吴起油田薛岔区块长6储层微观孔隙结构与渗流特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过粒度分析、图象孔隙、铸体薄片、扫描电镜、高压压汞、恒速压汞、油水相渗、微观砂岩模型水驱油、核磁共振、X衍射等实验方法和技术,对吴起油田薛岔区块长6储层进行系统研究,着重分析该区低渗储层的孔隙结构和渗流特征,并探讨沉积作用和成岩作用对该区储层孔隙结构、渗流特征的影响,取得了以下认识:
     (1)薛岔区块长6储层孔隙、喉道类型多样。孔隙以粒间孔、长石溶孔为主,孔隙组合以溶孔—粒间孔型、微孔型为主,喉道类型以弯片状、片状喉道为主。微孔类型所占比例较大,溶蚀孔相对发育薄弱,是造成研究区储层渗透率较低的原因之一;孔隙连通性差,孔喉配位数低是造成渗透率低的另一原因。
     (2)喉道是决定低渗透储层渗流能力的关键因素,其中相对粗大的喉道仅占少部分,但对渗透率贡献较大。在进汞初期,总体压力曲线主要与孔隙压力曲线一致,随着进汞压力的不断增加,总体压力曲线的变化趋势主要取决于喉道压力曲线的形态。
     (3)对储层物性影响较大的孔隙结构参数主要有最大连通喉道半径、中值喉道半径、主流喉道半径、排驱压力、中值压力和均值。喉道半径越大、均值越小,储层岩石的孔隙结构越好,物性越好。
     (4)真实砂岩微观模型研究表明,岩性、物性、孔隙结构的差异,造成了含油饱和度、驱替样式、残余油类型的不同。研究区长6储层可动流体饱和度、可动流体孔隙度、含油饱和度、驱油效率等参数较低且非均质性强。微观孔隙结构是影响储层可动流体饱和度、可动流体孔隙度、含油饱和度、驱油效率的主要因素。
     (5)研究区长6储层物性呈明显的相控特点,水下天然堤物性最差,河口坝次之,水下分流河道最好。碎屑颗粒成分成熟度低、结构成熟度中等,与沉积微相共同影响储层物性。机械压实作用和钙质胶结作用导致研究区原生粒间孔损失殆尽,长石、岩屑的溶蚀是次生孔隙发育的主要原因。
With the the techniques of grain size analysis, pore image, casting section, SEM, high pressure mercury penetration, rate-controlled mercury penetration, relative permeability, water/oil displacement experiment, NMR, and x-ray diffraction analysis, the thesis makes a thorough research, focusing on reservior's pore structure and Infiltrating Characteristic of Chang-6 Reservoir in Xuecha Area, and the impact of sediment and diagenesis on pore structure character. The conclusions go as following:
     (1) The types of reservoir pore and throat are various in Xuecha Area. The main reason of low permeability reservoir in the region of interest is that micro-pores are more than dissolution pores, another reason is that pore connectivity is poor. Low coordination number of pore-throat also can make the low permeability reservoir.
     (2) Throats is the key factor for the ability of flow in low permeability reservoir, Even though there are a little wider throats,they have made great contributions to the permeability. At the beginning of mercury injection, the total pressure curve and pore preesure cure are consistent. With the increasing of mercury injected pressure,the trend of total pressure curve depends on the form of the throat preesure cure.
     (3) The parameters which make more effect on reservoir in the region of interest are as following:principal stream throat radius, maximum throat radius, medium radius and mean value,. The wiser the throat radius sizes and the smaller the mean value get, the better the reservoir's pore structure and the physical property.
     (4) The results of oil/water displacement experiments demonstrate that different models because of the diversity in lithology, physical property and pore structure display differently in the process of oil saturation, displacement, residual oil type.The parameters of the reservoir in the region of interest are not only low, but also have serious heterogeneity. The micro-pore structure is the crucial factor affecting these parameters.
     (5) The physical property is obviously controlled by the sedimentary facies, underwater distributary channel's physical property is better than underwater natural barrier s.Although under the same diagenetic histories, the intensity of diagenesis function is differert. Therefore, there are different porosity evolution histories, which are embodied the discrepancies of pore struetures and reservoir properties.
