,8(4):287-290
    110.阎铁,吕海晶.底栖动物与海洋污染监测.海洋环境科学,1989,8(2):46-53
    111.黄波,薛钦昭,李军.环境因子对菲律宾蛤仔摄食生理生态的影响.海洋与湖沼,2000,31(6):636-642
    112.黄祥飞.浮游动物.见:刘建康编.高级水生生物学.北京:科学出版社,1999,199-223
    113.黄艳艳,欧阳珊,吴小平,刘焕章.中国蚌科线粒体16S rRNA序列变异及系统发育.水生生物学报,2003,27(3):258-236
    114.黄晶雯,邵会祥.嫩江底栖动物与水质关系的研究.齐齐哈尔师范学院学报:自科版.1997,17(2):71-73,76
    115.龚志军,谢平,唐汇涓,王士达.水体富营养化对大型底栖动物群落结构及多样性的影晌.水生生物学报,2001,25(3):210-216
    116.龚志军.长江中游浅水湖泊大型底栖动物的生态学研究.[博士学位论文].武汉:中科院水生生物研究所,2002
    117.彭建华,刘家寿,朱爱民.火溪河底栖动物现状及水质评价.水生生物学报,2000,24(4):340-346
    118.曾宪春,罗锋.一种快速有效纯化DNA序列分析模板的方法.生物技术,1998,8(5):44-45
    119.湖北省水生生物研究所第二室引种驯化组.细鳞斜颌鲴的食性研究.水生生物学集刊,1977,6(2):119-122
    120.童晓立,胡慧建,陈思源.利用水生昆虫评价南昆山溪流的水质.华南农业大学学报,1995,16(3):6-10
    121.蒋曹德,邓昌彦,熊远著.随机扩增多态DNA规范反应体系的探讨.生物技术通报,2002,(3):40-43
    122.谢志才,王骥,梁彦龄.长江流域若干水体寡毛类区系组成及相似性分析.水生生物学报,2000,24(5):451-457
    123.谢志才,梁彦龄,吴天惠.长江中游湖泊底栖动物多样性的研究.水生生物学报,1996,20(增刊):103-113
    124.谢诈浑,周一兵.池塘中摇蚊科幼虫现存量和组产力的研究.大连水产学院学报,1990,5(3,4):7-17
    125.谢祚浑,周一兵.中国北方盐碱水域中的底栖动物.大连水产学院学报,2002,17(3):176-186
    126.谢钦铭,李云,熊国根.鄱阳湖底栖动物生态研究及其底层鱼产力的估算.江西科学,1995,13(3):161-170
    127.谢翠娴.利用底栖动物监测严家湖农药污染.水生生物学报,1985,9(1):40-50
    128.韩洁,张志南,于子山.渤海大型底栖动物丰度和生物量的研究.青岛海洋大学学报,2001,31(6):889-896
    129.鲁琳,吴启泉,郑凤武.不同孔径筛网对底栖多毛类采样效果的研究.台湾海峡,1991,10(2):189-193
    130.梁象秋,方纪祖,杨和荃编.水生生物学.北京:中国农业出版社.1996
    131.粱彦龄,刘伙泉.草型湖泊资源、环境与渔业生态学管理.北京:科学出版社.1995
    132.蓝宗辉.韩江下游底栖动物的分布及其对水质的评价.生态学杂志,1997,16(4):24-28
    133.虞左明,青山水库底栖动物群落初步研究.环境污染与防治.2001,23(5):229-231
    134.熊庆,刘作易,喻子牛.线粗体DNA的研究与应用.西南农业大学,2002,15(3):111-115
    135.熊昀青,由文辉.苏州河大型底栖动物群落结构初步研究.上海环境科学,2001,20(5):218-220
    136.蔡立哲,厉红梅,刘俊杰,刘俊杰.深圳河口泥滩三种多毛类的数量季节变化及污染影响.生态学报,2001,21(10):1648-1653
    137.蔡晓明,任久长,宗志样,尚玉昌,杨检美,许崇任,李松岗,柯兵.青龙河底栖无脊椎动物群落结构及其水质评价.应用生态学报,1992,3(4):364-370
    138.潘立勇,粟多寿,张存芝.京杭运河徐州段底栖动物与水质的关系.城市环境与城市生态,1994,7(4):27-31
    139.颜京松.以底栖动物评价甘肃境内黄河干支流枯水期水质.环境科学,1980,1(4):14-20
    140.戴友芝,唐受印,张建波.洞庭湖底栖动物种类分布及水质生物学评价.生态学报,2000,3(3):277-282
    141.魏开建.中国蚌科的遗传多样性与系统发育的研究.[博士学位论文].武汉:华中农业大学,2003
    142. Alimov A F, Boullion V V, Finogenova N P, Ivanova M B, Kuzmitskaya N K, Nikulina V N, Ozeretskovskaya N G, Zharova T V. Biological productivity of Lakes Krivoe and Krugloe, in Productivity Problems of Freshwaters (eds Z. Kajak and A. Hillbricht-Ilkowska). Poland: PWN Polish Scientific Publishers, 1972. 39-56
    143. Allen K R. A study of a trout population. NZ Mar Depart Fish Bull, 1951, 10:1-238
    144. Allen K R. Some aspects of the production and cropping of freshwaters. NZ Transact Royal Soc, 1949, 77:222-228
    145. Andrew M, Soowon C, Jerome C R, Charles M, Robert W P, Marcus M. Phylogenetic Utility of Elongation Factor-1a! in Noctuoidea (Insecta: Lepidoptera): The Limits of Synonymous Substitution. Mol Biol Evol, 1997, 14(4): 381-390
    146. Andronikowa I N, Drabkova V G, Kuzmenko K N, Michailova N F, Stravinskaya E A. Biological productivity of the main communities of the Red Lake. In Productivity Problems of Freshwaters (eds Kajak Z and A Hillbricht Ilkowska). Poland: PWN Polish Scientific Publishers, 1972, 57-72
    147. Anlauf A, Neumann D. The genetic variability of Tubifex tubifex (Muller) in 20 populations and its relation to habitat type. Archiv far Hydrobiologie, 1997, 139(2): 145-162
    148. Anthony I C, Rogers S O, Teale S A. Species diagnosis and phylogeny of the Ips Grandicollis group (Coleoptera: Scolytidae) using Random amplified polymorphic DNA. Ann Entomol Soc Amer, 1995, 88:397-405
    149. Armitage P D, Moss D, Wright J F, Furse M T. The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Res, 1983, 17:333-347
