用于海水源热泵系统的抛管式换热器优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋是一个巨大的可再生能源库,海水的比热容比空气大,非常适合作为热源使用,采用海水作为热泵系统的热源/热汇能大大缓解沿海城市的空调用电压力,同时可以带来巨大的经济效益和环保效益。因此,随着热泵技术在我国的发展,以海水作为冷热源代替传统的锅炉供热和冷水机组供冷在技术上已经成为可能,可以实现可再生能源的利用。在此研究背景下,本文对用于海水源热泵系统的抛管式换热器的性能及结构优化设计进行了研究。
     首先,通过对天津海域海水和空气温度现场测试可知,天津港冬季海水温度接近冰点导致海水源热泵系统无法运行,因此,提出了将抛管式换热器用于海水源热泵系统的设计理念;对抛管式换热器换热过程进行传热分析,建立了抛管式换热器在夏季工况和冬季结冰工况的数学模型。利用托马斯算法将抛管式换热器内各控制体内的温度分布计算出来,由此计算得到的每一控制体的温度作为下一个控制体传热计算的初始条件,最终,通过计算可以得出抛管式换热器的出口温度分布情况。
     其次,为了验证抛管式换热器的数学模型,搭建了抛管式换热器的实验台,并对抛管式换热器在不同工况下的换热性能进行了测试,通过比较模拟结果与测试结果,表明建立的抛管式换热器数学模型是正确的。并利用数学模型,对换热器的换热性能进行数值模拟,分析了换热器管径、管长、载冷剂溶液流速和进口温度对换热性能的影响。在冬季最冷月时,分别对抛管式换热器管外壁结冰和不结冰时换热器换热情况进行了模拟研究,分析在抛管式换热器管外壁结冰后,冰层对换热器换热性能的影响。
     然后,在冬季最不利工况下,以抛管式换热器的年总费用值为目标函数,以抛管式换热器管径、管长和管数为设计变量,对抛管式换热器进行优化设计。
     最后,结合天津港30万吨级原油码头前方作业楼(办公楼)改造方案,对采用抛管式换热器海水源热泵系统的改造方案进行了经济、节能分析。结果表明,改造后的方案具有较好的经济效益和环保节能效益,对海水源热泵系统在沿海城市的推广应用可以起到很好的示范作用。
The ocean is a huge repository of renewable energy. The specific heat capacity ofseawater is larger than air, so seawater is very suitable as a heat source. In a heatpump system, using seawater as heat source/sink can greatly alleviate the pressure ofthe air conditioning electricity consumption in the coastal cities, and bring hugeeconomic and environmental benefits. Therefore, with the development of the heatpump technology in our country, seawater source heat pump (SWHP) can replace thetraditional boiler heating and chiller cooling from a technical point. The use ofrenewable energy could be realized. For this, performance and optimization structuraldesign of casted heat exchanger (CHE) used in SWHP are studied in this thesis.
     Firstly, via the site test of seawater and air temperature in Tianjin coastal areas,seawater temperature distribution along the different depths in summer and winter inTianjin is got. The direct SWHP system can’t be run in the icing condition in winterdue to the low seawater temperature, so CHE used in SWHP is presented in thispaper.According to heat transfer analysis of CHE, mathematical models were built insummer condition and winter icing condition. Using Thomas algorithm, thedistribution of temperature along the CHE can be calculated. The fluid temperaturedistribution along the CHE might be calculated by dividing the whole pipe into smallparts in order to calculate fluid inlet and outlet temperature profile along the pipe canbe calculated.
     Secondly, in order to validate the mathematical model of CHE, an experimentalrig was established to measure the heat transfer performance. The calculatedtemperature distribution along CHE and corresponding test data in summer operationis compared. The simulation results show great agreement with experimental data.Using the mathematical model, the heat transfer performance of CHE was calculatedand analyzed at different pipe length and diameter, inlet temperature and flow rate ofsecondary refrigerant as well as seawater temperature. In winter,when the seawatertemperature was so low, the outside of the pipe may freeze. The heat transferperformance of CHE in the icing and no-icing condition was studied. It is observedthat icing outside the pipes is the most influential factor on the heat transferperformance.