引文
[1]翟光明.中国石油天然气勘探任重道远[J].地质通报,2003,22(11-12):854-859
    [2]申本科,胡永乐,田昌炳.油藏描述技术发展与展望[J].石油勘探与开发,2003,30(4):78-81
    [3]吕成远,王建,孙志刚.低渗透砂岩油藏渗流启动压力梯度实验研究[J],石油勘探与开发,2002,29(2):86-89
    [4]程启贵,胡勇,王德玉.靖安油田地质和油藏工程技术应用效果[J].石油学报,2002,23(6):68-76
    [5]刘伟.低渗透油藏储层保护与改造措施研究[D].成都:成都理工大学,2008
    [6]王道富.鄂尔多斯盆地特低渗透油田开发[M].北京:石油工业出版社,2008
    [7]李永太,宋晓峰.安塞油田三叠系延长组特低渗透油藏增产技术[J].石油勘探与开发,2006,(05):632-648
    [8]边瑞雪,张立鹏.靖安油田延长6组中低孔隙性储层物性研究[J].石油大学学报(自然科学版),2001,(06):32-34
    [9]高剑波,庞雄奇,王志欣,等.鄂尔多斯盆地姬塬地区延长组碎屑岩储层低渗特征及含油性主控因素[J].中国石油大学学报(自然科学版),2007,(01):5-12
    [10]陈全红,李文厚,郭艳琴,等.鄂尔多斯盆地南部延长组浊积岩体系及油气勘探意义[J].地质学报,2006,(05):39-48
    [11]李道品.低渗透油田高效开发决策论[M].北京:石油工业出版社,2003
    [12]蒋凌志,顾家裕,郭彬程.中国含油气盆地碎屑岩低渗透储层的特征及形成机理[J].沉积学报,2004,22(1):13-18
    [13]曾大乾,李淑贞.中国低渗透砂岩储层类型及地质特征[J].石油学报,1994,15(1):38-46
    [14]熊琦华,吴胜和.新疆三塘湖盆地煤系地层低渗透砂岩储集层成因机理及储集特征[J].新疆石油地质,1997,18(2):170-1176
    [15]杨晓萍,赵文智,邹才能,等.低渗透储层成因机理及优质储层形成与分布[J].石油学报,2007,28(4):57-62
    [16]郑浚茂,应凤祥.煤系地层(酸性水介质)的砂岩储层特征及成岩模式[J].石油学报,1997,18(4):19-24
    [17]姚光庆,孙尚如.煤系粗粒低渗储层自生粘土矿物特征及其对储层特性的影响[J].石油与天然气地质,2003,24(1):65-69
    [18]杨晓萍,赵文智,邹才能,等.低渗透储层成因机理及优质储层形成与分布[J].石油学报,2007,28(4):57-62
    [19]Pittman, E. D., Duschatko, R. W., Use of Pore Casts and Scanning Electron Microscope to Study Pore Geometry[J], Petrology,1970,40(4):1153-1158
    [20]Schmidt, V., McDonald, D. A., Texture and Recognition of Secondary Porosity in Sandstone:in P. A. Scholle and P. R. Schluger:Aspects of Diagenesis-Symposia:Soc Econ Paleontologists and Mineralogists Spec[R]. Pub,26,1979
    [21]罗蛰潭,王允诚 油气储集层的孔隙结构[M].北京:科学出版社,1986:62-80
    [22]陈德岭,邸世祥.碎屑岩储集层孔隙分类的探讨[J].西安矿业学院学报,1990,11(3):37-47
    [23]邸世祥.中国碎屑岩储集层的孔隙结构[M].西安:西北大学出版社,1981:1-7
    [24]赵重远.石油地质学进展[M].西安:西北大学出版社,1988:135-140
    [25]Fatt, I. The Network Model of Porous Media, Trans[J], AIME,1972, V207:144-177
    [26]Dullien, F. A. L, Effects of Pore Structure on Capillary and Flow Phenomena in Sandstone, CPTJ, 1975, v14(3):56-65
    [27]Dullien, F. A. L, Dhawn, G. K., Bivariate Pore Size Distribution of Some Sandstone[J], Jounal of Colloid and Interface Science,1975, v52(1):129-135
    [28]毛志强,高楚桥.孔隙结构与含油岩石电阻率性质理论模拟研究[J].石油勘探与开发,2000,27(2):87-93
    [29]Voloitin Y, Looyestijn W J, Slijkerman W, et al. A practical approach to obtain primary drainage capillary pressure curves from NMR core and log data [J]. Petrophysics,2001, v42(4):334-343
