堆浸体系中散体孔隙演化机理与渗流规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物堆浸体系是一个复杂的动态体系,在浸出过程中散体介质的孔隙结构不断发生演化,而孔隙结构的演化又会影响到介质的渗透性能,进一步对溶质运移、热量传递、动量传递等过程产生影响,最终影响到浸出速率和浸出率。由此可见,散体孔隙结构在整个浸出体系中处于核心地位,研究其结构特征、演化规律以及对堆体渗透性能的影响具有重要意义。
     论文通过现场调查、室内试验、理论分析、数值模拟相结合的方法,以细观孔隙结构参数与宏观渗透性能的相关性为突破口,引进先进的X光CT技术及数字图像处理技术,进行单级散体和级配散体孔隙结构参数量化分析,展开微生物浸出过程中孔隙结构演化规律和机理研究,并在此基础上实现散体介质细观渗流的数值模拟,在很大程度上丰富了溶浸采矿基础理论体系。
     论文完成的主要工作如下:
     (1)以堆浸散体介质多尺度孔隙结构理论研究为出发点,系统分析了堆浸散体孔隙结构的多尺度特性,细观孔隙结构表征参数及其与宏观渗透性能的关联。
     (2)发展了基于X光CT技术研究堆浸散体孔隙结构特征的新方法,提出了堆浸散体孔隙结构三维重构技术路线,基于体绘制算法,利用MATLAB编程实现了矿岩散体孔隙结构的三维重构。
     (3)率先完成了多组单级散体试样和级配散体试样的CT扫描试验,结合图像处理技术实现了孔隙结构参数的定量化分析,探明了散体介质孔隙率、孔隙尺寸分布与粒径的关系,并应用分形理论分析了散体介质颗粒分维数、孔隙分维数以及颗粒—孔隙界面分维数与颗粒尺寸、孔隙率及渗透系数的相关性。
     (4)首次结合CT技术完成了微生物堆浸矿岩散体孔隙演化试验,提出了孔隙拓扑率概念,并建立了考虑孔隙连通性变化的渗透率修正公式,在此基础上详细分析了堆浸过程中散体的孔隙率、孔隙尺寸、孔隙连通性以及渗透率的时间和空间变异性,探明了微生物堆浸过程中孔隙演化规律及其对渗透性能的影响。
     (5)利用散体结构力学、渗流力学、物理化学以及微生物学等理论,首次从多尺度(微观、细观、宏观)和多过程(物理过程、化学过程、生物过程)分析了影响孔隙结构参数变化的主要因素及其影响机制,探明了微生物堆浸过程中矿岩散体孔隙演化机理。
     (6)将数字图像处理技术(DIP)和有限元(FEM)技术进行耦合,基于散体孔隙CT图像直接构建孔隙有限元模型,把渗流数值模拟的物理模型从理想模型提升至真实模型,并率先利用COMSOL Multiphysics数值模拟软件进行了堆浸散体中细观渗流的数值模拟,探明了孔隙细观渗流特性
Bioleaching system is a complex dynamic sytem. During leaching process, the pore strucuture of granular media evolves continuously, which influences the permeability of the media and then affects the processes of mass transport, heat transmission and momentum transfer. As a result, the heap leaching rate and recovery ratio are affected. Since the pore structure of granular media is very crucial for the whole heap leaching system, so it is very important to study the characteristics of pore structure, evolvement rules and its effects on the permeability of the heap.
     With the methods of field investigation, indoor test, theoretical analysis, and numerical simulation, begining with the relationship between mesoscale pore structure parameters and macro permeability, by introducing advanced X-ray computerized tomography (CT) and digital image process technology, the quantification of pore structures of single grade granular ore samples and graded granular ore samples were conducted. Furthermore, the evolvement rules and mechanisms of pore structure of granular ore media during heap leaching were studied. At last, the simulation of meso seepage flow of granular media was realized. The research achievements enriched the basic theoretical system of solution mining.
     The main works completed are as follows:
     (1) Starting from the theoretical research of multi-scales pore structure of granular ore media, the characteristics of granular ore media, the representative parameters of mesoscale pore structure and its relationship with macro permeabiltiy were systematically analyzed.