     Thirdly, in the icing condition in winter, taking the pipe diameter, length andnumber of pipes as variables, the objective function was established, aimed at minimizing the total cost that including the initial investment cost and operation cost.
     Finally, a SWHP system with CHE was applied as a rehabilitation program of theproject in front of a wharf in Tianjin Port was introduced. Three programs includingthe existing system, a seawater source heat pump system with the casted heatexchanger and direct seawater source heat pump system were compared and resultsshowed the adoption of seawater source heat pump system with the casted heatexchanger for heating and cooling could save the operation cost, and reduce theemission of pollutants. So it has not only environmental protection but also economyprofit.
引文
[1]清华大学建筑节能中心.中国建筑节能年度发展研究报告[C]//北京:中国建筑工业出版社,2009:1-20.
    [2] W.G.Cai, Y. Wu, Y. Zhong, H.Ren.China building energy consumption:Situation, challenges and corresponding measures[J]. Energy Policy,2009,37(6):2054-2059.
    [3] Na Zhang, Noam Lior, Hongguang Jin.The energy situation and its sustainabledevelopment strategy in China[J]. Energy,2011,36(6):3639-3649.
    [4] Luo Yixin. Research on the current situations and countermeasures for theenergy security in China[J]. Energy Procedia,2011,5:261-265.
    [5] Hengyun Maa, Les Oxley, John Gibson.China’s energy situation in the newmillennium[J].Renewable and Sustainable Energy Reviews,2009,13(8):1781-1799.
    [6] ASHRAE.ASHRAE Handbook-Applications[M]. Atlanta: American Society ofHeating, Refrigerating, and Air-Conditioning Engineers, Inc.,1999.
    [7]陈晓.地表水源热泵系统的运行特性与运行优化研究[D].湖南:湖南大学.2006.
    [8]水循环[EB/OL]. http://baike.baidu.com/view/158509.htm,2012-04-18.
    [9]刘福臣.水资源开发利用工程[M].北京:化学工业出版社,2006.
    [10] Hanneke V. Large energy systems-an international overview [J]. IEA Heat PumpCentre Newsletter,1998,16(1):10-15.
    [11] A. Aittom ki. Lakes as a heat source in cold climate [C]//Proceedings ofInternational Congress of Refrigeration, USA Washington,2003.
    [12] P. Tim, W.S. Joyce. Lake-source cooling [J]. ASHRAE Journal,2002,44(4):37-39.
    [13] JARN Ltd.A new river water source heat pump project [J]. JapanAir-Conditioning, Heating&Refrigeration News,1996-08-25.
    [14] John Guzzon. The HVAC revolution Gains (geothermal) Heat [J]. MedicalConstruction&Design,2008:48-51.
    [15] CU moves beyond coal with opening of new power plant [EB/OL].http://www.news.cornell.edu/stories/Jan10/CHPopening.html,2010-01-18.
    [16] O. Büyükalaca, F. Ekinci, T. Yilmaz. Experimental investigation of SeyhanRiver and dam lake as heat source-sink for a heat pump [J]. Energy,2003,44(4):157-169.
    [17]陈晓,张国强,彭建国,等.开式地表水源热泵在湖南某人工湖的应用研究[J].制冷学报,2006,27(3):10-13.
    [18]王勇,肖益民,陈金华,等.开式地表水地源热泵取排水方式研究[J].暖通空调,2008,38(10):124-127.
    [19]陈金华,刘猛,吴淑霞,等.湖水源热泵空调系统取水方式性能分析[J].湖南大学学报(自然科学版),2009,36(12):79-83.
    [20]王明国,付祥钊,王勇.利用长江水作水源热泵冷热源的探讨[J].暖通空调,2008,38(4):33-34,82.
    [21]王勇,顾铭,肖益民,等.长江水源热泵开式与闭式实验对比分析[J].土木建筑与环境工程,2009,31(2):126-130,137.
