用户名: 密码: 验证码:
热—流—固耦合条件下软岩巷道压力与变形的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭作为一种最主要的能源是国民经济的支柱和命脉,然而经过40余年的大量开采,中国的煤炭资源已急剧减少,使得新建矿井的开采条件越来越差,对支护的要求越来越高;与此同时,多数矿井开始进入设计寿命的中期乃至老化阶段,后期维护任务更为艰巨。因此,支护设计和围岩控制成为摆在煤炭行业科技人员面前的一个重要的研究课题。其中围岩变形是围岩活动最积极的反映,能否准确地判断或预算巷道围岩的变形,对于选择支护和围岩控制都具有重要的参考价值。
     深部开采条件下巷道围岩处于高地应力、高水压力和高温的“三高”环境下,水压力场和温度场都对巷道的受力与变形有着重要的影响,因此考虑热-流-固(THM)耦合条件下巷道的变形分析具有重要意义。研究重点是热-流-固耦合模型的建立和巷道围岩变形的数值分析。首先在前人工作的基础上建立热-流-固耦合模型,其中考虑了温度应力、温度应变对应力场的影响,水压力对应力场的影响,岩体骨架变形对地下水渗流的影响,地温变化对地下水渗流的影响。然后建立数值模型,借助于大型通用有限元分析软件包FEMLAB(Comsol Multiphysics)对巷道围岩的受力变形进行数值计算与分析,研究各因素包括侧压力系数、水压力以及地温对围岩力学行为的影响规律。研究结果表明热-流-固三场耦合条件下,侧压力系数对围岩的塑性区分布规律有着重要的控制作用,地下水和地温场对巷道围岩的塑性行为也均有重要影响,且对巷道的稳定性均为不利影响。
Coal as a primary energy is the support and lifeline of the national economy, however, after coal mining more than 40 years, coal resources has been drastically reduced in China. The new mine mining conditions is getting worse and the requirement of supporting is increasing; At the same time, most of new mine has entered the medium-term design life ,and even the aging stage, the latter part of the maintenance task being more difficult. Therefore, supporting design and controlling the rock have become an important issue in front of the coal industry staff. Deformation of surrounding rock which is a reflection of the most active rock, whether accurately forecast the deformation of rock tunnel for having a choice of supporting and controlling surrounding rock is important reference value.
     Under the conditions of deep mining ,the tunnel rock is in the environment of“three height”(high stress、high water pressure and high temperature),which have an important influence on tunnel force and deformation. Therefore, considering the deformation analysis of tunnel under the condition of thermal-hydrological-mechanical (H-T-M) coupling has a significant meaningful. This research focuses on building coupled model of HTM and analyzing to tunnel surrounding rock deformation. First of all, on the basis of previous work, we establish thermal-hydrological-mechanical coupled model, which has considered influence to the stress field under temperature stress and temperature strain and water stress, and the influence to the rock framework deformation under groundwater seeping. Then we establish value model through the large-general- finite element analysis software package Comsol Multiphysics (FEMLAB) to numerical calculation and analysis of deformation for tunnel surrounding rock, studying on mechanical behavior regularity which is effected by various factors including coefficient of side pressure and water pressure, ground temperature. Study shows that coefficient of side pressure has controlling effect on plastic area distribution regularity under the condition of thermal-hydrological-mechanical coupled model and have negative influence on tunnel stability.
引文
[1]王永岩.软岩巷道变形与压力分析控制及预测[D].辽宁工程技术大学博士学位论文,2001(4).
    [2]赵生才.深部高应力下的资源开采与地下工程-香山会议第175次综述[J].地球科学进展,2002.17(1).
    [3]李剑光,王永岩,王皓.深部岩体多孔介质流变模型的研究[J].岩土力学,2008,29(9):2355-2358.
    [4]王永岩,齐珺,杨彩虹,等.深部岩体非线性蠕变规律研究[J].岩土力学,2005,26(1):117-121.
    [5]仵彦卿,张倬元.岩体水力学导论[M].成都:西南交通大学出版社,1995.