    [30]胡雪涛,李允.随机网络模拟研究微观剩余油分布[J].石油学报,2000,21(7):46-53
    [31]张龙海,周灿灿,刘国强,等.孔隙结构对低孔低渗储集层电性及测井解释评价的影响[J].石油勘探与开发,2006,33(6):671-677
    [32]McDougall S R, Sorbie K S. The Combined Effect of Capillary and Viscous Forces on Waterflood Displacement Efficiency in Finely Laminated Porous Media[R], SPE 26659,1993
    [33]施晓乐,盛强,李玉彬,等.对人造模型水驱油模拟实验的CT扫描跟踪技术[J].CT理论与应用研究,2003,12(2):26-29
    [34]袁士义,冉启全,胡永乐,等.火成岩裂缝性稠油油藏有效开发方式[J].石油学报,2005,26(4):63-68
    [35]张扬,彭晓峰.多孔材料内部结构的微CT扫描仪分析[J].工热物理学报,2005,26(5)
    850-852
    [36]A Katz, A Thompson. Factal Sandstone Pores:Implications for Conductivity and Pore Formation. Physical Review Letters [J].1985,54(12):1325-1328
    [37]孙卫,史成恩,赵惊蛰,等.X-CT扫描成像技术在特低渗透储层微观孔隙结构及渗流机理研究中的应用—以西峰油田庄19井区长82储层为例[J].地质学报,2006,80(5):775-781
    [38]付静,王文清,秦国鲲.X-CT成象研究聚合物驱中流体饱和度[J].新疆石油天然气,2006,2(3):48-53
    [39]王金勋,杨普华,刘庆杰,等.应用恒速压汞实验数据计算相对渗透率曲线[J].石油大学学报(自然科学版),2003,27(4):66-69
    [40]于俊波,郭殿军,王新强.基于恒速压汞技术的低渗透储层物性特征[J].大庆石油学院学报,2006,30(2):22-25
    [41]杨正明,张英芝,郝明强.低渗透油田储层综合评价方法[J].石油学报,2006,27(2):64-67
    [42]GAULIER C. Studying vugular rocks by constant-rate mercury injection [R]. SPE 3612,1971
    [43]YUAN H H, WANSON B F. Solving pore space characteristics by rate-controlled porosimetry [R]. SPE 14892,1989
    [44]王为民,郭和坤,孙佃庆等.用核磁共振成像技术研究聚合物驱油过程[J].石油学报,1997,18(4):54-60
    [45]肖立志,刘堂宴.傅容珊等.利用核磁共振测井评价储层的捕集能力[J].石油学报,2004,25(4):38-41
    [46]周波,侯平,王为民等.核磁共振成像技术分析油运移过程中含油饱和度[J].石油勘探与开发,2005,32(6):78-81
    [47]王为民,赵刚,谷长春等.核磁共振岩屑分析技术的实验及应用研究[J].石油勘探与开发,2005,32(1):56-59
    [48]陈冬霞,庞雄奇,姜振学等.利用核磁共振物理模拟实验研究岩性油气藏成藏机理[J].地质学报,2006,80(3):432-438
    [49]苗盛,张发强,李铁军等.核磁共振成像技术在油气运移路径观察与分析中的应用[J].石油学报,2004,25(3):44-47
    [50]胡文瑞,张世富,杨承宗,等.安塞特低渗透油田开发实践[J].西安石油学院学报,1993,9(1):16-21
    [51]朱维耀,鞠岩,赵明,等.低渗透裂缝性砂岩油藏多孔介质渗吸机理研究[J].石油学报,2002, 23(6):56-60
    [52]曲志浩,孔令荣.低渗透油层微观水驱油特征[J].西北大学学报,2002,32(4):329-334
    [53]李道品,罗迪强.低渗透油田开发的特殊规律-低渗透油田开发系列论文之一[J].断块油气田,1994,1(4):30-35
    [54]Louis Cuiec, Oil recovery by imbibition in low_permability chalk[J]. SPE Formation Evalution, 1994,9(3):289-294
    [55]沈平平.油水在多孔介质中的运动理论和实践[M].北京:石油工业出版社,2000:17-18
    [56]王夕宾,钟建华,王勇,等.濮城油田南区沙二上4-7砂层组储层孔隙结构及与驱油效率的关系[J].应用基础与工程科学学报,2006,14(3):324-333
    [57]王允诚,董继芬.砂岩孔隙-喉道分布的特征参数[J].成都地质学院学报,1984,(1):63-70
    [58]陈立官,王柏钧,李鸿智.结构优度-估价储油层孔隙结构的首要参数[J].石油与天然气地质,1980,1(1):69-74
    [59]曲志浩,孔令荣.低渗透油层微观水驱油特征[J].西北大学学报(自然科学版),2002,32(4):329-334