    [22]邓波,龙惟定,冯小平,等.大型地表水源热泵在上海世博园区域供冷系统中的应用[J].建筑热能通风空调,2007,26(6):95-97.
    [23]吴筠.上海世博园区域供冷冷源方案的技术经济分析与研究[D].上海:同济大学,2007.
    [24]钱剑峰,孙德兴,吴荣华,等.地表水源热泵辅助热源节能效果的分析[J].节能技术,2006,24(4):330-332,373.
    [25]蒙建东,张承虎,孙德兴.开式地表水源热泵系统工程实践若干问题探讨[J].节能技术,2008,26(2):99-102.
    [26]吴荣华,张承虎,孙德兴,等.江河湖海地表水源热泵系统节能与环境评价[J].哈尔滨工业大学学报,2008,40(2):226-229.
    [27]张承虎,李桂涛,庄兆意,等.地表水源热泵技术在我国的应用前景分析[J].节能技术,2007,25(2):102-105,163.
    [28]吴荣华,张承虎,庄兆意,等.地表水源热泵管式换热法及其特性研究[J].太阳能学报,2007,28(12):1389-1393.
    [29]张承虎,孙德兴,张璋.地表水源热泵系统技术方案的研讨[J].流体机械,2008,36(2):56-60.
    [30]吴荣华,徐莹,孙德兴等.污水源及地表水源热泵取水换热技术研究应用进展[J].暖通空调,2008,38(3):25-30.
    [31]钱剑峰,孙德兴,张承虎,等.新型地表水源热泵及其相关技术分析[J].哈尔滨商业大学学报(自然科学版),2007,23(2):231-234.
    [32]蒋爽,李震,端木琳,等.海水热泵系统的应用及发展前景[J].节能与环保,2005,10:11-14.
    [33]王刚.瑞典区域供冷技术对中国的启示[J].建筑热能通风空调,2004,23(3):24-29.
    [34]胡松涛,张莉.浅析海水源热泵[J].暖通空调,2005,35(增):207-210.
    [35]胡保亭,胡仰栋,伍联营.海洋热能的利用[J].海洋技术,2004,23(2):96-102.
    [36] V rtan Ropsten—the largest seawater heat pump facility worldwide, with6Unitop50FY and180MW total capacity[EB/OL]. http://www.friotherm.com/downloads/vaertan_e008_uk.pdf,2008-05-01.
    [37] Ole Rist,Stokmarknes Sykehus.Heat pumps for climates:the heat pump instokmarknes hospital, Norway[C]//15th IFHE CONGRESS.Edinborough,Scotland,1998:199-201.
    [38]郭振江,钟晓辉,谷民安,等.海水源热泵系统的节能研究[J].上海电力学院学报,2010,26(4):331-334,348.
    [39]张莉,胡松涛.海水作为热泵系统冷热源的研究[J].建筑热能通风空调,2006,25(3):34-38.
    [40] Todorovic Marija S, Pejkovic Slobodan, Zenovic Vido.3.5MW seawater heatpump assisted multipurpose solar system’s25years of operation[J]. ASHRAETransactions,2010,117(1):227-241.
    [41] Seawater to heat homes in The Hague [EB/OL].http://greenlinked.com/energy/projects/84-seawater-to-heat-homes-in-the-hague-the-hague.html,2012-05-30.
    [42] Dimitrios Mendrinos, Constantine Karytsas. Use of Geothermal Energy andSeawater for Heating and Cooling of the New Terminal Building in the Airportof Thessaloniki [EB/OL]. http://geoheat.oit.edu/bulletin/bull24-3/art4.pdf,2011-04-10.
    [43] Emura T, Hamada T, Hirasawa R. Pumping of low-temperature deep sea waterfor cooling of facilities on land[C]//Oceans’83Proceedings. San Francisco,USA,1983:871-875.
    [44] Rudy Lubin. Sea Water Cooling System for Buildings[EB/OL]. http://oee.nrcan.gc.ca/publications/infosource/pub/ici/caddet/english/pdf/R118.pdf,2010-04-10.