    [6]王永岩,魏佳,齐珺,等.深部岩体非线性蠕变变形预测的研究[J].煤炭学报,2005,30(4):409-413.
    [7]王永岩.软岩巷道变形与压力分析、控制及预测[J].岩石力学与工程学报,2004,23(1).
    [8]何满潮.中国煤矿软岩巷道支护理论与实践.北京:中国矿业大学出版社,1996.
    [9]何满潮,孙晓明.中国煤矿软岩巷道工程支护设计与施工指南[M].科学出版社.2004.
    [10]刘高.高地应力区结构性流变围岩稳定性研究[D].成都理工大学博士学位论文,2001(10).
    [11]王建宇.对我国隧道工程中2个问题的思考[J].铁道建筑,2001(4).
    [12]陆士良,汤雷,杨新安著.锚杆锚固力及锚固技术[M].北京:煤炭工业出版社,1998.
    [13]陈仲先,汤雷.高地应力大型地下洞室的位移和锚杆应力特性[J].岩土工程学报,2000(3).
    [14]Vander Molen I,The shift of theα-βtransition of associated with the thermal expression of granite at high pressure.Tectonophsics,1981,73:323-342.
    [15]席道瑛等,温度对岩石模量和波速的影响,岩石力学和工程学报,1998,17(增),271-276.
    [16]Heueckel T,Peano A,Pellegrint R.A constitutive law for thermal-plastic behavior of rocks:ananglogy with clays.Survey in Geophsics,1994,15:643-671.
    [17]王靖涛,赵爱国,黄明昌,花岗岩断裂韧度的高温效应,岩土工程学报,1989.11(6):113-118.
    [18]张静华等,高温下花岗岩断裂特性的研究,岩土力学,1987,8(4):11-16.
    [19]刘泉声等.三峡花岗岩与温度及时间相关的力学性质试验研究,岩石力学与工程学报,2001,20(5):715-719.
    [20]徐锡昌,刘泉声,高温下花岗岩基本力学性质初步研究,岩土工程学报,2000,22(3):332-335.
    [21]郭开元.岩盐蠕变特性研究[D].重庆大学硕士学位论文,2003(12).
    [22]高小平,杨春和,吴文等.岩盐蠕变特性温度效应的实验研究[J].岩石力学与工程学报,2005,24(12):2054-2059.
    [23]曾春雷.高温高压和渗流耦合作用下软岩力学行为的研究[D].青岛科技大学硕士论文,2007.
    [24]Wemer Skrotzki,An Estimate of the Brittle to ductile transition in salt,The first Conference on the Mechanical Behavior of Salt,Trans Tech publications,1984 P.381-388.
    [25]陈海军.巨型地下洞室群围岩稳定性数值分析[D].同济大学,2005.
    [26]王芝银,王思敬,杨志法.岩石到大变形分析的流行方法[J]。岩石力学与工程学报,16(5):399-404,1997.
    [27] P A Cundall . Distinct Element methods of rock and soil Structure. E T Browned. Analytical & Computational Methods in Engineering Rock Mechanics,129-163,1987.
    [28] Shi Genhua . Manifold method . In Proc of The First Int Forum on DDA andSitmulations of Discontinuous Media.Berkeley, California ,USA,52-204 , 1996.
    [29]周维垣主编.高等岩石力学[M].水利电力出版社,1989.
    [30]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].科学出版社,2002.
    [31]徐秉业.应用弹塑性力学[M].北京:机械出版社,1984.
    [32]孔祥言,李道伦,徐献芝,卢德唐.热-流-固耦合渗流的数学模型研究[J].水动力学研究与进展, 2005, 20(2): 269–276.
    [33]中仿科技有限公司.功能强大的多物理场耦合分析软件Comsol Multiphysics 3.3a产品介绍.
    [34]于学馥,郑颖人,刘怀恒,方正昌.地下工程围岩稳定性分析[M].北京:煤炭工业出版社,1983.245-255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700