     (2) The new method based on X-ray CT technology was developed for studying the characteristics of granular ore media. A technical route for the three dimensional reconstruction of granular ore media's pore structure was put forward. Using volume ploting algorithm, the reconstruction of pore structure was realized with MATLAB programming.
     (3) For the first time, several groups of single grade granular ore samples and graded granular ore samples were scanned by X-ray CT. By using image process technologies, the pore structure parameters of all samples were quantified. The relationships between porosity, pore size distribution and particle size were explored. Moreover, based on fractal theory, the fractal dimensions of solid matrix, pore space and matrix-pore interface of each sample were measured and the correlations of the three fractal dimensions with particle size, porosity, and seepage coefficient were analyzed.
     (4) The pore evolvement experiment of granular ore media during bacteria column leaching was carried out by intergrating CT technology firstly. The concept of pore topological ratio was put forward and the permeability formula was improved by considering the change of pore connectivity. Based on this, the temporal and spatial variabilities of porosity, pore size distribution, pore connectivity and permeability along the height of column were analyzed in details. Thus the pore evolvement rules and its influence on permeability were disclosed.
     (5) Based on granular structural mechanics, seepage dynamics, physical chemistry, and microbiology, the evolvement mechanisms of pore structure of granular ore media under the action of solution were analyzed from multi-scale (micro-, meso-and macro-) and multi-process (physical, chemical and bacterial process) firstly.
     (6) Coupled with digital image processing technoloty (DIP) and finite element method (FEM), the finite element model of pore network was build directly based on CT image, realized the transformation of physical model for seepage simulation from ideal model to realistic model. For the first time, the mesoscale fluid flow in pore network of granular ore media was simulated with COMSOL Multiphysics and the characteristics of pore scale fluid flow was disclosed.
引文
[1]于润沧,唐建,李有余.铜资源的危机与对策[J].中国有色工业,2002,(8):10-13
    [2]李万亨.矿产资源与可持续发展问题[J].中国矿山地质找矿与矿产经济,1999:27-31
    [3]古德生.对西部矿产资源开发问题的思考[J].矿业研究与开发,2001,21(1):1-3
    [4]孙成林.浅谈我国有色金属矿产资源高效利用现状[J].金属矿山,2005,suppl: 243-144
    [5]刘晓社,杨金妮.有色金属矿产资源的供给保障与开发战略[J].世界有色金属,2006,(7):10-11
    [6]兰兴华.从再生资源中回收有色金属的进展[J].世界有色金属,2003,(9):61-65
    [7]谭军.未来15年我国矿产资源供应缺口将进一步加大[J].世界有色金属,2007,4(3):61
    [8]吴爱祥,王洪江,杨保华,尹升华.溶浸采矿技术的进展与展望[J],采矿技术,2006,6(3):39-48
    [9]张卯均等.浸矿技术[M].北京:原子能出版社,1994
    [10]孙克成.紫金山金矿大规模堆浸生产实践[J].黄金,2000,(7)
    [11]王成彦.低品位铜湿法冶炼的现状及发展趋势[J].新疆地质,2001,19(4):281-284
    [12]Ruan Renman, Wen Jiankang, Chen Jinghe. Bacterial heap-leaching:practice in Zijinshan copper mine[J]. Hydrometallurgy,2006,83:77-82
    [13]Anon. New copper/uranium leaching process to be lauched in Chile[J]. Journal of Engineering and Mining.1997,9:41-46
    [14]T.J.Harvey, W. Van Der Merweb, K.Afewu. The application of the GeoBiotics GEOCOAT(?) biooxidation technology for the treatment of sphalerite Kumba resources'Rosh Pinah mine[J]. Minerals Engineering, 2002,15:823-829
    [15]Hector M. Lizama. Copper bioleaching behaviour in an aerated heap[J]. Internal Journal of Mineral Processing,2001,62:257-269