    150. Arndt H, Berninger U G, Protists in aquatic food webs-complex interactions. In: Protistological Actualities. Proc. 2nd Eur. congress of protistology and eight European conference on ciliate biology (Brugerolle G, Mignot JP Eds.). Clermont-Ferrand, 1995, 224-232
    151. Aston R J. The. effect of temperature on the life cycle, growth and fecundity of. Brunchiura sowerbyi. (Oligochaeta, Tubificidae). J Zool, 1968, 154:29-40
    152. Bailey E, Lear TL. Comparison of thoroughbred and Arabian horses using RAPD markers. Anim Genet, 1994, 25 (suppl. 1) : 105-108
    153. Barbara Mantovani. Satellite Sequence Turnover in Parthenogenetic Systems: The Apomictic Triploid Hybrid Bacillus lynceorum (Insecta, Phasmatodea). Mol Biol Evol, 1998, 15(10): 1288-1297
    154. Barbour M T, Gerritsen J, Griffith G E. A framework for biological criteria for Florida streams using benthic macroinvertebrates. J N Am Benthol Soc, 1996, 15(2): 185-211
    155. Begon M, Harper J L, Townsend C R. Ecology, Individuals, populations and communities. Oxford: Blackwell Scientific Publications. 1986
    156. Benke A C, Arsdall T C V, Gillespie D M, Parrish F K. Invertebrate productivity in a subtropical blackwater river: the importance of habit and life history. Ecol Monogr, 1984, 54:25-63
    157. Benke A C, Wallace J B. Trophic basis of production among riverine caddisflies: implications for food web analysis. Ecology, 1997, 78:1132-1145
    158. Benke A C, Wallace J B. Tropic basis of production among net spinning caddisflies in a southern Appalachian stream. Ecology, 1980, 61: 108-118
    159. Benke A C. A modification of the Hynes methods for estimating secondary production with particular significance for multivoltine populations. Limnol Oceanogr, 1979, 24: 168-171
    160. Benke A C. Concepts and patterns of invertebrate production in running waters. Verh Int Verein Limnol, 1993, 25: 15-38
    161. Benke A C. Interaction among coexisting predators - a field experiment with dragonfly larvae. J Anim Ecol, 1978, 47: 335-350
    162. Benke A C. Secondary production of aquatic insects. In: Resh V H and Rosenberg D M(eds.). The ecology of aquatic insects. New York: Praeger Scientific, 1984, 289-322
    163. Beukema J J, Cadee G C, Dekker R. Zoobenthic biomass limited by phytoplankton abundance: evidence from parallel changes in two long-term data series in the Wadden Sea. J Sea Res, 2002, 48:111-125
    164. Blindow I, Andersson G, Hargeby A, Johansson S. Long-term pattern of alternative stable states in two shallow eutrophic lakes. Freshw Biol, 1993, 30 (1): 159-167
    165. Bonacina C, Pasteris A, Di Cola G, Bonomi G Production and population dynamics of Tubifex tubifex in the profundal zone of a freshwater reservoir in N. Italy. In: Coates K A, Reynoldson T B, Reynoldson T B, eds. Developments in Hydrobiology - Aquatic Oligochaete Biology VI. Hydrobiologia, 1996, 334:141-146
    166. Bonomi G, Di Cola G Population dynamics of Tubifex tubifex studied by means of a new model. In Brinkhurst R O & Cook D G (eds), Aquatic Oligochaete Biology. New York: Plenum Press, 1980, 185-203
    167. Bonomi, G La dinamica produttiva delle principali populazioni macrobentoniche del lago di Varese. Meml Ist Itd Idrobiol, 1962,5: 207-254
    168. Borutski EV, Sokolova N Y, Yablonskaya E A. A review of Soviet studies into production estimates of chironomids. Limnologica, 1971, 8: 183-91
    169. Brand R A M. The non-marine aquatic mollusca of Thailand. Arch fur Molluskenkunde, 1974,105: 14-23
