海水源热泵系统相关设备传热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以海水作为热泵机组的热源(汇)对于解决沿海建筑的冬季供暖和夏季空调、缓解日趋紧张的能源压力有重要意义。直接式和间接式海水源热泵系统的运行模式不同,系统效率和经济性也会随之改变。本文主要对两种模式的海水源热泵系统相关设备的传热性能进行了研究。
     为防止海水对热泵机组的腐蚀,间接式海水源热泵系统通常在海水与热泵机组之间增加中间换热器。目前海水源热泵系统的中间换热器采用的是价格较高的钛板换热器,为减少系统投资,本文对间接式海水源热泵系统中间换热器的传热性能进行了研究,设计并加工了普通钢制的中间换热器。通过搭建实验台,对管、内外流体流速对换热器传热性能的影响进行了研究,得到了管、内外流体的对流换热实验关联式;在实验基础上建立了换热器传热数学模型,对中间介质乙二醇溶液的出口温度和换热量随热源温度的变化进行了模拟计算。
     末端供水温度直接影响海水源热泵系统的效率,尤其当冬季海水温度较低时,供水温度的高低直接影响海水源热泵运行的经济性。本文通过标准散热器实验台对新型采暖地板传热性能进行了测试,结果表明供水温度为30℃即可满足供暖舒适性要求。供水温度的降低使得热泵的冷凝温度随之降低,从而提高了热泵系统的效率。当蒸发温度为-5℃,供水温度分别为30℃和45℃时,热泵系统的COP分别为4.76和3.52,增加了1.24。
     为减少中间换热环节,提高海水源热泵热源的温度条件,本文对直接式海水源热泵系统防腐蒸发器的传热性能进行了实验研究和理论分析。通过对防腐蒸发器和无防腐蒸发器传热性能的对比研究,得到实验用防腐涂料的导热系数为3.23 W/(m? K);管内流速小于1.5m/s时,喷涂防腐涂料后表面粗糙度强化了传热,蒸发器的传热系数略大于无防腐涂层的蒸发器;当管内流速大于1.64m/s,流动进入湍流状态,表面粗糙度的影响减弱,此时无防腐蒸发器的传热系数略大于防腐蒸发器。喷涂防腐涂料可解决海水的腐蚀问题,但对蒸发器传热性能影响不大。
     本文建立了直接式和间接式海水源热泵系统能耗模型,针对天津渤海湾的海水温度条件,对两种模式的海水源热泵空调系统的COP和能耗进行了模拟计算。结合实际工程,比较了直接式和间接式海水源热泵系统运行的经济性,结果表明:当海水温度为5.1℃时,直接式海水源热泵系统的COP为4.31,比间接式海水源热泵系统高1.02,在一个供暖季内可节约电量6496 kWh,减少运行费用5132元。
Seawater source heat pumps are used for building heating and cooling, which is helpful to solve energy shortage problems. Efficiency of seawater source heat pump systems is different in direct and indirect application modes. Heat transfer performance of associated equipment of seawater source heat pump is studied in this thesis.
     Titanium heat exchangers were added between seawater and evaporator in indirect seawater source heat pumps to avoid corrosion. Because of the high price of titanium heat exchangers, antiseptic steel heat exchanger was designed and heat transfer performance was studied in order to decrease system investment. Experiment table was set up and the impact of inner and outer fluid velocity on heat transfer performance of heat exchangers was analyzed, convective heat transfer correlations of inner and outer tube were obtained. Mathematical model of heat transfer in heat exchanger was established based on the experiment results, outlet temperature of glycol solution and heat output with the change of seawater temperature were calculated.
     COP of heat pump are directly affected by supply water temperature, especially when the seawater temperature is low. Thermal performance of new type radiant floor was tested based on the standard radiator experiment table, the results indicated that the supply water temperature of 30℃could satisfied the comfort requirements, which is 15℃lower than that of normal floor heating. The decreasing of supply temperature lowered the condensing temperature, thus improving COP of heat pump system. When the evaporating temperature is -5℃and supply temperature dropped from 45℃to 30℃, COP of the heat pump system would increase from 3.52 to 4.76.
