储层孔隙分布及流体渗流特征的分形描述与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油藏原始状态的多样性、动态过程的多变性及其问题的不确定性,使得油藏动态系统是一个远离平衡态的非线性复杂系统。基于简单的线性渗流规律已不能满足描述油藏动态系统非线性规律的需要,必须利用新理论、新方法建立新的模型。本文在充分调研国内外油藏动态系统研究新理论、新方法的基础上,针对储层孔隙空间结构的非均质性及其多相流体渗流特征,综合利用分形数学、室内实验和计算机模拟方法进行了系统研究。
     根据分形幂律关系,利用岩心进汞-退汞毛细管压力曲线,研究了不同渗透率储层的孔隙结构非均质特征与分形维数的对应关系,对比分析了低渗透岩心孔隙分形特征与中、高渗透岩心的差异,结果表明低渗透岩心孔隙结构具有多重分形分布特征。
     通过分析多孔介质中流体运移动力学特征,指出粘性指进对形成剩余油的重要作用。利用赫尔-肖元胞实验装置和颗粒充填模型开展的粘性指进可视化实验,分析了驱替相与被驱替相的界面非稳定性和介质非均质性,尤其是注入端和采出端附近的非线性渗流对诱发粘性指进的重要作用。研究表明,初期指进形态对后续轴向指进形态和剩余油分布具有重要影响,粘性指进生长过程是驱替相粒子表面(界面)成核和分形生长的结果,指进图形具有自相似结构特征。根据能量的转化分析给出了分形体形态增长的模式。
     根据粒子扩散运动的随机性以及驱替过程中粘性指进前缘演化动力学方程与DLA(有限扩散凝聚)模型动力学方程的一致性,利用DLA模拟分析了粘性指进前缘的分形生长规律并对储层剩余油挖潜提出了建议。初始优势生长方向决定了整个分形生长图形的轴向形貌特征;界面张力影响粒子横向扩散几率,决定整个分形生长图形的横向形貌特征。
     在分析润湿性对储层渗流规律和剩余油分布影响的基础上,根据分形理论推导了包含排替和渗吸过程的广义毛细管压力曲线模型和相对渗透率曲线新模型。通过实验对比分析表明,广义毛细管压力曲线分形模型提高了曲线拟合效果,尤其适应于Brooks-Corey模型不能描述的毛细管压力曲线;根据毛细管压力曲线拟合参数预测了相对渗透率曲线,其流体的相变、相间传质的变化幅度与非线性渗流作用度相关:非线性作用度强,相应相变和相间传质变化的幅度就大。
     分形方法的应用结果表明,粘土矿物颗粒堵塞岩心后,孔隙分布发生较大变化,大孔隙数目减少,微孔隙比例增加,表现为岩心分形维数值增大,岩心非均质性增强,从而使束缚水饱和度和残余油饱和度增加,两相相对渗透率区间变窄,迫使油井过早废弃;储层中粘性指进前缘接近油井附近时,由于该区域介质的非均质分布以及较强的非线性渗流特征,油井动态时间序列分形模型参数将发生变化,据此可以诊断油井生产动态的改变。
The dynamic reservoir is a non-linear complex system far away from equilibrium for its versatile original state, variable dynamic process and uncertain problems. The simple linear percolation law couldn’t satisfy the description of the nonlinear law in the dynamic reservoir and new theories, methods should be used to build new models for prediction. In this paper, aiming at the heterogeneous pore structure and the inside multiphase flow characteristics, A comprehensive method including fractal mathematics, laboratory studies and computer simulations was used for research on the bases of the extensive investigation about the new theories and new methods related to dynamic reservoir system home and abroad.
     According to the fractal power law relationship, based on the intrusion-extrusion mercury capillary pressure curves, the correlation was analyzed between the heterogeneous pore structure and the fractal dimension for reservoirs with different permeability. The characteristic fractal curve of the low permeability rock samples was also compared to that of the moderate and high permeability rock samples. The results show the low permeability reservoir pore structure has a multi-fractal feature.