    [16]黎维中,查克兵,吴志军.德兴铜矿堆浸厂生产影响因素分析与探讨[J].铜业工程,2000,2:17-20
    [17]刘久清.德兴铜矿湿法炼铜工艺现状及存在问题[J].湿法冶金,2001, 20(3):123-132
    [18]桂斌旺,刘全军,李壮阔.铜的生物湿法冶金在德兴铜矿的应用[J].湿法冶金,2001,20(2):72-75
    [19]王洪江.铜矿排土场细菌强化浸出机理及新工艺研究:[博士学位论文].长沙:中南大学,2006
    [20]王洪江,吴爱祥,李青松.大型铜矿排土场浸出技术中几个亟待解决的关键问题[J].矿冶工程,2004,19(2):15-19
    [21]饶敦朴.矿石的制粒堆浸[J].黄金,1992,(2):35-37
    [22]李尚远.铀、金、铜矿石堆浸原理与实践[M].北京:原子能出版社,1997
    [23]吴爱祥,李青松,尹升华等.改善高泥矿堆渗透性的机理研究[J].湘潭矿业学院学报,2003,18(4):1-5
    [24]龙志高.高泥质矿石的原地松动浸出研究[J].湿法冶金,1997,(6):24-26
    [25]陈喜山.论堆浸工艺中溶浸液的渗透问题[J].黄金,1997,18(12):37-40
    [26]石星.堆浸法处理重泥质金矿石的改进[J].黄金,1992,(12):44-44
    [27]寇建军.我国堆浸提金技术的创新和发展[J].矿产综合利用,1997,(1):29-33
    [28]邱欣,池汝安,徐盛明等.堆浸工艺及理论的研究进展[J].金属矿山,2000,(11):20-23
    [29]陈喜山,梁晓春,荀志远.堆浸工艺中溶浸液的渗透模型[J].黄金,1994,20(4): 30-33
    [30]王昌汉.溶浸液渗滤速度与其调整[J].铀矿冶,2002,21(1):7-11
    [31]E. Cariaga, F. Concha, M. Sep'ulveda. Flow through porous media with applications to heap leaching of copper ores[J]. Chemical Engineering Journal,2005,111:151-165
    [32]沈平平.油水在多孔介质中的运动理论和实践[M].北京:石油工业出版社,2000:3
    [33]仵彦卿,曹广祝,王殿武.基于X射线CT方法的岩石小裂纹扩展过程分析[J].应用力学学报,2005,22(3):484-490
    [34]孙卫,史成恩,赵惊蛰,赵蕾.X-CT扫描成像技术在特低渗透储层微观孔隙结构及渗流机理研究中的应用[J].地质学报,2006,80(5):775-779
    [35]孙红,葛修润,牛富俊,蒲毅彬,马巍.上海粉质粘土的三轴CT实时细观试验[J].岩石力学与工程学报,2005,24(24):4559-4564
    [36]尹小涛,党发宁,丁卫华,陈厚群.岩土CT图像中裂纹的形态学测量[J].岩石力学与工程学报,2006,125(3):539-544
    [37]A. Pierret, Y. Capowiez, L. Belzunces, C.J. Moran.3D reconstruction and quantification of macropores using X-ray computed tomography and image analysis[J]. Geoderma 2002,106(6):247-271
    [38]Jody R. Gibson, Henry Lin, Mary Ann Bruns. A comparison of fractal analytical methods on 2-and 3-dimensional computed tomographic scans of soil aggregates[J]. Geoderma,2006,134 (3):335-348
    [39]Riyadh Al-Raoush, Khalid A. Alshibli. Distribution of local void ratio in porous media systems from 3D X-ray microtomography images[J]. Physica A,2006,361(5):441-456
    [40]R.I. Al-Raoush, C.S. Willson. Extraction of physically realistic pore network properties from three-dimensional synchrotron X-ray microtomography images of unconsolidated porous media systems[J]. Journal of Hydrology, 2005,300 (5):44-64
    [41]V. G. Ruiz de Argandoda, A. Rodriguez Rey, C. Celorio et al. Characterization by computed X-ray tomography of the evolution of the pore structure of a dolomite rock during freeze-thaw cyclic tests[J]. Phys. Chem. Earth (A), Vol.1999,24(7):633-637
    [42]Tetsuro Hirono, Manabu Takahashi, Satoru Nakashima. In situ visualization of fluid flow image within deformed rock by X-ray CT[J]. Engineering Geology,2003,70 (7):37-46
    [43]Dawn A. Ashbridge, Michael S. Thorne, Mark L. Rivers. Image optimization and analysis of synchrotron X-ray computed microtomography (CmT) data[J]. Computers & Geosciences,2003,29 (5):823-836
    [44]M.E.Coles, R.D.Hazlett, P.Spanne et al. Pore level imageing of fluid transport using synchrotron X-ray microtomography[J]. Journal of Petroleum Science and Engineering,1998,19(1):55-63
    [45]D. Wildenschild, J.W. Hopmans, C.M.P Vaz.Using X-ray computed tomography in hydrology:systems, resolutions, and limitations[J]. Journal of Hydrology,2002,267 (9):285-297
    [46]C.L. Lin, J.D. Miller, C. Garcia. Saturated flow characteristics in column leaching as described by LB simulation[J]. Minerals Engineering,2005,18 (10):1045-1051
    [47]Bear J, Verruijt A. Modeling groundwater flow and pollution[J]. D.Reidel publishing company 1987.