     In order to improve the evaporating temperature and system efficiency, experimental study and theoretical analysis on thermal performance of antiseptic evaporator of direct seawater source heat pump systems were done. According to the contrastive study of heat transfer in antiseptic and normal evaporator, it can be concluded that the thermal conductivity of the antiseptic dope is 3.23 W/(m? K).When seawater velocity is less than 1.5m/s, surface roughness enhanced heat transfer, heat transfer coefficient of the antiseptic evaporator is more than that of the non spray-painted evaporator; When sea water velocity is bigger than 1.64m/s, turbulent flows occurred, heat transfer coefficient of the antiseptic evaporator is less than that of the non spray-painted evaporator. Spray-painting antiseptic dope could solved seawater corrosion and have little influence on thermal performance of evaporator.
     Energy consumption model of direct and indirect seawater source heat pump system was set up, COP and energy consumption of direct and indirect system was simulated. Combined with one practical project, economical efficiency of the two modes of seawater source heat pump systems was compared, the results show that COP of direct system is 4.31 with the seawater temperature of 5.1℃, which is 1.02 higher than that of indirect system, 6,496 kWh and 5,132 RMB would be saved during a heating period.
引文
[1]胡保亭,胡仰栋,伍联营.海洋热能的利用[J].海洋技术,2004,23(2):96-102.
    [2]孙湘平编著.中国近海区域海洋[M].北京:海洋出版社,2006.
    [3]杜乐乐.利用次表层海水作城市区域空调冷源的机理研究[D].上海:上海交通大学.2008.
    [4]刘哲,魏皓,蒋松年.渤海多年月平均温盐场的季节变化特征及形成机制的初步分析[J].青岛海洋大学学报,2003,33(1):7-14.
    [5]贾瑞丽,孙璐.渤海、黄海冬夏季主要月份的海温分布特征[J].海洋通报,2002,21(4):1-8.
    [6]刘文通,宋珊.渤海中部海底泥温铅直分布特征以及与水温的关系[J].海洋与湖沼,1993,24(6):584-591.
    [7]姬晓慧,林建中.火力发电厂海水冷却塔循环冷却水处理方法的研究[J].广东化工,2010,37(3):184-186,190.
    [8]钟云泰.珠海发电厂循环冷却水系统海生物污染研究[J].东北电力技术,2004,25(7):12-16,43.
    [9]薛君琅.滨海电厂海水冷却系统防腐防污技术[J].华北电力技术, 1991(4):38-49.
    [10]薛芳滨,吴卫红,蔡宏庆.海水冷却塔重防腐保护技术及应用[J].现代涂料与涂装,2010,13(6):48-50.
    [11]于新颖.海水冷却电厂循环水合理取水方式研究[J].汽轮机技术,2006,48(2):143-144,146.
    [12] Emura T, Hamada T, Hirasawa R. Pumping of low-temperature deep sea water for cooling of facilities on land [C]//Oceans’83 Proceedings. San Francisco, USA, 1983:871-875.
    [13]汪长春,王成铭,郑文远.大亚湾和岭澳核电站海水冷却系统的腐蚀与控制[J].电力安全技术,2009,11(2):17-20.
    [14]刘飞华,任爱,杨帆等.核电站海水冷却系统的腐蚀与防腐蚀设计[J].腐蚀与防护,2007,28(6):313-316.
    [15]候春扬.海水冷却技术[J].海洋技术,2002,21(4):33-40.
    [16] Rudy Lubin. Sea Water Cooling System for Buildings[EB/OL]. http://oee.nrcan. gc.ca/publications/infosource/pub/ici/caddet/english/pdf/R118.pdf, 2010-4-10.
    [17] Masa. Cold Seawater Air Conditioning[EB/OL]. http://www.makai.com/p-swac. htm, 2010-10-11.
    [18] lEA OECD.Seawater cooling system for buildings[R].Canada: Department of Mines and Energy, 1992.
    [19] Thore B. Heat sources-technology, economy and environment [J]. International Journal of Refrigeration,2002,25(4):428-438.
    [20]王锦国,周志芳,金忠青.地下水热量运移模拟的BEM-FAM耦合法[J].水利学报,2001(5):71-76.
    [21]刘雪玲,朱家玲,刘立伟.热泵耦合含水层储能技术研究[J].太阳能学报,2009,30(8):1023-1027.
    [22]刘雪玲,李宁,刘立伟.地下含水层储能效果及经济性分析[J].煤气与热力, 2009,29(6):4-6.