     The analysis of the fluid movement kinetics within porous medium indicates the important effect of the viscous fingering on the formation of the residual oil. With the experimental sets as Hele-Shaw cell and the particle packed model of injection-production well pattern, several visual experiments were performed to analyze such factors that greatly cause viscous fingering as the heterogeneous media and the unstable interface between the displacing phase and the displaced phase, particularly the non-linear percolation near the injection and the production points. The results show that the initial viscous fingering pattern has great influence on the subsequent axial fingering shape and the remaining oil distribution. The viscous fingering is the consequence of the surface/interface nucleus formation of the displacing phase particles and their fractal growth. The viscous fingering pattern is of self-similarity. The growth pattern models of fractal bodies were presented according to the analysis of energy transformation.
     According to the randomicity of the moving particles and the consistent formulations between the front viscous finger evolution and the Diffusion-Limited-Aggregate model, the fractal growth laws was analyzed for the viscous fingering evolution based on the DLA modeling. Also some suggestions were given for the remaining oil stimulation. The initially prominent growth direction determines the axial pattern of the overall fractal cluster. And the interfacial tension has effect on the transverse diffusion probability of particles and then determines the transverse pattern of the overall fractal cluster.
     After analysis of the effects of wettability on the formation fluid flow laws and the retaining oil distribution, the generalized capillary pressure model including the displacement and the imbibition processes and the new relative permeability model were derived by the fractal method. In comparison with experimental results, the generalized capillary pressure enhanced the curve fitting effect and was particularly fit for describing the capillary pressure curves that couldn’t be described by Brooks-Corey model. The prediction method for relative permeability curves based on the fitted parameters from capillary pressure curves is especially suitable for acquiring the relative permeability curves of the fluid system including phase transition or interphase mass transfer. The variation range of the fluid phase transition and the mass transfer between phases correlates to the degree of reaction of the non-linear percolation: the stronger degree of the non-linear reaction, the wider variation range of the fluid phase transition and the mass transfer between phases.
     The application of the fractal method showed that the plugging of the clay particles might make the pore distribution change a lot, reduce the number of the big pores and increase the fractal dimension of the rock. It will increase the rock heterogeneity to enhance the irreducible water saturation and residual oil saturation, to narrow the permeability area of the two phases, and then to make the oil well wasted earlier. While the front viscous finger approaches near the oil-wells through reservoir, because of the formation heterogeneity and the great non-linear percolation within this area, the dynamic performance of the oil wells could be diagnosed from special parameters of the fractal model of the time series of oil wells.
引文
[1]贾振岐,吴景春,张继成.现代油藏工程[M].香港: Global-link出版社, 2005.8: 1-38.
    [2]贾振岐.油藏动态系统的复杂性及其油藏动力学新论[J].大庆石油学院学报, 2001, 25(1): 14-17.
    [3]沈泰昌.系统分析和管理决策[M].中国展望出版社,1984: 1-14.
    [4] Weber K J, Van Geums L C. Framework for Constructing Clastic Reservoir Simulation Models[J]. JPTOctober, 1990,42(10):1 248~1 253
    [5]颜泽贤.耗散结构与系统演化[M].,福建人民出版社,1987.11: 10-65.
    [6]湛垦华,沈小峰.普里高津与耗散结构理论[M].陕西科学技术出版社,1982: 14-20.
    [7] [比]伊.普里戈金.从混沌到有序[M].上海译文出版社,1987.12: 108-113.
    [8] Po-zen Wong and James Howard. Surface Roughening and the Fractal Nature of Rocks[J]. Physical Review Letters, 1986, 57(5): 637-640.
    [9]吴景春.改善特低渗透油藏注水开发效果技术及机理研究[D].大庆石油学院, 2006: 21-23.
    [10]张祖波、洪颖、罗蔓莉.岩石毛管压力曲线的测定[S].中华人民共和国石油天然气行业标准SY/T 5346-2005, 2005: 1-9.