    170. Brinkhurst R O, Cook D G Aquatic earthworms (Annelida: Oligochaeta). In: Hart C W and Fuller S L H (eds.). Pollution Ecology of Freshwater Invertebrates. New York: Academic Press, 1974, 143-156
    171. Brinkhurst R O. Distribution and abundance of tubificid (Oligochaes) species in Toronto Harbour, Lake Ontario. J Fish Res Bd Can, 1970,27:1961-1969
    172. Brylinsky M. Estimating the productivity of lakes and reservoirs. In: Lecren E D and Lowe-Mconnell R H (eds.). The functioning of Freshwater Ecosystems, IBP 22. Cambridge: Cambridge University Press, 1980,168
    173. Burno W S. High output genetic mapping of polyploids using PCR generated markers. Theor Appl Genet, 1993, 86: 105-112
    174. Butler M G A seven-year cycle for two Chironomus species in arctic Alaskan tundra ponds
     (Diptera: Chironomidae). Can J Zool, 1982, 60:58-70
    175. Butorin N V. Ivan'kovskoe vodokhranilishche i ego zhizn. (Ivan'kov reservoir and its life). Trudy Instituta Biologii Vnutrennikh Vod, Akademii Nauk SSSR, Leningrad, 1978,35(38): 1-304
    176. Charles W N, East K, Brown D, Gray M, Murray T D. The production of larval Chironomidae in the mud at Loch Leven, Kinross. Proc the Royal Soc Edinburgh, 1974,74B: 241-258
    177. Cherry D S, Guthrie R K. Significance of detritus or detritus-associated invertebrates to fish production in a new impoundment. J Fish Res Bd Can, 1975,32:1799-1804
    178. Chris J P, John S R. N and P limitation of benthos abundance in the Nechako River, British Columbia. Can J Fish Aquat Sci, 1997, 54:2574-2583
    179. Chu J, Howard D J. Gene exchange in a ground cricket hybrid zone. J Heredit, 1995, 86: 17-21
    180. Chu J, Howard D J. Genetic linking maps of the ground crickets Allonemobius fasciatus and Allonemobius socius using RAPD and allozyme markers. Genome, 1998, 41: 841-847
    181. Clarke G L, Edmondson W T, Ricker W E. Mathematical formulation of biological productivity. Ecol Monogr, 1946, 16:336-337
    182. Cummins K W, Klug M J. Feeding ecology of stream invertebrates. Ann Rev Ecol System, 1979, 10:147-72
    183. Cummins K W. Tropic relation of aquatic insects. Ann Rev Entomol, 1973,18:183-206
    184. Dahle G, Rahman M, Eriksen A G. RAPD fingerprinting used for discriminating among three populations of Hilsa shad ( Tenualosa ilisha) . Fish Res, 1997, 32: 263-269
    185. Deevey E C. Limnological studies in Connecticut. VI. The quantity and composition of the bottom fauna of thirsty-six Connecticut and New York lakes. Ecol Monogr, 1941,11: 413-455
    186. Dermott R M, Kalff J, Leggett WC, Spence J. Production of Chironomus, Procladius, and Chaoborus at different levels of phytoplankton biomass in Lake Memphremagog, Quebec-Vermont. J Fish Res Bd Can, 1977,34:2001-2007
    187. Devai G, Moldovan J. An attempt to trace eutrophication in a shallow lake (Balaton, Hungary) using chironomids. Hydrobiologia, 1983,103:169-175
    188. Dolidze T M. Biology of Limnodrilus claparedianus Ratzel (Oligochaeta, Tubificidae) in the Tsimlyansk Reservoir. Hydrobiologia, 1994,278: 275-279
    189. Finogenova N P, Arkhipova N R. Morphology of some species of the genus Aulodrilus Bretscher. Hydrobiologia, 1994,278: 7-15
    190. Flook P K, Rowell C H F. The Phylogeny of the Caelifera (Insecta, Orthoptera) as Deduced from mtrRNA Gene Sequences. Mol Phylogenet Evol. 1997,8:89-103
