武汉二元结构地层基坑降水及其地表变形沉降研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市建设的高速发展,高层建筑、地铁与地下建筑的建设日益加快,由此引发的环境岩土工程问题也越来越显著。其中,降水引发周边地表变形与沉降是最受关注的问题。
     武汉位于长江中游,大部分为第四纪松散堆积层覆盖,侵蚀区、沉积区和过渡区并存。受水流长期分选作用,沉积物颗粒由浅部至深部由细到粗,河漫滩相呈典型相变规律,地层渗透性由浅部至深部逐渐增大。二元结构地层主要分布在汉口、汉阳、武昌、青山的沿江地带,即长江和汉水两岸的Ⅰ级阶地上。目前对于在该地区如何进行深基坑降水,并得出该地区降水引起地表变形沉降规律的研究很少,也不系统。
     本论文首先广泛收集前人研究成果并加以归类总结,再分析武汉二元结构地层工程地质与水文地质特性,结合监测资料与可考虑三维非稳定流于非完整井降水的三维有限差分数值水文分析软件Processing Modflow,得出武汉市二元结构地层基坑降水产生地表变形沉降规律。具体研究内容如下:
     (1)结合武汉市地层岩相与水文地质特征,将武汉二元结构地层可分为三层:①覆盖层,由填土、河漫滩相粘性土和淤泥、淤泥质土构成,地下水赋存状态主要为潜水,上部的杂填土中有上层滞水。该层厚度变化较大,土体含水率高,孔隙率高,渗透性小。②过渡层,岩性为粉质粘土与粉土、粉砂互层,为承压水的上段;该层厚度变化较大,土体含水率高,孔隙率高,以压缩变形,渗透性小。③砂性土承压水含水层,以粉砂、粉细砂和细砂为主,底部中粗砂、卵砾石层,渗透系数高,不易压缩变形,以下为基岩隔水层,该层可作为建筑物持力层。在此基础上建立武汉二元结构地层基坑场地岩土工程模型。
     (2)对二元结构地层中的过渡层作重点研究对象,根据其表现出弱透水性承压水工程性质,在基坑降水工程中采取合理的方式疏导该层的地下水。
     (3)根据实测监测数据与理论分析,基坑工程周边地表变形沉降是由基坑降水土体固结引起的地表沉降与支护结构位移引发的地表变形两部分构成,为了更全面地评价基坑周边地表变形现象,首先,对支护结构位移引起的地表变形进行简单的分析。灰色理论广泛应用于深基坑位移预测,对基坑工程设计与施工具有重要意义。预测中灰色模型的建立是以等时距原始数据作为前提条件,而实际工程的位移监测数据多是非等时距,因此,难以建立合理的预测模型。论文采取引入单位时间差系数方法将不等间隔序列调整为等间隔序列,分析其差值后将序列还原,从而可以建立非等间隔时序灰色模型;同时将数据矩阵的第一列元素由原两个连续元素增加为三个连续元素平均值的相反数构成。以武汉音乐学院钢琴房深基坑工程为算例,验证了上述改进模型的正确性,其预测结果与监测结果更为接近。结果表明,非等间隔时序灰色模型在深基坑支护结构位移预测中更符合工程条件,精度更高,为深基坑支护信息化施工提供了更好的理论依据。
     (4)基坑周边地表变形的另一方面在于土体的固结沉降,论文在经典的固结沉降理论基础上,根据武汉二元结构地层基坑降水的特征,建立地下水三维渗流与地表变形沉降的耦合模型。
     (5)在理论研究的基础上,结合Processing Modflow软件,模拟实际工程情况,计算出基坑降水引发地表沉降量,并与实测值进行对比,得出基坑降水水位与沉降分布规律。在基坑降水过程中,水头在开始的前20天变化显著,20天之后基本达到稳定,维持新的平衡状态。基坑降水引起的地表沉降在降水开始的前20天变化较快,在20~30天阶段,变化速率减慢,30天后基本趋于稳定,沉降滞后于水头下降。由此,将整个降水引起的地表变形分为三个阶段:沉降阶段、滞后阶段与稳定阶段。
     本论文研究特色与创新点在于:
     (1)在武汉市深基坑工程实例基础上提出了二元结构地层基坑岩土工程模型,对基坑支护与降水计算具有指导意义。
     (2)研究表明,具有二元结构的基坑工程地表变形沉降主要由两个部分构成:支护结构水平位移产生的沉降以及因降水导致的过渡层固结沉降。以武汉市国税局地下停车车库基坑为例,研究了地表变形沉降随降水过程的变化规律;基坑工程地表变形可以分为三个阶段:沉降阶段、滞后阶段与稳定阶段。
With the rapid development of urban, it was speeding up the construction of the multilayer buildings, subway and underground construction. And the impact on the environmental geotechnical engineering problems is also growing, which caused the most concern on subsidence and deformation by foundation pit dewatering.