    [11] Pfeifer P., Avnir D. Chemistry non-integral dimensions between two and three[J]. J. Chem Phys, 1983, 7(7): 3369-3558.
    [12] Katz, A.J. and Thompson, A.H.. Fractal Sandstone Pores: Implications for Conductivity and Pore Formation[J], Phys. Rev. Lett., 1985, 54: 1325-1328.
    [13] C. E. Krohn and A. H. Thompson. Fractal Sandstone Pore: Automated Measurements Using Scanning Electron Microscope Images[J]. Phy. Rev. Sect., 1986, B.33: 6366.
    [14] Wong, P., Howard, J., and Lin, J. S.. Surface Roughening and the Fractal Nature of Rocks[J]. Phys. Rev. Lett., 1986, 57: 637-640.
    [15] Friesen, W.I. and Mikula, R.J.. Fractal Dimensions of Coal Particles[J]. J. of Colloid and Interface Science, 1987, 120(1): 263-271.
    [16] Pérez Bernal, J.L. and Bello López, M.A.. The Fractal Dimension of Stone Pore Surface as Weathering Descriptor[J]. Applied Surface Science, 2000, 161:47-53.
    [17] Hansen, J.P. and Skjeltorp, A.T.. Fractal Pore Space and Rock Permeability Implications[J]. Phys. Rev. B, 1988,38(4): 2635-2638.
    [18] Krohn C. E. Sandstone fractal and Euclidean pore volume distribution[J]. Geophys Res, 1988, 93(B4): 3286-3296.
    [19] Krohn, C.E.. Fractal Measurements of Sandstones, Shales, and Carbonates[J]. J. ofGeophysical Research, 1988, 93(B4): 3297-3305.
    [20] Lenormand, R. Gravity-Assisted Inert Gas Injection: Micro-model Experiments and Model Based on Fractal Roughness[C]. The European Oil and Gas Conference, Altavilla Milica, Palermo, Sicily, 1990.10: 9-12.
    [21] Angulo, R.F. and Gonzalez, H.. Fractal Dimensions from Mercury Intrusion Capillary Tests[C]. SPE 23695, presented at the 2nd Latin American Petroleum Engineering Conf. of SPE held in Caracas, Venezuela, 1992, March 8-11.
    [22] Shen, P. and Li, K.. A New Method for Determining the Fractal Dimension of Pore Structures and Its Application[C]. Proceedings of the 10th Offshore South East Asia Conference, Singapore, 1994, December 6-9.
    [23] Shen, P. and Li, K.. Quantitative Description for the Heterogeneity of Pore Structure by Using Mercury Capillary Pressure Curves[C]. SPE 29996, Proceedings of the SPE International Meeting held in Beijing, China, 1995, November 14-17.
    [24] Moulu, J-C., Vizika, O., Kalaydjian, F., and Duquerroix, J-P.. A New Model for Three-Phase Relative Permeabilities Based on a Fractal Representation of the Porous Media[C]. SPE 38891, presented at the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 1997, October 5-8.
    [25] Li, K. and Horne, R.N.. Fractal Characterization of The Geysers Rock[C]. presented at the GRC 2003 annual meeting, Morelia, Mexico: GRC Trans. 27, 2003, October 12-15.
    [26] Brooks, R.H. and Corey, A.T.. Hydraulic Properties of Porous Media[J]. Colorado State University, Hydro paper 1964, No.5.
    [27] Toledo, P.G., Novy, R.A., Davis, H.T., and Scriven, L.E.. Capillary Pressure, Water Relative Permeability, Electrical Conductivity and Capillary Dispersion Coefficient of Fractal Porous Media at Low Wetting Phase Saturations[C]. SPE Advanced Technology Series, 1993, 2(1): 136-141.