    [45] Masa.Cold Seawater Air Conditioning [EB/OL].http://www.makai.com/p-swac.htm,2010-10-11.
    [46] lEA OECD.Seawater cooling system for buildings [M]. Canada: Department ofMines and Energy,1992.
    [47] Thore B. Heat sources-technology, economy and environment [J]. InternationalJournal of Refrigeration,2002,25(4):428-438.
    [48] Kavanaugh SP. Design considerations for ground and water source heat pumpsin southern climates [J]. ASHRAE Trans,1989,95(1):1139–1149.
    [49] Parsons, Robert. ASHRAE Handbook-Heating,Ventilating,and Air-ConditioningSystems and Applications [M]. USA: ASHRAE Inc.,1987.
    [50] Parsons, Robert. ASHRAE Handbook-Systems [M]. USA: ASHRAE Inc.,1980.
    [51] Young-hak Song, Yasunori Akashi. Effects of utilizing seawater as a coolingsource system in a commercial complex [J]. Energy and Buildings,2007,39(10):1080-1087.
    [52] Satoru Okamoto. A heat pump system with a latent heat storage utilizingseawater installed in an aquarium [J]. Energy and Buildings,2006,38(2):121-128.
    [53]庞伟.海水源热泵技术在港口建设中的应用[J].水运工程,2007,9:141-145.
    [54]徐鲁强,朱奇伟,李艳阳,等.海水源热泵空调系统在大连港大窑湾港区二期工程业务楼的应用[J].港口科技,2008,8:31-34.
    [55] Li Zhen, D.M. Lin, H.W. Shu. District cooling and heating with seawater as heatsource and sink in Dalian, China [J]. Renewable Energy,2007,32(15):2603-2616.
    [56]舒海文,端木琳,李祥立,等.海水源热泵区域供热系统的节能判据研究[J].西安建筑科技大学学报,2009,41(4):561-565.
    [57]郭振江,钟晓辉,谷民安,等.海水源热泵系统的节能研究[J].上海电力学院学报,2010,26(4):331-334,348.
    [58]王文桐.大连市海水源热泵城市级示范[J].建设科技,2008,7:58-60.
    [59]祁俊山,薛越霞.海水源热泵空调工程应用实例[J].工程建设与设计,2005,9:12-13.
    [60]张莉,胡松涛,韩国君.浅谈海水在热泵空调系统中的应用[J].制冷与空调,2006,3:101-104,113.
    [61]邢秀强,王海英.海水源、地源热泵在青岛应用的可行性[J].煤气与热力,2007,27(7):69-72.
    [62]于健,袁永林,张斌.青岛国际帆船中心媒体中心海水源热泵综合调试[J].青岛理工大学学报,2006,27(6):124-127.
    [63]赵月玲,樊幸福,姚占龙. LSBLGR—S系列海水源热泵机组设备在天津港船闸所的应用[J].水道港口,2007,28(1):72-73.
    [64]陈东,谢继红,李满峰.以海水为冷热源的城市集中冷暖工程分析[J].天津轻工业学院学报,2003,28(2):53-56.
    [65]乔木,陈东,许树学.海水制冷热泵装置的节能分析与材料优选[J].节能,2005,22(9):35-37.
    [66]苏立娟,陈东,师晋生,等.海水制冷热泵系统的海水换热方案分析[J].节能,2006,25(10):11-13.
    [67]苏立娟,陈东,师晋生.间接式海水制冷热泵系统的特性分析[J].化工装备技术,2007,28(1):37-41.
    [68]周修茹,谢继红,陈东,等.海水热泵的冬季运行特性分析[J].能源工程,2007,2:58-61.
    [69]苏立娟,陈东,谢继红,等.多级海水热泵供热系统的特性与应用分析[J].天津科技大学学报,2007,22(2):54-57.
    [70]张莉,胡松涛.海水作为热泵系统冷热源的研究[J].建筑热能通风空调,2006,25(3):34-38,57.