    191. Framme P, Knudsen J. Anoxic survival, growth and reproduction by the freshwater annelid Tubifex sp. Demonstrated using a new simple anoxic chemostat. Compar Biochem Physiol, 1985, 81: 251-253
    192. France R L. Biomass and production of amphipods in low alkalinity lakes affected by acid precipitation. Environment Poll, 1995, 94(2): 189-193
    193. Frank C. Ecology, production and anaerobic metabolism of Chironomus plumosus L. larvae in a shallow lake. I. Ecology and production. Archiv fur Hydrobiologie, 1982,94:460-491
    194. Casellato S, Caneva F. Composition and distribution of bottom oligochaete fauna of a north Italian eutrophic lake (Lake Ledro). Hydrobiologia, 1994,278 (1-3): 87-92
    195. Gilinsky E. The role of fish and spatial heterogeneity in determining benthic community structure. Ecology, 1984, 65: 207-214
    196. Goodnight C J, Whitley L S. Oligochaetes as indicators of pollution. Proceedings 15 th Annual waste conference. 1960, Purdue Univ, Lafayette. 139-142
    197. Graham A A, Burns C W. Production and ecology of benthic chironomid larvae (Diptera) in Lake Hayes, New Zealand, a warm-monomictic eutrophic lake. Int Rev Ges Hydrobiol Hydrogr, 1983, 68: 351-377
    198. Grebmeier J M, McRoy C P, Fender H M. Pelagic-benthic coupling on the shelf of the Northern Bering and Chukchi Seas. I. Food supply source and benthic biomass. Mar Ecol Prog Ser, 1988, 48: 57-67
    199. Grigelis A. Distribution and ecology of Chirononmidae larvae in the different types of lakes of the Lithuanian SSR. Acta Biol Debr Oecol Hung, 1989, 2: 127-134
    200. Grodhaus G Chironomid midges as a nuisance. II. The nature of the nuisance and remarks on its control. California Vector Views, 1963,10: 27-37
    201. Guo Xianwu. Studies on Chironomid communities of Nanhu lake, Wuhan, China. J Huazh Agr Univ, 1995,14:578-585
    202. Hall D J, Cooper W E, Werner E E. An experimental approach to the production dynamics and structure of freshwater animal communities. Limnol Oceanogr, 1970,15: 839-928
    203. Hall K J, Hyatt K D. Marion Lake (IBP) - from Bacteria to Fish. J Fish Res Bd Can, 1974, 31: 893-922
    204. Hamill S E, Qadri S U, Mackie G L. Production and turnover ratio of Pisidium casertanum (Pelecupoda: Sphaeriidae) in the Ottawa River near Ottawahull, Canada. Hydrobiologia, 1979, 62: 225-230
    205. Hamilton A L. On estimating annual production. Limnol Oceanogr, 1969,14: 771-782
    206. Harman W N. Snail (Mollusca: Gastropoda). In: Hart C W and Fuller S L H (eds.). Pollution Ecology of Freshwater Invertebrates. New York: Academic Press.1974, 275-312
    207. Hauer F R, Benke A C. Rapid growth of snag-dwelling chironomids in a blackwater river: the influence of temperature and discharge. JN Am Benthol Soc, 1991,10:154-164
    208. Hilsenhoff W L. Rapid field assessment of organic pollution with a family-level biotic index. JN Am Benthol Soc, 1988,7: 65-68
    209. Home A J, Goldman M (eds.). Limnology. Secondary edition. New York: McGraw-Hill Inc, 1994
    210. Huang Y, Liu H, Wu X. Testing the relationships of Chinese freshwater Unionidae (Bivalvia) based on analysis of partial mitochondrial 16s rRNA sequence. J Moll Stud, 2002,68:359-363
    211. Hulle M. Structure et dynamique des peuplements. d'oligochetes du Lac de Creteil. Problemes mthodologiques. Estimation de la production de la communautae benthique. These Univ P and M Curie, 1981,144
    212. Humpesch U H. Life cycle and growth fates of Baetis spp (Ephemeroptera: Baetidae) in the laboratory and in two stone streams in Austria. Freshw Ecol, 1979, 9: 467-479