    [28] Abdassah, D., Permadi, P., and Sumantri, R.. Saturation Exponents Derived from Fractal Modeling of Thin Sections[C]. SPE 36978, presented at the 1996 SPE Asia Pacific Oil and Gas Conference held in Adelaide, Australia, 1996, October 28-31.
    [29]金强,曾怡.储集性砂岩粒度组成的分形结构[J].石油大学学报(自然科学版),1995,19(3): 12-15.
    [30]隋少强,宋丽红,赖生华.沉积环境对碎屑岩自组织程度的影响[J].石油勘探与开发,2001,28(4): 36-37.
    [31]陈冬梅,穆桂金.不同沉积环境下沉积物的粒度分形特征的对比研究[J].干旱区地理,2004,27(1): 47-51.
    [32]胡尊国,苏军,李子丹.多孔介质孔隙的分形特征与分数维计算[J].水文地质工程地质,1992, 19(1): 10-11.
    [33]李克文,沈平平,贾芬淑.砂岩油藏孔隙结构的分形特征以及石油采收率的预测[C].中国博士后首届学术大会论文集(下册).国防工业出版社,1993.
    [34]李克文,沈平平,贾芬淑.油藏岩石孔隙结构的分形描述及其应用[M].中国科学技术大学出版社,1993.
    [35]贾芬淑,沈平平,李克文.砂岩孔隙结构的分形特征及应用研究[J].断块油气田,1995,2(1): 16-21.
    [36]刘波,樊晓东,李莉,李克文.低渗透油田岩石微观性描述及对开发效果影响[J].辽宁工程技术大学学报(自然科学版),2009,28(Supp1): 150-152.
    [37]文慧俭,闫林,姜福聪,杨晶霞.低孔低渗储层孔隙结构分形特征[J].大庆石油学院学报,2007,31(1): 15-18.
    [38]纪发花,张一伟.分形几何学在储层非均质性描述中的应用[J].石油大学学报(自然科学版),1994,18(5): 161-168.
    [39]吕国祥.分形技术在储层非均质研究中的应用[J].西南石油学院学报,1995,17(3): 61-65.
    [40]鲁新便,王士敏.应用变尺度分形技术研究缝洞型碳酸盐岩储层的非均质性[J].石油物探,2003,42(3): 309-312.
    [41]李云省,邓鸿斌,吕国祥.储层微观非均质性的分形特征研究[J].天然气工业,2002,22(1): 37-40.
    [42]王域辉.分形在石油勘探开发中的应用[J].地质科技情报,1993,12(1): 101-104.
    [43]陈春仔,金友渔.分形理论在成矿预测中的应用[J].矿产与地质,1997,11(4): 272-276.
    [44]方战杰,郭海敏,沈世波.分形在油藏动态参数预测中的应用[J].测井技术,2001,25(1): 21-30.
    [45]胡宗全. R/S分析在储层垂向非均质性和裂缝评价中的应用[J].石油实验地质,2000,22(4): 382-386.
    [46]邓玉珍,刘慧卿,张红玲,李秀生.基于孔隙分维数的岩石分类方法[J].油气地质与采收率,2007,14(5): 23-25.
    [47] Habermann, B. (1960) The efficiency of miscible displacement as a function of mobility ratio[J]. Trans. A.I.M.E. 1960, 219:264-272.
    [48] R.E. Collins, Flow of Fluids through Porous Materials[M]. Reinhold, New York 1961: 196-197.
    [49] Wooding RA, Morel-Seytoux HJ. Multiphase fluid flow through porous media[J]. Annu Rev Fluid Mech, 1976, 8:233-274.
    [50] David Bensimon, Leo P. Kadanoff, Shoudan Liang , Boris I. Shraiman, and Chao Tang. Viscous flows in two dimensions[J]. Rev. Mod. Phys. 1986, 58: 977– 999.
    [51] SAFFMAN, P. G. and TAYLOR, S. G. (1958), The Penetration of a Fluid into a PorousMedium or Hele-Shaw. Cell Containing a More Viscous Liquid[J], Proc. R. Soc. Lond. 245, 312–329.