     Wuhan is located in the Yangtze River. And most stratum are covered by Quaternary unconsolidated layers. Erosion, sedimentary zone and transition zone coexist in the landform. Because the role of water a long time sorting, the sedimentary particles changes from fine to coarse from top to bottom. As the complexity formation of the binary structural stratum of Wuhan, how to dewatering in the area of deep foundation, and draw law of land subsidence caused by foundation pit dewatering in the binary structural stratum in Wuhan, is very difficult. And there is very little research in these areas, nor the systemly.
     In this thesis, the previous studies are collected to be classified. Ground subsidence rules caused by foundation pit dewatering are obtained based on analyzing engineering geology and hydrogeology of binary structural stratum of Wuhan,combination of monitoring data and numerical hydrological analysis software Processing Modflow which consider three-dimensional transient flow in non-complete three-dimensional finite difference of precipitation well. Specific study are as follows:
     (1) Base on the study of stratigraphic lightfaces and hydrogeological characteristics of the dual structure of Wuhan, stratum can be divided into three layers:①Cover layer, which is consisting of the fill, clay, silt floodplain, and silty soil. Phreatic is in this layer. The thickness of layer changes rapidly. And it is with high Moisture Content and porosity, while the permeability small.②Transition layer. It is made silty clay and silt, interbedded silt. And it is the upper section of the confined water; The thickness of layer changes rapidly. And it is with high Moisture Content and porosity, while the permeability small.③Sandy soil confined water aquifer, to silt, fine sand and fine sand-based, bottom-sand, gravel layer, high permeability, not easy to deformation. The following bedrock is confining layer, the layer can be used as support layer of the building.
     (2) Study on the transition layer of the binary structure of the transition layer, according to their performance in a weak engineering geological properties of confined water permeability. A reasonable way is dealed with the level of groundwater.
     (3) A number of prediction problem of inadequacy information is successfully solved by using Grey System Theory. The Grey Model GM (1,1) is based on the equal interval original data. So it is difficult to predict when the data is unequal interval. For the shortcoming, the Grey Model is improved. The difference which is formed when unequal interval is transformed to interval is adjusted by unit time difference coefficient. The difference part and the initial part are accumulated respectively. Then the interval model is established.So the unequal interval Grey Model GM (1,1) is obtained after reverting the equal interval sequence. The deformation prediction of the deep foundation pit is made with the monitoring data of the various stages of a project. Through comparison and analysis on the predicted and actual data, it shows that unequal interval Grey Model GM (1,1) is more closed to the reality.
     (4) Study on classical theory of settlement and characteristic of foundation pit dewatering of Wuhan the dual structure, three-dimensional seepage of groundwater and surface subsidence coupled model are established.
     (5) Combined with theory and Processing Modflow software to simulate the actual project, subsidence caused foundation pit dewatering are calculate and compared with the measured values. The settlement of foundation pit water level distribution is obtained. In the process of foundation pit, water head in the beginning 20 days change significant. And new balance is got after 20 days. Subsidence caused Foundation pit dewatering changes fast in the beginning 20 days, change slowly 20 to 30 days. Settlement lags behind water head down. As a result, the settlement is divided into three stages:the settlement stage, the lag phase and the stable stage.