    213. Hynes H B N, Coleman M J. A simple method of assessing the annual production of stram benthos. Limnol Oceanogr, 1968,13:569-573
    214. Iwakuma T, Sugaya Y, Yasuno M. Dependence of the autumn emergence of Tokunagayusurikd akamusi (Diptera: Chironomidae) on water temperature. JpnJ Limnol, 1989,50: 281-288
    215. Iwakuma T, Yasuno M, Sugaya Y. Chironomidae production in relation to phytoplankton primary production in Lake Ksumigaura, Janpan. Verh Internat Verein Limnol, 1983,22:1129-1159
    216. Iwakuma T, Yasuno M. Fate of the univoltine chironomid, Tokunagayusurika akamusi (Diptera: Chironomidae), at emergence in Lake Kasumigaura, Japan. Arch Hydrobiol, 1983,99: 37-59
    217. Iwakwma T, Yasuno M. Chironomid populations in highly eutrophic Lake Kasumigaura. Verh Internat Verein Limnol, 1981, 21: 643-674
    218. James A, and Evison L. Biological Indicators of Water Quality. Chichester: John Wiley and Sons, 1979
    219. Johnson K P, Williams B L, Drown D M, Adams R J, Clayton D H. The population genetics of host specificity: genetic differentiation in dove lice (Insecta: Phthiraptera). Mol Ecol, 2002,11(1): 25-38
    220. Johnson M G, Brinkhurst R O. Production of benthic macroinvertebrates of Bay of Quinte and Lake Ontario. J Fish Res Bd Can, 1971,28:1699-1714
    221.Jonasson P M, Kristiansen J. Primary and secondary production in Lake Esrom. Growth of Chironomus anthracinusin relation to seasonal cycles of phytoplankton and dissolved oxygen. Int Revue Gesamt Hydrobiol, 1967,52:163-217
    222. Jonasson P M. Zoobenthos of lake. S Verh Int Ver Limnol, 1978,20:13-37
    223. Kajak Z, Dusoge K. Benthos of Lake Sniardwy as compared to benthos of Mikolajskie Lake and Lake Taltowisko. Ekologia Polska, 1976,24: 77-101
    224. Kajak Z. Consideration on benthos abundance in freshwaters, its factors and mechanisms. Intl Rev Gesamten Hydrobiol, 1988, 73:5-19
    225. Kajak Z. Role of invertebrate predator (mainly Procladius sp.) in benthos. In: Murray D A(ed.). Chironomidae: Ecology, Systematic, Cytology and physiology. Oxford: Pergamon Press, 1980, 339-347
    226. Kambhampati S, Blackiv W C, Rai K S. Random amplified polymorphic DNA of mosquito species and populations (Diptera: Culicidae) techniques, statistical analysis and applications. J MedEntomol, 1992, 29: 939-945
    227. Karr J R, Allan J D, Benke A C. River conservation in the United States and Canada. In: Boon P J, Davis B R and Petts G E (eds.) Global perspectives on River Conservation: Science, Policy, and Practice. Boulton: John Wiley and Sons, 2000, 3-39
    228. Kimerle R A, Anderson N H. Production and bioenergetic role of the midge Glyptotendipes barbipes (Staeger) in a waste stabilization lagoon. Limnol Oceanogr, 1971,16: 646 - 659
    229. Krieger K A, Ross L S. Changes in the benthic macroinvertebrate community of the Cleveland Harbor area of Lake Erie from 1978-1989. J Great Lakes Res, 1993,19(2): 237-249
    230. Ladle M, Welton J S, Bass J A B. Larval growth and production of three species of Chironomidae from an experimental recirculating stream. Arch Hydrobiol, 1984,102: 201-214
    231. Lafont M. Production of Tubificidae in the littoral zone of. Lake Leman near Thonon-les-Bains: A methodological. Approach. Hydrobiologia, 1987,155:179-187
    232. LaZerte B D, Dillon P J. Relative importance of anthropogenic versus natural sources of acidity in lakes and streams of central Ontario. Can J Fish Aquat Sci, 1984,41:1664-1677