    [52] G M Homsy. Viscous Fingering in Porous Media[J]. Annual Review of Fluid Mechanics, 1987, 19: 271-311.
    [53] D. A. Kessler and H. Levine, Theory of the Saffman-Taylor‘‘finger’’pattern[J]. I. Phys. Rev. 1986, A33: 2621-2634.
    [54] A.J. Degregoria and L. W. Schwartz, A Boundary integral method for two phase displacement in Hele-Shaw cell[J]. J.Fluid Mech.1986, 164: 383-400.
    [55] A. J. DeGregoria and L. W. Schwartz. Finger Break-up in Hele-Shaw Cells[J]. Phys. Fluids 1985, 28: 2312-2314.
    [56] E. Meiburg and G. M. Homsy, Phys. Nonlinear unstable viscous fingers in Hele-Shaw flows.Ⅱ. Numerical simulation[J]. Phys. Fluids 1988, 31: 429-439.
    [57] C.-W. Park and G. M. Homsy. Two-phase displacement in Hele Shaw cells[J]. Theory J. Fluid Mech. 1984, 139: 291.
    [58] C.-W. Park and G. M. Homsy. The instability of long fingers in Hele-Shaw flows[J]. Phys. Fluids 31, 1985, 28: 1583.
    [59] P. Tabeling, G. Zocchi, and A. Libchaber. An experimental study of the Saffman-Taylor instability[J]. J. Fluid Mech. 1987, 177: 67.
    [60] A. R. Kopf-Sill and G. M. Homsy. Bubble motion in a Hele-Shaw cell. Phys[J]. Fluids 1988, 31, 18-26.
    [61] Y. Couder, N. Gerard, and M. Rabaud. Narrow fingers in the Saffman-Taylor instability[J]. Phys. Rev. A1986, 34: 5175– 5178.
    [62] Y. Couder, O. Cardoso, D. Dupuy, P. Tavernier, and W. Thom. Dendritic Growth in the Saffman-Taylor Experiment[J]. Europhys. Lett. 1986, 2: 437-443.
    [63] J. P. Stokes, D. A. Weitz, J. P. Goilub, A. Dougherty, M. O. Tobbins, P. M. Chaikin, and H. M. Lindsay. Interfacial Stability of Immiscible Displacement in a Porous Medium[J]. Phys. Rev. Lett. 1986, 57:1718-1721.
    [64] G. M. Homsy, Viscous fingering in porous media[J]. Annu. Rev. Fluid Mech. 1987, 19: 271-311.
    [65] T. Maxworthy, The nonlinear growth of a gravitationally unstable interface in a Hele- Shaw cell[J]. J. Fluid Mech. 1987, 177: 207-232.
    [66] J. Nittmann, G. Daccord, and H. E. Stanley. Fractal growth of viscous fingers: A quantitative characterization of a fluid instability phenomenon[J]. Nature, 1985, 314: 141-144.
    [67] J. M. Vander-Broeck, Phys. Fingers in a Hele-Shaw cell with surface tension[J]. Fluids 1983, 26: 2033-2034.
    [68] C.-T. Tan and G. M Homsy. Viscous fingering with permeability heterogeneity[J]., Phys. Fluids A 1992, 4:1099 -1101.
    [69] H. A. Tchelepi, F. M. Orr, Jr., N. Rakotomalala, D. Salin, and R. Woemeni. Dispersion, permeability heterogeneity and viscous fingering: acoustic experimental observations and particle-tracking simulations[J]. Phys, Fluids A 1993, 5: 1558 -1574.
    [70] Grunde L?voll, Yves Méheust, Renaud Toussaint, Jean Schmittbuh and Knut J?rgen M?l?y. Growth activity during fingering in a porous Hele-Shaw cell[J]. PHYSICAL REVIEW E 2004, 70, 026301:1-12.