     The advantage of this paper are as following:
     (1) Geotechnical model of foundation pit on the binary structural stratum in Wuhan is obtained from the examples of deep excavation. And it's useful for the foundation pit support and foundation pit dewatering design.
     (2) Ground subsidence of foundation pit on the binary structural stratum in Wuhan includes two sides:the settlement of foundation pit support and the settlement caused by consolidation settlement. Taking parking garage foundation pit of Wuhan Internal Revenue Service underground as an example, the settlement is divided into three stages:the settlement stage, the lag phase and the stable stage.
引文
[1]徐杨青,朱小敏.长江中下游一级阶地地层结构特征及深基坑变形破坏模式分析[J].岩土工程学报,2006,11(28)
    [2]陈崇希,林敏.地下水动力学[M].武汉:中国地质大学出版社,1999
    [3]王翠英,冯晓腊.二元结构中弱透水层基坑降水的水文地质特性[J].人民长江,2004,9(35)
    [4]吴高林.工程降水设计施工与基坑渗流理论[M].北京:人民交通出版社,2003
    [5]吴高林.基坑工程降水案例[M].北京:人民交通出版社,2009
    [6]朱钢,软土二元结构深基坑深井降水理论及应用研究[D].武汉工业大学,博士论文,1999
    [7]张建山.基坑抽水地面沉降理论与工程应用[D].西安理工大学博士学位论文2004
    [8]张莲花.基坑降水引起沉降变形时空规律及降水控制研究[D].成都理工大学博士学位论文,2001
    [9]Bathe, K. J, and E. L. Wilson. Numerical Methods in Finite Element Analysis. Englewood Cliffs:Prentice-Hall Inc,1976
    [10]Cundall, P. A. "Distinct Element Models of Rock and Soil Structure, " in Analytical and Computational Methods in Engineering Rock Mechanics, Ch.4, pp.129-163, E. T. Brown, Ed. London:Allen&Unwin, 1987
    [11]Detournay C, Hart R, editors. FLAC and Numerical Modeling in Geomechanics. Proceedingsof the International FLAC Symposium on Numerical Modeling in Geomechanics, Minneapolis, USA,1999
    [12]Fast Lagrangian Analysis of Continua in 3 Dimensions, Version 2.0, Users'Manual, ltasca Consulting Group, inc, USA
    [13]Shen C. K, Bang S, Herrman L. R, Ground Movement Analysis of Earth Surpport System, Journal of Geotechnical, ASCE, Vol.107, No. GT12,1981.
    [14]付延玲,郭正法.Processing Modflow在地下水渗流与地面沉降研究中的应用[J].勘察科学与技术,2006,4
    [15]廖展宇,李英,晏鄂川.非等间隔时序灰色模型的深基坑变形预测研究[J].合肥工业大学学报(自然科学版),2009.10
    [16]赵昌贵,汪家林,徐湘涛.基于灰色模型的基坑变形预测评价,水利与建筑工程学报[J].2008,12:118-120
    [17]刘昭宝.基于修正GM(1,1)模型的岩体边坡预测分析,三峡大学学报(自然科学版)[J].2008,30(5):33-35
    [18]邓聚龙.灰色理论基础[M].武汉:华中科技大学出版社,2002。
    [19]宋彦辉、聂德新.基础沉降预测的Verhuls模型[J].岩土力学,2003