    [71]胡松涛,陈茂科,郭潇潇,等.海水源热泵与传统空调系统能耗比较分析[J].青岛理工大学学报,2008,29(2):1-5,13.
    [72]肖杰,范波,刘圣先.某海水源热泵空调工程能耗分析[J].青岛理工大学学报,2008,29(2):141-144.
    [73]蒋爽,端木琳,王树刚.海水热扩散研究进展与新问题分析[J].能源环境保护,2006,20(5):5-9.
    [74]蒋爽.基于热泵系统的海水热扩散研究[D].大连:大连理工大学,2006.
    [75]李震.海水源热泵区域供热供冷系统3E评价[D].大连:大连理工大学,2008.
    [76]端木琳,李震,蒋爽,等.大连星海湾海水源热泵空调系统热扩散数值模拟研究[J].太阳能学报,2008,29(7):832-836.
    [77]端木琳,李震,舒海文,等.海水源热泵空调系统的经济与环境评价研究[J].暖通空调,2007,37(8):149-153.
    [78]吴君华.渗滤取水技术在海水源热泵系统中的应用研究[D].天津:天津大学,2009.
    [79]刘雪玲.海水源热泵系统相关设备传热研究[D].天津:天津大学,2011.
    [80]靳娇.海水源热泵系统中海水-乙二醇溶液换热器的研发[D].天津:天津大学,2008.
    [81]张俊芳.通水式硬聚氯乙烯辐射采暖地板及阻力性能研究[D].天津:天津大学,2008.
    [82]俞洁.用于海水源热泵系统的海水—乙二醇溶液抛管式换热器设计[D].天津:天津大学,2009.
    [83]孙湘平.中国近海区域海洋[M].北京:海洋出版社,2006.
    [84]宁波海洋学校编.海洋学[M].北京:海洋出版社,1986.
    [85]刘哲,魏皓,蒋松年.渤海多年月平均温盐场的季节变化特征及形成机制的初步分析[J].青岛海洋大学学报,2003,33(1):7-14.
    [86]贾瑞丽,孙璐.渤海、黄海冬夏季主要月份的海温分布特征[J].海洋通报,2002,21(4):1-8.
    [87]刘文通,宋珊.渤海中部海底泥温铅直分布特征以及与水温的关系[J].海洋与湖沼,1993,24(6):584-591.
    [88]杜乐乐.利用次表层海水作城市区域空调冷源的机理研究[D].上海:上海交通大学,2008.
    [89]吴占臣.蒸发温度和冷凝温度变化对制冷机性能的影响[J].化工装备技术,2002,23(2):48-50.
    [90] Jie Yu, Huan Zhang, Shijun You. Heat transfer analysis and experimentalverification of casted heat exchanger in non-icing and icing conditions inwinter[J]. Renewable Energy,2012,41:39-43.
    [91] Jie Yu, Shijun You, Xuejing Zheng. Modeling and experimental verification ofcasted heat exchanger in non-icing and icing conditions in winter[C]//AdvancedMaterials Research, Green Building Materials and Energy-Saving Construction,2011:232-237.
    [92]宁静.换热器污垢系数的选取[J].石油化工设计,2007,24(3):10-12.
    [93]陶文栓.数值传热学(第2版)[M].陕西:西安交通大学出版社,2001.
    [94]李跃,付家轩,张奕.为满足冬季极端工况下闭式地表水源热泵正常运行的两种改造方案对比[J].能源技术,2008,29(2):103-105.
    [95] V.R. Tarnawski, W.H. Leong, T. Momose, Y. Hamada. Analysis of groundsource heat pumps with horizontal ground heat exchangers for northern Japan[J].Renewable Energy,2009,34(1):127-134.
    [96] H. Yang, P. Cui, Z. Fang. Vertical-borehole ground-coupled heat pumps: Areview of models and systems [J]. Applied Energy,2010,87(1):16-27.