    [71] R. Toussaint1, G. L?voll1, Y. M′eheust, K. J. M°al?y and J. Schmittbuhl. Influence of pore-scale disorder on viscous fingering during drainage[J]. Europhys. Lett., 2005, 71 (4): 583–589.
    [72] Grunde L?voll, Yves Me′heust, Knut J?rgen Ma?l?y, Eyvind Aker. Competition ofgravity, capillary and viscous forces during drainage in a two-dimensional porous medium, a pore scale study[J]. Energy 2005, 30: 861–872.
    [73] Chaoying Jiao, T. Maxworthy. An experimental study of miscible displacement with gravity-override and viscosity-contrast in a Hele Shaw cell[J]. Exp Fluids, 2008, 44: 781–794.
    [74] J.-D. Chen. Radial viscous fingering patterns in Hele-Shaw cells[J]. Experiments in Fluids 1987, 5: 363-371.
    [75] M.-N. Pons, E. M. Weisser, H. Vivier, D. V. Boger. Characterization of viscous fingering in a radial Hele-Shaw cell by image analysis[J]. Experiments in Fluids, 1999, 26: 153-160.
    [76] R. B. C. Gharbi, F. Qasem, E. J. Peters. A relationship between fractal dimension and scaling groups of unstable miscible displacement[J]. Experiments in Fluids, 2001, 31: 357-366.
    [77] Chaoying Jiao, T. Maxworthy. An experimental study of miscible displacement with gravity-override and viscosity-contrast in a Hele Shaw cell[J]. Exp Fluids, 2008, 44: 781–794.
    [78]唐洪俊.油层物理[M].北京:石油工业出版社. 2007.7: 117-163.
    [79] Brooks, R. H. and Corey, A. T.. Hydraulic Properties of Porous Media[J]. Colorado State University, Hydro paper, 1964, No.5.
    [80] Corey, A. T.. The Interrelation between Gas and Oil Relative Permeabilities[J]. Prod. Mon., 1954, 19: 38.
    [81] Brooks, R. H. and Corey, A. T.. Properties of Porous Media Affecting Fluid Flow[J]. J. Irrig. Drain. Div., 1966, 6: 61.
    [82] Thomeer, J.H.M.. Introduction of a Pore Geometrical Factor Defined by the Capillary Pressure[J]. Trans. AIME, 1960, 219: 354.
    [83] Van Genuchten, M.Th. A Closed-Form Equation for Predicting the HydraulicConductivity of Unsaturated Soils[J]. Soil Sci. Soc, Am. J. 1980, 44(5): 892.
    [84] Jing, X.D. and Van Wunnik, J.N.M.. A Capillary Pressure Function for Interpretation of Core-Scale Displacement Experiments[J]. SCA 9807, Proceedings of 1998 International Symposium of the Society of Core Analysts, The Hague, Netherlands, 1998, Sept. 14-16.
    [85] Li, K. and Horne, R.N.. An Experimental and Theoretical Study of Steam-Water Capillary Pressure[J]. SPEREE, 2001.12: 477-482.
    [86] Skelt, C.H. and Harrison, B.. An Integrated Approach to Saturation Height Analysis[C]. Paper NNN, Proceedings of 36th SPWLA Annual Symposium, 1995.7: 26-29.
    [87] Huang, D. D., Honarpour, M. M., Al-Hussainy, R.. An Improved Model for Relative Permeability and Capillary Pressure Incorporating Wettability[C]. SCA 9718, Proceedings of International Symposium of the Society of Core Analysts, Calgary, Canada, 1997.9: 7-10.
    [88] Lenormand, R.. Gravity-Assisted Inert Gas Injection: Micromodel Experiments and Model Based on Fractal Roughness[C]. The European Oil and Gas Conference, Altavilla Milica, Palermo, Sicily, 1990, October 9-12.
    [89] Li, K.. Theoretical Development of the Brooks-Corey Capillary Pressure Model from Fractal Modeling of Porous Media[C]. SPE 89429, Proceedings of the SPE/DOE Fourteenth Symposium on Improved Oil Recovery held in Tulsa, Oklahoma, 2004, April 17-21.