    [23]刘雪玲,朱家玲,刘立伟.含水层储能地下温度场模拟[J].天津大学学报(自然科学版),2009,42(10):929-933.
    [24] Liu Xueling. Research of aquifer thermal energy storage system integrated underground water heat pump [C]//Geothermal Resources Council(GRC) 2009 Annual Meeting. Reno, USA. 2009: 516-519.
    [25] Liu Xueling, Zhu Jialing. Research of aquifer thermal energy storage technology[C]//2009 US-EU-China Thermophysics Conference - Renewable Energy. Beijing, China. 2009: 28-30.
    [26] Elmosa. Sea Water Intake Systems[EB/OL].http://www.cescanada.ca/imasar/elm- osa/InfiltrationDetails.html, 2010-4-30.
    [27] Philip Keillor. Sand Filter Intakes Could Safeguard Vital Water-Supply Systems from Zebra Mussels [EB/OL]. http:www.seagrat.wisc.edu/home/Portals/0/Files/ Coastal%20Engineering/blackwhitesandfilterintakes.pdf, 2010-4-11.
    [28]蒋爽,李震,端木琳,等.海水热泵系统的应用及发展前景[J].节能与环保,2005,(10):11-14.
    [29] Vartan Ropsten.The Largest Sea Water Heat Pump Facility Worldwide, with 6 Unitop 50FY and 180MW Total Capacity[EB/OL]. http://www.friotherm.com/ downloa-ds/vaertan_e008_uk.pdf, 2011-4-11.
    [30] Ole Rist,Stokmarknes Sykehus.Heat pumps for climates:the heat pump in stokmarknes hospital, Norway[C]//15th IFHE CONGRESS.Edinborough, Scotland, 1998:199-201.
    [31]郭振江,钟晓辉,谷民安,等.海水源热泵系统的节能研究[J].上海电力学院学报,2010,26(4):331-334,348.
    [32]张莉,胡松涛.海水作为热泵系统冷热源的研究[J].建筑热能通风空调,2006,25(3):34-38.
    [33] Dimitrios Mendrinos, Constantine Karytsas. Use of Geothermal Energy and Seawater for Heating and Cooling of the New Terminal Building in the Airport of Thessaloniki[EB/OL]. http://geoheat.oit.edu/bulletin/bull24-3/art4.pdf,2011-4 -10.
    [34] Satoru Okamoto. A heat pump system with a latent heat storage utilizing seawater installed in an aquarium [J]. Energy and Buildings, 2006,38(2) :121- 128.
    [35] Todo S.The Hague Uses Seawater To Heat Homes[EB/OL]. http://www.c40cities. org/bestpractices/energy/hague_seawater.jsp, 2010-4-16.
    [36] Todorovic Marija S, Pejkovic Slobodan, Zenovic Vido. 3.5 MW seawater heat pump assisted multipurpose solar system’s 25 years of operation[J]. ASHRAE Transactions, 2010, 117 (1):227-241.
    [37]庞伟.海水源热泵技术在港口建设中的应用[J].水运工程, 2007(9):141-145.
    [38]徐鲁强,朱奇伟,李艳阳,等.海水源热泵空调系统在大连港大窑湾港区二期工程业务楼的应用[J].港口科技,2008(8):31-34.
    [39]王晓峰,王大方,洪光.浅析大连港区海水源热泵的应用[J].制冷与空调,2010,10(2):84-87,89.
    [40]单莉.可再生能源建筑应用示范项目—大连星海湾污/海水源热泵系统[J].建设科技,2009(16):65-66.
    [41]王文桐.大连市海水源热泵城市级示范[J].建设科技,2008(7):58-60.
    [42]祁俊山,薛越霞.海水源热泵空调工程应用实例[J].工程建设与设计,2005(9):12-13.
    [43]胡松涛,张莉,王刚.海水源热泵空调系统的工程应用[J].资源与发展,2005(3): 26-30.
    [44]胡松涛,张莉,韩国君.浅谈海水在热泵空调系统中的应用[J].制冷与空调,2006,20(3):101-104,113.
    [45]杨树勋,张涛.基于PLC及MCGS组态软件的海水源热泵空调控制系统[J].可编程控制器与工厂自动化(PLC FA),2005(11) :110-111.