    233. Learner M A, Edwards R W. The distribution of the midge Chironomus riparius in a polluted river system and its environs. Air & Wat Pollut Int J, 1966,10:757-768
    234. Lenat D R. Using aquatic insects to monitor water quality. In: Morse J C, Yang L and Xin L(eds.). Aquatic insects of China useful for monitoring water quality. Nanjing: Hehai University Press, 1994, 68-91
    235. Lewontin R C. The apportionment of human diversity. Evol Biol, 1972, (6): 381-398
    236. Liang Y L. Annual production of branchiura sowerbyi (Oligochaeta: Tubificidae) in the Donghu Lake, Wuhan, China. Chin J Ocenol Limnol, 1984,2(1): 102-108
    237. Liang Y, Wang J, Hu C. Hydrobiology of a flooding ecology, Lake Chenhu in Hanyang, Hubei, with preliminary estimation of its potential fishery production capacity. Chin J Ocenol Limnol, 1988,6:1-14
    238. Lindegaard C, Jonasson P M. Abundance, population dynamics and production of zoobenthos in lake Myvatn, Iceland. Oikos. 1979,32: 202-227
    239. Lindegaard C. The role of zoobenthos in energy flow in two shallow lakes. Hydrobiologia, 1994, 275-276:313-322
    240. Lindegaard C. Zoobenthos ecology of Thingvallavatn: vertical distribution, abundance, population dynamics and production. Oikos, 1992,64: 257-304
    241. Mann K H. Use of the Allen curve method for calculating benthic production. In : Edmondson W T , Winberg G G, eds. A manual on method for the assessment of secondary productivity in fresh waters (IBP Handbook No.17). Oxford: Blackwell Scientific Publications, 1971.160-165
    242. Margalef R. Diversidad de Especies en las comunidades naturales. Proc Inst BiolApl, 1951,9(5): 5-27.
    243. Marian M P, Pandian T J. Interference of Chironomus in an open culture system for Tubifex Tubifex.Aquaculture, 1985,44: 249-251
    244. Martien R F, Benke A C. Distribution and production of two crustaceans in a wetland pond. Am Midl Nat, 1977,98:162-175
    245. Martin P. On the origin of the Hirudinea and the demise of the Oligochaeta. Proc R Soc Lond B Biol Sci, 2001, 268:1089-1098
    246. Mason C F, Bryant R J. Periphyton production and grazing by chironomids in Alderfen Broad, Norfolk, Freshw Biol, 1975, 5: 271-277
    247. Maxam A M, Gilbert W. A new method for sequencing DNA. PNAS, 1977,74(2): 560-564
    248. Maxted J R, Barbour M T, Gerritsen J. Assessment framework for mid-Atlantic coastal plain streams using benthic macroinvertebrates. J N Am Benthol Soc, 2000,19(1): 128-144
    249. Mcauliffe J R. Resource depression by a stream herbivore: effects on distribution and abundance of other grazers. Oikos, 1984,42:327-334
    250. McCarthy J H, Bailey B, Estabrooks W A. Benthic communities associated with carbonate rubble and adjacent soft sediments in a shallow coastal area of O'ahu, Hawai'i. Pacific Science, 1998, 52(2): 141-150
    251. Menzie C A. Production ecology of Cricotups sylvestris (Fabricius) (Diptera: Chironomidae) in a shallow estuarine cove. Limnol Oceanogr, 1981,26: 467-481
    252. Metcalfe J L. Biological water quality assessment of running waters based on macroinvertebrate communities: history an present status in Europe. Environ Poll, 1989,60:101-139
    253. Mibrink G Oligochaes and water pollution in two deep Norwegisn lakes. Hydrobiologia, 1994, 278: 312-322
    254. Michele C, Andrea L, Marco P, Valerio S, Barbara M. Polymerase chain reaction amplification of the Bag320 satellite family reveals the ancestral library and past gene conversion events in Bacillus rossius (Insecta Phasmatodea). Gene, 2003, 312:289-295