    [48]周志芳,王锦国.裂隙介质水动力学[M].北京:中国水电水利出版社,2004:41-46
    [49]J. Petersen, D.G. Dixon. Modelling zinc heap bioleaching[J]. Hydrometallurgy 2007,85:127-143
    [50]曾凡,胡永平.矿物加工颗粒学[M].徐州:中国矿业大学出版社,1995:17
    [51]罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社,1986:29
    [52]Gerasimos S. Armatas. Determination of the effects of the pore size distribution and pore connectivity distribution on the pore tortuosity and diffusive transport in model porous networks[J]. Chemical Engineering Science 2006,61(2) 4662-4675
    [53]Xuan Yang. Three-dimensional characterization of inherent and induced sand microstructure[D]. Georgia:Georgia Institute of Technology,2005:104
    [54]Jaleh Ghassemzadeh, Muhammad Sahimi. Pore network simulation of fluid imbibition into paper during coating:Ⅱ. Characterization of paper's morphology and computation of its effective permeability tensor[J]. Chemical Engineering Science,2004,59:2265-2280
    [55]Kiyofumi Kurumisawa, Kyoji Tanaka. Three-dimensional visualization of pore structure in hardened cement paste by the gallium intrusion technique[J]. Cement and Concrete Research.2006,36:330-336
    [56]Γ.K.克列因著,陈万佳译.散粒体结构力学(第二版)[M],北京:中国铁道出版社,1983
    [57]Robert W. Bartlett. Solution Mining:Leaching and Fluid Recovery of Materials[M]. New York:Gordon and Breach Science Publishers.1998:211
    [58]Ram C. Acharya, Sjoerd E.A.T.M. van der Zee, Anton Leijnse. Porosity-permeability properties generated with a new 2-parameter 3D hydraulic pore-network model for consolidated and unconsolidated porous media[J]. Advances in Water Resources2004,27 (7):707-723
    [59]R.C. Acharya, S.E.A.T.M. Van der Zee, A. Leijnse. Approaches for modeling longitudinal dispersion in pore-networks [J]. Advances in Water Resources,2007, 30(2):261-272
    [60]R.W. Vervoort, S.R. Cattle.Linking hydraulic conductivity and tortuosity parameters to pore space geometry and pore-size distribution[J]. Journal of Hydrology,2003,272:36-49
    [61]杨更社.岩石损伤与CT检测技术[J].西安矿业学院学报.1997, 9(3):195-198
    [62]李文胜.CT机的物理原理[J].工科物理.1997(2):20-24
    [63]姚富光.医用X-CT图像三维重建技术研究:[硕士学位论文].重庆:重庆大学,2004
    [64]傅德胜,寿亦禾.图形图像处理学[M].南京:东南大学出版社,2001:179-194.