    [20]阮永芬,叶燎原.用灰色系统理论与方法确定深基坑支护方案[J].岩石力学与工程学报,2002,22(7):1203-12.6
    [21]赵红平,叶琳,赵汝兵.岩石爆炸变形流场的全息预测方法——灰色理论的应用[J].岩石力学与工程学报,2005,24(1):39-43
    [22]温丽华.灰色系统理论及其应用[硕士学位论文][D].哈尔滨:哈尔滨工程大学,2003
    [23]张晓伦.灰色理论在软土路基沉降分析中的应用[J].路基工程,2008,1:40~41
    [24]何海,陈绵云.GM(1,1)模型预测公式的缺陷及改进[J].武汉理工大学学报,2004,26(7):81-83
    [25]周志广,姚文生,张丽.抚顺发电厂地面沉降成因分析及其灰色理论预测[J].中国地质灾害与防治学报,2009,20(1):83-87
    [26]Terzaghi, K.Record earth pressure testing machine.Engineering.News Record.1932,109 (29)
    [27]Fang, YS.Ishibashi, I.Static earth pressure with various well movements.Journal of Geotechnical Engineering,1986,112(3)
    [28]高谦.土木工程可靠性理论及应用[M].北京:中国建材工业出版社,2007
    [29]龚晓南,高有潮.深基坑工程设计施工手册[M].中国建筑工业出版社,1998.7
    [30]赵志绪,应慧清.简明深基坑工程设计施工手册[M].中共建筑工业出版社,2000.4
    [31]周志芳,朱红高,陈静.深基坑降水与沉降的非线性耦合计算[J].岩土力学,2004,15(12):1984-1988
    [32]史翰.关于武汉地区深基坑降水引起地面沉降的探讨[J].土工基础,1999,13(4)
    [33]冯晓腊.三维水土耦合模型在深基坑降水计算中的应用[J].岩石力学与工程学报,2005,24(7):1196-1201
    [34]陈崇希,裴顺平.地下水开采一地面沉降数值模拟及防治对策研究—以江苏省苏州市为例[M].武汉:中国地质大学出版社
    [35]徐耀德.利用Modflow预测某基坑降水引起的地面沉降[J].水文地质与工程地质,2004(6):96~98
    [36]陈崇希,唐仲华.地下水流动问题数值方法[M].武汉:中国地质大学出版社,2002
    [37]骆祖江.深基坑降水疏干过程中三维渗流场数值模拟研究[J].水文地质与工程地2005(5):48~53
    [38]折学森.软土地基沉降计算[M].人民交通出版社,1999
    [39]仵彦卿.岩体渗流场与应力场耦合的等效连续介质模型[J].水文地质工程地质,1997(3)
    [40]俞洪良,陆杰峰,李守德.深基坑工程渗流场特性分析[J].浙江大学学报,2002,29(5)
    [41]建设与市政降水工程技术规范(JG/T111-98)[S].中华人民共和国行业标准.北京:中国建筑工业出版社,1999
    [42]湖北省深基坑工程技术规定(DB42/159-2004)[S].湖北省地方标准,武汉:武汉工业大学出版社,2004
    [43]苏景中.武汉地区深基坑工程理论与实践[M].武汉:武汉工业大学出版社,1995
    [44]李智毅,杨裕云.工程地质学概论[M].武汉:中国地质大学出版社,2002
    [45]陈仲颐,周景星,王洪瑾.土力学[M].北京:清华大学出版社,1994
    [46]王大纯,张人权等.水文地质学基础[M].北京:地质出版社,1995
    [47]刘俊研.深基坑工程[M].北京:中国建筑工业出版社,2001
    [48]杨志锡.某基坑地下水渗流与地面沉降的探讨[J].岩土工程师,2000,12(3)
    [49]张永波,孙新忠.基坑降水工程[M].北京:地震出版社,2000
    [50]Chang-Yu Ou, Dar-chang, T.S.Wu, Three-dimensional finite element analysis of deep excavations, Journal of Geot.echnical Engineering,1996,122 (5):337-345
    [51]Chew S. H., Yong K. Y. Lim. Y. K. Three-dimensional finite element analysis of astritted excavation.9th Int. Conf.On Computers Methods and Advances in Geomechnics, Wunhan 1997,1915-1920
    [52]Liu Kx, Yong KY, Lee FH, Anumerical study on 3--D behaviour of excavation-support

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700