    255. Nei M, Li W H. Mathematics mode for studying genetic variation in terms of restriction endorucleases. Proc NatlAcad Sci USA, 1979,76:5269-5273
    256. Okland J. The eutrophic Lake Borrevann (Norway)-an ecological study on shore and bottom fauna with special reference to gastrpods, including a hydrographic survey. Folia Limnol, 1964, 13:337
    257. Ostrovskii I S. Growth and production of Chironomus plumosus (Chironomidae, Diptera) larvae in Lake Sevan. Soviet JEcol, 1982,14: 54-60
    258. Persoone G, De Pauw N. Systems of biological indicators for water quality assessment. In: Ravera O(eds). Biological aspects of freshwater pollution. Oxford: Pergamon Press, 1979,39-75
    259. Prejs K, Bernard B. Meiobenthos of man-made Lake Zegrzynskie. Ekol Pol, 1985,33: 499-509
    260. Plante C, Downing J A. Production of freshwater invertebrate populations in lakes. Can J Fish Aquat Sci, 1989,46: 1489-1498
    261. Poddubnaya T L. Life cycles of mass species of Tubificidae (Oligochaeta). In R 0 Brinkhurst and D G Cook (eds.). Aquatic Oligochaete Biology. New York: Plenum Press, 1980,175-184
    262. Post J R, Cucin D. Changes in the benthic community of a small precambrian lake following the introduction of yellow perch, Perca flavescens. Can J Fish Aquat Sci, 1984,41:1496-1501
    263. Potter D W B, Learner M A. A study of the benthic. Macroinvertebrates of a shallow eutrophic reservoir in South. Wales with emphasis on the Chironomidae (Diptera): their life-histories and production. Arch Hydrobiol, 1974, 74: 186-226
    264. Puterka G J, Black W C, Steiner W M, Burton R L. Genetic variation and phylogenetic relationships among worldwide collections of the Russian wheat aphid, Diuraphis noxia (M.) , inferred from allozyme and RAPD-PCR markers. Heredity, 1993,70: 604-618
    265. Rasmussen J B. Effects of density and macrodetritus enrichment on the growth of chironomid larvae in a small pond. Can J Fish Aquat Sci, 1985,42:1418-1422
    266. Reish D J, Gerlinger T V. A review of the toxicological studies with polychaetous annelids. Bull Mar Sci, 1997, 60(2): 67-77
    267. Reish D J, Piltz F, Martin J, Word J Q. Induration of abnormal polychaeta larvae by heavy metals. Mar Biol Bull, 1974, 5(8): 185-186
    268. Resh V H, Norris R H, Barbour M T. Design and implementation of rapid assessment approaches for water resource monitoring using benthic macroinvertebrates. Austr J Ecol, 1995, 20:108-121
    269. Resh V H. Habit and substrate influences on population and production dynamics of a stream caddisfly, Ceraclea ancylus (Leptoceridae). Freshw Biol, 1977, 7: 261-277
    270. Richer W E. Production and utilization of fish populations. Ecol Monogr, 1946,16: 373-391
    271. Richie M G, Racey S N, Gleason J M. Variability of the bushcricket Ephippiger ephippiger RAPD and song races. Heredity, 1997,79: 286-294
    272. Rosenberg D M, Wiens A P, Saether O A. Life history of Cricotopus bicinctus and C. mackenziensis (Diptera: Chironomidae) in the For Simpson area, Northwest Territoties. J Fish Res Bd Can, 1977,34: 247-253
    273. Rothruzen J, Van Wolferen M. Randomly amplified DNA polymorphisms in dogs are reproducible and display Mendelian transmission. Anim Genet, 1994,25:13-18
    274. Saether O A. Nearctic chironomids as indicator of lake typology. Inter Ver Theor Angew Limnol Verh, 1975,19: 3127-3133
    275. Sambrook J, Fritsch E F, Maniatis T. Molecular cloning: a laboratory manual (2nd ed). New York: Cold Spring Harbor Laboratory Press, 1989