    [65]霍宏涛.数字图像处理[M].北京:北京理工大学出版社,2002:82-83
    [66]岗萨雷斯等.数字图像处理(MATLAB版)[M].北京:电子工业出版社,2006:54-60
    [67]Riyadh I. Al-Raoush. Extraction of Physically-realistic Pore Network Properties From Three-dimensional Synchrotron Microtomograpy Images of Unconsolidated Porous Media[D]. Jordan:Louisiana State University.2002: 45-47
    [68]宋卫卫,李冠华,欧宗瑛.医学体数据三维可视化技术[J].计算机工程与应用,2006(18):21-26
    [69]徐云翔,吴秀清,胡拥军.在MATLAB环境下实现体绘制法的生物切片图像的三维重建[J].计算机工程,2002,27(12):114-115
    [70]王宗彦,梁远蕾,张亚明.工业CT断层数据的可视化技术研究[J].测试技术学报,2003,17(2):110-113
    [71]张爱东,李炬,陈发,孙灵霞.工业CT的三维重建[J].核电子学与探测技术,2005,25(4):420-422
    [72]冈萨雷斯.数字图像处理(MATLAB版)[M].北京:电子工业出版社,2006:9-16
    [73]Okabe H, Blunt J M. Pore space reconstruction using multiple-point statistics[J]. Journal of Petroleum Science and Engineering,2005,46 (2):121-137
    [74]曾筝,董芳华,陈晓等.利用MATLAB实现CT断层图像的三维重建[J].CT理论与应用研究.2004,13(2):24-29
    [75]张爱东,李炬,孙灵霞.MATLAB编程实现连续断层工业CT图像的三维重建[J].核电子学与探测技术.2006,26(4):489-491
    [76]C.L. Lin, J.D. Miller. Network analysis of filter cake pore structure by high resolution X-ray microtomography[J]. Chemical Engineering Journal. 2000(77):79-86
    [77]Sefer B. Coskun, Norman C. Wardlaw. Influences of pore geometry, porosity and permeability on initial water saturation-An empirical method for estimating initial water saturation by image analysis[J]. Petroleum Science and Engineering.1995,12:295-308
    [78]Beatriz Mene' ndeza, Christian Davida, Angel Marti'nez Nistalb. Confocal scanning laser microscopy applied to the study of pore and crack networks in rocks[J]. Computers & Geosciences 2001,27:1101 - 1109
    [79]陈书荣,王达健,张雄飞等.多孔介质孔隙结构的网络模型应用[J].计算机与应用化学.2001,18(6):531-535
    [80]C.L. Lin, J.D. Miller. Pore structure and network analysis of filter cake[J].Chemical Engineering Journal,2000,80:221-231
    [81]Wu Ai-xiang, Yang Bao-hua, Xi Yong, Jiang Huai-chun. Pore structure of ore granular media by computerized tomography image processing[J]. Journal of Central South University of Technology.2007,14(2):220-224
    [82]侍倩.土力学[M].武汉:武汉大学出版社,2004:6
    [83]阎宗岭.堆石体物理力学特性及其工程应用研究:[博士学位论文].重庆:重庆大学,2003:23
    [84]Xuan Yang. Three-dimensional characterization of inherent and induced sand microstructure [D]. Georgia:Georgia Institute of Technology,2005:106
    [85]屈智炯,何昌荣,刘双光等.新型石渣坝—粗粒土筑坝的理论与实践[M].北京:中国水利水电出版社,2002
    [86]郭庆国.粗粒土的工程特性及应用[M].北京:黄河水利出版社,1999
    [87]刘杰.土的渗透稳定与渗流控制[M].北京水力水电出版社,1992
    [88]Sheikhzadeh G A, Mehrabian M A, Mansouri S H, Sarrafi A. Computational modelling of unsaturated flow of liquid in heap leaching-using the results of column tests to calibrate the model [J]. International Journal of Heat and Mass Transfer.2005,48:279-292
    [89]郭庆国.粗粒土的工程特性及应用[M].北京:黄河水利出版社,1999:298
    [90]Lipiec J, Hatano R, and SoowinAska-Jurkiewicz A. The fractal dimension of pore distribution patterns in variously-compacted soil[J], Soil & Tillage Research,1998,47(7):61- 66
    [91]Gryze S D, Jassogne L, Six J, Bossuyt H, Wevers M, and Merckx R. Pore structure changes during decomposition of fresh residue:X-ray tomography analyses[J]. Geoderma,2006,134(5):82-96.
    [92]Dathe A and Thullner M. The relationship between fractal properties of solid matrix and pore space in porous media[J]. Geoderma,2005,129(3):279-290
    [93]Schlueter E M, Zimmerman R W, Witherspoon P A. The fractal dimension of pores in sedimentary rocks and its influence on permeability[J]. Engineering Geology,1997,48:199-215
    [94]Pape H, Clauser C, and Iffland J. Permeability prediction based on fractal pore-space geometry[J]. Geophysics,1999,64(5):1447-1460
    [95]王清,王建平.土孔隙的分形几何研究[J].岩土工程学报.2000,22(4):496-498.