    [90] Li, K. and Horne, R.N.. Fractal Characterization of The Geysers Rock[C]. Proceedings of the GRC 2003 annual meeting, 2003, October 12-15; Morelia, Mexico; GRC Trans. V. 2003, 27.
    [91] Li, K. and Horne, R.N.. Experimental Verification of Methods to Calculate Relative Permeability Using Capillary Pressure Data[C]. SPE 76757, Proceedings of the 2002 SPE Western Region Meeting/AAPG Pacific Section Joint Meeting held in Anchorage, Alaska, 2002, May 20-22.
    [92] Purcell, W.R. Capillary Pressures-Their Measurement Using Mercury and the Calculation of Permeability[J]. Trans. AIME, 1949, 186, 39.
    [93] Burdine, N. T.. Relative Permeability Calculations from Pore Size Distribution Data[J]. Trans. AIME, 1953, 198: 71.
    [94] MANDELBROT B. B.. Fractal: From, Chance and Dimension[M]. San Francisco: Freeman, 1977.9: 35-37.
    [95]王域辉.分形与石油[M].石油工业出版社, 1993.10:49-64.
    [96] wikipedia. Fractal[G]. http://en.wikipedia.org/wiki/Fractal.
    [97] Li Kevin. Characterization of Rock Heterogeneity Using Fractal Geometry[J]. spe86975: 1-7.
    [98]贾振岐,王延峰,付俊林等.低渗低速下非达西渗流特征及影响因素[J].大庆石油学院学报, 2001, 25(3):73~76.
    [99]罗哲潭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社, 1986.7: 124~129.
    [100] Olivier Praud and Harry L. Swinney,Fractal dimension and unscreened angles measured for radial viscous fingering[J].PHYSICAL REVIEW E 72, 011406 _2005.
    [101]朱九成,郎兆新,黄延章.指进和剩余油分布的实验研究[J].石油大学学报(自然科学版), 1997, 21(3): 40-42.
    [102]田乃林,朱九成.原油指进、剩余油分布的实验研究[J].承德石油高等专科学学报, 2002, 4(3): 5-7.
    [103]臧竞存,田战魁,刘燕行等.溶胶-凝胶法制备ZnO薄膜的成核-生长和失稳分解研究[J].物理学报, 2006, 55(3): 1358-1362.
    [104]刘建华,张建华.不同实验条件下粘性指进的DLA模拟与分数维[J].科技通报, 2009, 25(2): 131-135.
    [105] Paul Meakin. Fractals, Scaling, and Growth, Far From Equilibrium[M].] Cambridge University Press. 1998: 205-209.
    [106] Vicsek T.Pattern formation in diffusion-limited-aggregation[J].Phys.Rev.Lett.,1984,53:2281-2284.
    [107]孙霞,吴自勤,黄畇.分形原理及其应用[M].中国科技大学出版社, 2006.3: 23-142.
    [108] Paul Meakin. Fractals, Scaling and Growth Far From Equilibrium[M]. London: Cambridge University Press, 1998: 160-165.
    [109]唐洪俊.油层物理[M].北京:石油工业出版社, 2007.7: 121-129.
    [110] Kevin Li. Generalized Capillary Pressure and Relative Permeability Model Inferred from Fractal Characterization of Porous Media[J]. spe89874: 1-10.
    [111] Kevin Li. More general capillary pressure and relative permeability models from fractal geometry[J]. Journal of Contaminant Hydrology, 2010, 111: 13–24.
    [112] Arif A. Suleymanov, Askar A. Abbasov, Aydin J. Ismaylov. Fractal analysis of time series in oil and gas production[J]. Chaos, Solitons and Fractals, 2009, 41: 2474–2483.
    [113] Donaldson. Use of Capillary Pressure Curves for Analysis of Production Well Formation Damage[J]. spe13809: 1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700