    [60]孙卫,史成恩,赵惊蛰,等.X-CT扫描成像技术在特低渗透储层微观孔隙结构及渗流特征研究中的应用—以西峰油田庄19井区长82储层为例[J].地质学报,2006,80(5):775-781
    [61]SY/T 6312-1997,岩石孔隙结构特征的测定、图像分析法[S].北京:石油工业出版社,2004
    [62]陈杰,周改英,赵喜亮,等.储层岩石孔隙结构特征研究方法综述[J].特种油气藏,2005,12(4):11-15
    [63]Wardlaw N C, Quantitative Determinatation of Pore Structure and Application to Fluid Displacement in Reservoir Rock[M]. North Sea Oil and Gas Reservoir-Ⅱ,1990:243-299
    [64]肖忠祥,肖亮,张伟.利用毛管压力曲线计算砂岩渗透率的新方法[J].石油物探,2008,47(2):204-208
    [65]Purcell W R. Capillary pressures-their measurement using mereury and the calculation of permeability therefrom[J]. Trans AIME,1949, v41(5):39~48
    [66]Swanson B F. Visualizing pores and nonwetting phase in porous rocks[J]. Journal of Petroleum Technology,1979, v31(1),10-18
    [67]Guo Boyun, Ali Ghalambor, Duan shengkai. Correlation between sandstone permeability and capillary pressure curves[J]. Journal of Petroleum Science and Engineering,2004, v43(2):239-246
    [68]Edward, D Pittman. Relationship of porosity and permeability to various parameters derived from
    mercury injection capillary Pressure curves for sandstone[J]. AAPG,1992, v76(2):191-198
    [69]廖明光,李士伦,谈德辉.砂岩储层渗透率与压汞曲线特征参数间的关系[J].西南石油学院学报,2001,23(4):5-10
    [70]黄述旺,蔡毅,魏萍,等.储层微观孔隙结构特征空间展布研究方法[J].石油学报,1994,15,增刊:76-81
    [71]M.霍纳波.油藏相对渗透率[M].北京:石油工业出版社,1989:80-81
    [72]高慧梅,姜汉桥,陈民锋,何应付.储集层微观参数对油水相对渗透率影响的微观模拟研究[J].石油勘探与开发,2006,(06):734-737
    [73]吕成远.油藏条件下油水相对渗透率实验研究[J].石油勘探与开发,2003,(04):102-104
    [74]高华,高楚桥,胡向阳.莺歌海盆地束缚水饱和度影响因素研究[J],石油物探,2005,44(2)158-160
    [75]李宁,周克明,张清秀,唐显贵.束缚水饱和度实验研究[J].天然气工业,2002,(S1):110-114
    [76]王铁利.渗透率与孔隙度、束缚水、饱和度的关系[J].煤炭技术,2010,(01):171-172
    [77]李琴.相对渗透率法评定储集层岩石表面润湿性[J].石油实验地质,1996,18(4):454-458
    [78]孙卫,曲志浩,李劲峰.安塞特低渗透油田见水后的水驱油机理及开发效果分析[J].石油实验地质,1999,2 1(3):256-230
    [79]Wei Sun, Zhihao Qu, Guo-Qing Tang. Characterization of Water injection in Low-Permeability Rock Using Sandstone Micromodels. JPT(JOURNAL OF PETROLEUM TECHNOLOGY). Volume56, Number5,2004,71-72(SCI收录)
    [80]Wei Sun, Guo-Qing Tang. Visual Study of Water Injection in low Permeable Sandstone. Journal of Canadian Petroleum Technology. Volume 11, Number45,2006,21~26. (SCI收录)
    [81]Sun Wei, Qu Zhihao, Li Jinfeng, He Juan. Research on Formation Mechanisms of Microscopic Residual Oil. Scientia Geolgoica Sinica. Volume9, Numberl.2000,117-121
    [82]孙卫.安塞油田长6油层微观模型化学堵水实验[J].石油与天然气地质,1997,18(3):199-203.