    [46]于健,袁永林,张斌.青岛国际帆船中心媒体中心海水源热泵综合调试[J].青岛理工大学学报,2006,27(6):124-127
    [47]赵月玲,樊幸福,姚占龙. LSBLGR—S系列海水源热泵机组设备在天津港船闸所的应用[J].水道港口,2007,28(1):72-73.
    [48]俞洁.用于海水源热泵系统的海水—乙二醇溶液抛管式换热器设计[D].天津:天津大学,2009.
    [49]吴君华.渗滤取水技术在海水源热泵系统中的应用研究[D] .天津:天津大学,2009.
    [50]林树枝,皇甫艺.夏门地区海水源热泵系统应用可行性分析[J].建筑节能,2010(6):43-45.
    [51]郑元祥.厦门地区应用海水源热泵的探讨[J].山西建筑,2010,36(1):203- 204.
    [52]王建奎,李海波,曾宪纯,等.浙江沿海海水源热泵技术应用可行性研究[J].浙江建筑,2010(1):50-53.
    [53]杨海军,王建斌,孙玉清.水源热泵在船舶冬季采暖中的应用[J].机电设备,2005,22(5): 18-20.
    [54]史学增,葛斌,王伟勇.海水源空调热泵船舶应用前景研究[J].机电设备,2008,25(1):4-8.
    [55]胡亚峰,董瑞芬.太阳能辅助海水源热泵空调系统联合运行方式初探[J].科技信息,2009,31:67-68.
    [56]陈东,谢继红,李满峰.以海水为冷热源的城市集中冷暖工程分析[J].天津轻工业学院学报,2003,28(2):53-56.
    [57]乔木,陈东,许树学.海水制冷热泵装置的节能分析与材料优选[J].节能,2005,22(9):35-37.
    [58]苏立娟,陈东,师晋生,等.海水制冷热泵系统的海水换热方案分析[J].节能,2006,25(10):11-13.
    [59]苏立娟,陈东,师晋生.间接式海水制冷热泵系统的特性分析[J].化工装备技术,2007,28(1):37-41.
    [60]周修茹,谢继红,陈东,等.海水热泵的冬季运行特性分析[J].能源工程,2007,(2):58-61.
    [61]苏立娟,陈东,谢继红等.多级海水热泵供热系统的特性与应用分析[J].天津科技大学学报,2007,22(2):54-57.
    [62]张莉,胡松涛.海水作为热泵系统冷热源的研究[J].建筑热能通风空调,2005,25(3):34-38.
    [63]肖杰,范波,刘圣先.某海水源热泵空调工程能耗分析.青岛理工大学学报,2008,29(2):141-144.
    [64]胡松涛,陈茂科,郭潇潇,等.海水源热泵与传统空调系统能耗比较分析[J].青岛理工大学学报,2008,29(2):1-5,13.
    [65]蒋爽.基于热泵系统的海水热扩散研究[D].大连:大连理工大学,2006.
    [66]蒋爽,端木琳,王树刚.海水热扩散研究进展与新问题分析[J].能源环境保护,2006,20(5): 5-9
    [67]端木琳,李震,蒋爽,等.大连星海湾海水源热泵空调系统热扩散数值模拟研究[J].太阳能学报,2008,29(7):832-836.
    [68] Li Zhen, Lin DM, Shu HW, et al. District cooling and heating with seawater as heat source and sink in Dalian, China[J]. Renewable Energy,2007,32(15):2603- 2616.
    [69]李震.海水源热泵区域供热供冷系统3E评价[D].大连,大连理工大学,2008.
    [70]李震,王薇薇,端木琳.小平岛海水源热泵区域供冷温排水热扩散研究[J].山东建筑大学学报,2009,24(2):164-167.
    [71]舒海文,端木琳,李祥立,等.海水源热泵区域供热系统的节能判据研究[J].西安建筑科技大学学报(自然科学版),2009,41(4): 561-565.
    [72]舒海文,端木琳,朱颖心.海水热泵区域供热的节能判断及影响因素[J].哈尔滨工业大学学报,2010,42(12):1995-1998.
    [73] Shu Haiwen, Lin Duanmu, Li Xiangli. Energy-saving judgment of electric-driven seawater source heat pump district heating system over boiler house district heating system[J]. Energy and Buildings,2010,42(6):889-895.