    [96]Xie H P, Wang J A and Qan P G, Fractal characters of micropore evolution in marbles[J]. Physics Letters,1996,218(8):275-280.
    [97]Perfect E. Estimating soil mass fractal dimensions from water retention curves[J]. Geoderma,1999,88(1):221-231
    [98]Oleschko K, Figueroa B S, Miranda M E. Mass fractal dimensions and some selected physical properties of contrasting soils and sediments of Mexico[J]. Soil & Tillage Research,2000,55:43-61
    [99]Birda N, Di'az M C, Saa A, Tarquis A M. Fractal and multifractal analysis of pore-scale images of soil[J]. Journal of Hydrology,2006,322(2):211-219
    [100]Dathe A, Eins S, Niemeyer J, Gerold G. The surface fractal dimension of the soil-pore interface as measured by image analysis[J], Geoderma,2001, 103(5):203-229
    [101]Rigby S P. Theoretical Aspects of the Estimation of Pore and Mass Fractal Dimensions of Porous Media on the Macroscopic Scale using NMR Imaging[J]. Chaos, Solitons & Fractals,1998,9(9):1519-1527.
    [102]Gibson J R, Lin H, M. Bruns A. A comparison of fractal analytical methods on 2-and 3-dimensional computed tomographic scans of soil aggregates [J]. Geoderma,2006,134(3):335-348
    [103]刘代俊.分形理论在化学工程中的应用[M].北京:化学工业出版社,2006:14-20
    [104]张在海.铜硫化矿生物浸出高效菌种选育及浸出机理:[博士学位论文].长沙:中南大学,2002
    [105]魏以和,王军,钟康年.矿物生物技术的微生物学基本方法[J].国外金属矿选矿,1996,(1):14-27
    [106]张玮,张宁生.固相颗粒在分形多孔介质中运移的网络模拟[J].西安石油学院学报(自然科学版),2000,15(2):14-17
    [107]刘忠玉.无粘性土中管涌的机理研究:[博士学位论文].兰州:兰州大学,2001
    [108]A.Benamar et al., Particle transport in a saturated porous medium:pore structure effects[J]. C. R. Geoscience,2007,339(10):674-681
    [109]J. Moghadasi, H. Mu" ller-Steinhagen, M. Jamialahmadi, A. Sharif. Theoretical and experimental study of particle movement and deposition in porous media during water injection[J]. Journal of Petroleum Science and Engineering,2004,43:163-181
    [110]A.J. Sederman, L.F. Gladden. MRI as a probe of the deposition of solid fines in a porous medium[J]. Magnetic Resonance Imaging,2001,19:565-567
    [111]李宏煦.硫化铜矿的生物冶金[M].北京:冶金工业出版社,2007
    [112]Gang Chen, Keith A. Strevett. Microbial Deposition in Porous Media:A Surface Thermodynamic Investigation[J]. Environmental Engineering Science.2003,20(3):237-248
    [113]Huub H. M. Rijnaarts, Willem Norde, and Edward J. Bouwer, et al. Bacterial deposition in porous media:effects of cell-coating, substratum hydrophobicity, and electrolyte concentration[J]. Environ. Sci. Technol.1996, 30:2877-2883
    [114]Guangming Jiang, Mike J. Noonan, Graeme D. Buchan, and Neil Smith. Transport and deposition of Bacillus subtilis through an intact soil column[J]. Australian Journal of Soil Research,2005,43:695-703
    [115]George E. Kapellos, Terpsichori S. Alexiou, Alkiviades C. Payatakes. Hierarchical simulator of biofilm growth and dynamics in granular porous materials[J]. Advances in Water Resources,2007,30:1648-1667
    [116]Luis Seminario, Roberto Rozas, Rodrigo Borquez, Pedro G. Toledo. Pore blocking and permeability reduction in cross-flow microfiltration[J]. Journal of Membrane Science,2002,209(5):121 - 142
    [117]周光垌,严宗毅,许世雄等.流体力学[M].北京:高等教育出版社,2000:112-114
    [118]Naomi Tsafnat a, Guy Tsafnat, Allan S. Jones. Automated mineralogy using finite element analysis and X-ray microtomography[J].Minerals Engineering, 2009,22(2):149-155

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700