    276. Scheffer M, van den Berg M, Breukelaar A, Breukers C, Coops H, Doef R, Meijer M L.
     Vegetated areas with clear water in turbid shallow lakes. Aquatic Botany, 1994, 49 (3): 193-196
    277. Shannon C E, Weaver W W. The mathematical theory of communication. Urbana: University of Illinois Press, 1963
    278. Siegfried C A. The benthos of a eutrophic mountain reservoir: influence of reservoir level on community composition, abundance, and production. Californ Fish Game, 1984, 70:39-52
    279. Simpson G G. Species density of North American recent mammals. Syst Zool, 1964, 13:57-73
    280. Smith J, Scottcraig J S, Leadbetter J R. Characterizations of random amplified polymorphic DNA (RAPD) products from Exanthomonas campestris and some comments on the use of RAPD products in phylogenetic analysis. Mol Phylogen Evol, 1994, 3:135-145
    281. Soszka G J. Ecological relationships between invertebrates and submerged macrophytes in the lae littoral. Ekol Polska, 1975, 23:393-415
    282. Stout R J, Taft W H. Growth patterns of a chironomid shredder on fresh and senescent tag alder leaves in two Michigan streams. J Freshw Ecol, 1985, 3:147-153
    283. Teal J H. Community metabolism in a temperate cold spring. Ecol Monogr, 1957, 27:283-302
    284. Thorp J H, Bergey E A. Field experiments on responses of a freshwater benthic macroinvertebrate community to vertebrate predators. Ecology, 1981, 62:365-375
    285. Thut R N. A study of the profundal bottomfauna of Lake Washington. Ecol Monogr, 1969, 39: 79-100
    286. Tokeshi M. Production ecology. In: Armitage P D, Cranston P S and Pinder L C V(eds). The Chironomidae: the biology and ecology of non-biting midges. London: Chapman and Hall, 1995, 269-296
    287. Tokeshi M. Resource utilization, overlap and temporal community dynamics: a null model analysis on fan epiphytic chironomid community. J Anim Ecol, 1986, 55:491-506
    288. Tudorancea C. Studies on Unionid population from the Crapina-Jijila complex of pools (Nanube zone liable to inundation). Hydrobiologia, 1972, 39:527-561
    289. Ulf Bergstrom, Goran Englund, Erik Bonsdorff. Small-scale spatial structure of Baltic Sea zoobenthos—inferring processes from patterns. J Exp Mar Biol Ecol, 2002, 281:123-136
    290. Wachira F N. Detection of genetic diversity in tea (Camellia sinensis) using RAPD markers. Genome, 1995, 38:201-210
    291. Wallace J B, Benke A C, Lingle A H, Parsons K. Trophic pathways of macroinvertebrate primary consumers in subtropical blackwater streams. Archly fur Hydrobiologie, 1987, 74 (suppl): 423-451
    292. Waters G F. Secondary production in inland waters. In: Macfadyen A (ed.). Advances in ecological research. Academic Press, London. 1977, 91-164
    293. Waters T F, Crawford G W. Annual production of a stream mayfly population: a comparison of methods. Limnol Oceanogr, 1973, 18:286-296
    294. Welch H E, Jorgenson J K, Curtis M F. Emergence of Chironomidae (Diptera) in fertilized and natural lakes at Saqvaqjuac N W T. J Fish Aquat Sci, 1988, 45:731-739
    295. Welch H E. Ecology of Chironomidae (Diptera) in a polar lake. J Fish Res Bd Can, 1976, 33: 227-247
    296. Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nuc Acids Res, 1990, 18:7214-7218
    297. Williams C L, Goldson S L, Baird D B, Bullock D W. Geographical origin of an introduced insect pest, Listronotus bonariensis (K.), determined by RAPD analysis. Heredity, 1994, 72:412-419
    298. Williams J G, Hanafey M K, Rafalski J A, Tingey S V. Genetic analysis using random amplified polymorphic DNA markers. Mothods Enzyrnol, 1993, 218:705-740
    299. Williams J G, Kubelik A R, Livak K J, Rafalski J A, Tingey S V. DNA polymorphisms amplified by arbitrary primers are useful genetic markers. NuclAcids Res, 1990, 18: 6531-6535
    300. Winberg G G. Methods for the estimation of production of aquatic animals. London: Academic Press, 1971
    301. Wolfram G. Distribution and production of chironomids (Diptera: Chironomidae) in a shallow, alkaline lake (Neusiedler See, Austria). Hydrobiologia, 1996, 318:103-115
    302. Yamagishi H, Fukuhara H. Ecological studies on chironomids in Lake Suwa Ⅰ. Population dynamics of two large chironomids, Chironomus plumosus L. and Spaniotoma akamusi Tokunaga. Oecologia, 1971, 7:309-327
    303. Yoon I B, Kong D S, Ryu J K. Studies on the biological evaluation of water quality by benthic macroinvertebrates (Ⅰ)-Saprobic valency and indicative value. Korean J Environ Biol, 1992a, 10 (1): 24-39
    304. Yoon I B, Kong D S, Ryu J K. Studies on the biological evaluation of water quality by benthic macroinvertebrates (Ⅱ)-Effects of environmental factors to community. Korean J Environ Biol, 1992b, 10 (1): 40-55
    305. Yoon I B, Kong D S, Ryu J K. Studies on the biological evaluation of water quality by benthic macroinvertebrates (Ⅲ)-Macroscopic simple water quality evaluation. Korean J Environ Biol, 1992c, 10 (2): 77-84
    306. Zahner R. Relations between the occurrence of Tubificids and the import of organic matter in Bodensee. Intl Rev Gesarnten Hydrobiol, 1964, 49(3): 417-454
    307. Zheng G M, Wei Q S. Studies on the reproductive characteristics of female Anononta woodiana pacifica (Heude) in South lake, Wuhan. J Huazh Agr Univ, 2000, 19(5): 490-493

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700