    [97] Yanshun Yu, Zuiliang Ma, Xianting Li. A new integrated system with coolingstorage in soil and ground-coupled heat pump Ground source heat pumpdescription and preliminary results of the eco house system[J]. Applied ThermalEngineering,2008,28(11-12):1450-1462.
    [98] Kavanaugh SP. Ground-source heat pump: design of geothermal systems forcommercial and institutional buildings[M]. USA: ASHRAE Inc.,1997.
    [99]徐伟等译.地源热泵工程技术指南[S].北京:中国建筑工业出版社,2001.
    [100]吴永生,方可人.热工测量及仪表测试[M].北京:中国电力出版社,1995.
    [101]田胜元,萧曰嵘.实验设计与数据处理[M].北京:中国建筑工业出版社,1988.
    [102]姜宝石.水源热泵机组性能的模拟与实验[D].重庆:重庆大学,2011.
    [103]余乐渊,赵军,李新国.竖埋螺旋管地热换热器理论模型及实验研究[J].太阳能学报,2004,25(5):690-694.
    [104]孙纯武,张素云,刘宪英.水平埋管换热器地热源热泵实验研究及传热模型[J].重庆建筑大学学报,2001,23(6):49-55.
    [105]周亚素,张旭,陈沛霖.土壤源热泵机组冬季供热性能的数值模拟与实验研究[J].东华大学学报(自然科学版),2002,28(1):5-9,25.
    [106]张素云.水平埋管换热器地热源热泵实验研究[D].重庆:重庆大学,2001.
    [107]孙纯武,张素云,刘宪英.水平埋管换热器地热源热泵实验研究及传热模型[J].重庆建筑大学学报,2001,23(6):49-55.
    [108]中华人民共和国国家经济贸易委员会. JB/T10379-2002换热器热工性能和流体阻力特性通用测定方法[S].北京:机械工业出版社,2002.
    [109]朱明善.能量系统的分析[M].北京:清华大学出版社,1988.
    [110]刘凯.海水源热泵系统热力学优化与动态运行能耗分析[D].山东:青岛理工大学,2008.
    [111]孙光三,周兴禧,邹根男,等,译.制冷中的节能[M].上海:上海交通大学出版社,1987.
    [112]潘毅群,吴刚, Volker Hartkopf.建筑全能耗分析软件EnergyPlus及其应用[J].暖通空调,2004,34(9):2-9.
    [113]中国建筑科学研究院,中国建筑业协会建筑节能专业委员会.GB50189-2005公共建筑节能设计标准[S].北京:中国建筑工业出版社,2005.
    [114]中国建筑科学研究院,中国建筑业协会建筑节能专业委员会.GB50019-2003采暖、通风与空气调节设计规范[S].北京:中国建筑工业出版社,2003.
    [115]刘秋华.技术经济学[M].北京:机械工业出版社,2004.
    [116]贾春霖,李晨.技术经济学[M].湖南:湖南大学出版社,2004.
    [117]刘燕.技术经济学[M].四川:电子科技大学出版社,2007.
    [118]李秋生.住宅用水源热泵中央空调机组动态特性研究及能耗分析[D].天津:天津大学,2004.
    [119]杨昭,赵海波,胡云峰.水-水热泵系统全年性能优化的研究[J].制冷学报,2006,27(3):24-29.
    [120]李国栋.水源热泵系统的效率分析与节能研究[J].铁道勘测与设计,2010,2:96-99.
    [121]李新国.水源热泵应用低温地热的节能效果分析[J].天津大学学报,1997,30(3):364-369.
    [122]刘雪玲,朱家玲.水源热泵在冬季供暖中的应用[J].太阳能学报,2005,26(2):262-265.
    [123]杨昭,赵海波,胡云峰.水-水热泵系统全年性能优化的研究[J].制冷学报,2006,27(3):24-29.
    [124]李国栋.水源热泵系统的效率分析与节能研究[J].铁道勘测与设计,2010,2:96-99.
    [125]李新国.水源热泵应用低温地热的节能效果分析[J].天津大学学报,1997,30(3):364-369.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700