    [74] Shu Haiwen, Lin Duanmu, Li Xiangli. Energy-saving potential of seawater-source heat pump district heating system over boiler-house district heating system[C]//2009 International Conference on Energy and Environment Technology. Guilin,China, 2009:121-124.
    [75] Shu Haiwen, Lin Duanmu, Li Xiangli. Quasi-dynamic energy-saving judgment of electric-driven seawater source heat pump district heating system over boiler house district heating system[J]. Energy and Buildings,2010,42(12):2424-2430.
    [76] Li Xiangli, Lin Duanmu, Shu Haiwen. Optimal design of district heating and cooling pipe network of seawater-source heat pump[J]. Energy and Buildings, 2010,42(1):100-104.
    [77] Shu Haiwen, Lin Duanmu, Zhang Chaohui, et al. Study on the decision-making of district cooling and heating systems by means of value engineering[J]. Renewable Energy, 2010,35(9):1929-1939.
    [78]刘宇.海水源热泵系统的工程应用研究[D].大连:大连理工大学.
    [79]靳娇.海水源热泵系统中海水一乙二醇溶液换热器的研发[D].天津:天津大学,2008.
    [80]吴君华,由世俊,李海山.海水源热泵系统取水技术试验[J].天津大学学报,2009,42(1):78-82.
    [81] Wu Junhua, You Shijun, Zhang Huan. Coupled seepage and heat transfer intake model[J]. Transactions of Tianjin University, 2009,15(6):446-451.
    [82]同登科,陈钦雷,廖新维,等.非线性渗流力学[M].北京:石油工业出版社,2003.
    [83]孙德兴.高等传热学[M].北京:中国建筑工业出版社,2005.
    [84]陶文铨.数值传热学[M].西安:西安交通大学出版社,1995.
    [85]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.
    [86]史美中,王中铮.热交换器原理与设计[M].南京:东南大学出版社,1993.
    [87]靳娇.海水源热泵系统中海水—乙二醇溶液换热器的研发[D].天津:天津大学2008.
    [88]蔡增基,龙天渝.流体力学泵与风机[M].北京:中国建筑工业出版社,1999.
    [89]海霞.板式地板辐射采暖传热性能的研究[D].天津:天津大学,2005.
    [90]张俊芳.通水式硬聚氯乙烯辐射采暖地板及阻力性能研究[D].天津:天津大学,2008.
    [91]慕宏明,赵海涛,李保华.耐腐蚀导热涂料LLSTD一1在表面蒸发空冷器上的应用[J].石油化工应用,2008,27(3):74-77.
    [92] Mills A F.Heat Transfer[M]. Boston:Irwin,1992.
    [93] Wattelet. Evaporative characteristics of R12,R134a and a mixture at low mass Fluxes[C]//ASHRAE Transactions.USA,1994,:603-616.
    [94]张永发,蒸发器动态特性研究[D].天津:天津大学,2007.
    [95]颜启森.空气调节永制冷技术[M].北京:中国建筑工业出版社,1999.
    [96] Rabehl R J, Mitchell J W. Parameter estimation and the use of catalog data in modeling heat exchangers and coils[J]. International Journal of Heating, Ventilating, and Air-Conditioning Research. 19995(1): 3-17.
    [97] Morisot O, Marchio D, Stabat P. Simplified Model for the Operation of chilled water cooling coils under nonnominal conditions[J]. International Journal of HVAC&R, 2002, 8(2):135-158.
    [98] Hui Jin. Parameter Estimation Based Models of Water Source Heat Pumps [D]. Oklahoma: Oklahoma State University, 2002.
    [99] Winandy E, Saavedra C, Lebrun J. Experimental analysis and simplified modeling of a hermetic scroll refrigeration compressor[J]. Applied Thermal Engineering, 2002, 22( 2): 107-120.
    [100] Chen Y, Halm N, Groll E A, et al. A comprehensive model of scroll compressors, part I: compression process modeling[C]//Proceedings of the 2000 International Compressor Engineering Conference at Purdue. Purdue University, West Lafayette, 2000: 715-724.
    [101] Chen Y, Halm N, Groll E A, et al. A comprehensive model of scroll compressors, partⅡ: Overall scroll compressor modeling[C]// Proceedings of the 2000 Intern- ational Compressor Engineering Conference at Purdue. Purdue University, West Lafayette, 2000:725-734.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700