    [83]孙卫,何娟.姬塬延安组储层水驱油效率及影响因素[J].石油与天然气地质,1999,20(1):26-29.
    [84]孙卫,曲志浩,岳乐平,等.鄯善油田东区油藏注水开发的油水运动规律[J].石油与天然气地质,1998,19(3):190-194.
    [85]孙卫,马全华,何娟,等.注采控制系统组成及控制原理分析[J].西北大学学报(自然科学版),2000,30(3):251-255.
    [86]朱玉双,曲志浩,孙卫,等.低渗、特低渗油田注水开发见效见水受控因素分析-以鄯善油田、丘陵油田为例[J].西北大学学报(自然科学版),2003,33(3):311-314.
    [87]熊敏,王勤田.盘河断块区孔隙结构与驱油效率[J].石油与天然气地质,2003,24(1):42-45
    [88]朱玉双,曲志浩,孔令荣,等.靖安油田长6、长2油层驱油效率影响因素[J].石油与天然气地质,1999,20(4):334-336
    [89]王夕宾,刘玉忠,钟建华.乐安油田草13断块沙四段储集层微观特征及其与驱油效率的关系[J].石油大学学报(自然科学版),2005,29(3):6-11
    [90]刘中云.临南油田储集层孔隙结构模型与剩余油分布研究[J].石油勘探与开发,2000,27(6):47-52
    [91]王瑞飞,陈明强,孙卫.鄂尔多斯盆地延长组超低渗透砂岩储层微观孔隙结构特征研究[J].地质论评,2008,54(2):270-278
    [92]何雨丹,毛志强,肖立志等.核磁共振几分布评价岩石孔径分布的改进方法[J].地球物理学报,2005,48(2):373-378
    [93]王忠东,肖立志,刘宴堂.核磁共振弛豫信号多指数反演新方法及其应用[J].中国科学(D辑),2003,33(4):323-332
    [94]王为民,叶朝辉,郭和坤,陆相储层岩石核磁共振物理特征的实验研究[J].波谱学杂志,2001,18(2):113-121
    [95]赵杰,姜亦忠,王伟男,等.用核磁共振技术确定岩石孔隙结构的实验研究[J].测井技术,2003,27(3):185-188
    [96]王为民,郭和坤,叶朝辉.利用核磁共振可动流体评价低渗透油田开发潜力[J].石油学报,2001,22(6):40-44
    [97]王行信.泰康和古龙地区粘土矿物对砂岩储层孔隙结构及产能的影响[J].石油与天然气地质,1985,6(2):187-198
    [98]罗静兰,张晓莉,S.Morad,等.河流-湖泊三角洲相砂岩成岩作用的重建及其对储层物性演化的影响——以延长油区侏罗系-上三叠统砂岩为例[J].中国科学D辑,2001,(12):1006-1016
    [99]王瑞飞,孙卫,储层沉积-成岩过程中物性演化的主控因素矿物学报2009,29(3):399-403
    [100]隋风贵;操应长;刘惠民;东营凹陷北带东部古近系近岸水下扇储集物性演化及其油气成藏模式地质学报,2010,84(2):246-255
    [101]SY/T 5477-2003,碎屑岩成岩阶段划分[S].北京:石油工业出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700