地源热泵系统土壤热响应试验的改进方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地源热泵系统是一种利用地下岩土作为热源和热汇的空调系统,由于其具有低碳、节能的优势,已经在我国得到了广泛的应用。
     在实际应用中,地源热泵系统的性能及经济性很大程度上取决于当地土壤的导热系数。《地源热泵系统工程技术规范》(GB50366-2005)推荐采用现场热响应试验的方法来确定这一热物性参数,其原理是通过传热介质在地埋管换热器中循环,在给定的放热量或取热量下,连续记录流体的进出口温度,并根据温度随时间变化的规律推知土壤导热系数。
     传热流体在地埋管换热器中流动的平均温度是计算土壤导热系数的基础数据,一般认为流体平均温度等于地埋管进出口流体的算术平均温度,这一方法虽简单但缺少理论依据,本文利用CFD软件FLUENT模拟了典型热响应试验中流体的三维非稳态温度场,发现算术平均温度与流体的积分平均温度相差并不大,在工程实际中完全可以用来代表流体的平均温度。
     传统的热响应试验仪只能测量土壤热响应,而忽略了土壤的冷响应。针对这一局限性,本文构造了一种新型土壤热响应试验仪,与传统试验仪相比,本试验仪可以同时测量土壤的热响应和冷响应,且具有运行稳定、测试结果精确、所需测试时间较短的特点。
     本文还提出了一种基于二维有限长线热源模型的测试数据处理方法。运用新型热响应试验仪在天津某地进行了热响应试验,并用上述数据处理方法得到了当地的土壤导热系数,通过对比不同工况下所得的土壤导热系数发现该方法比传统方法更为可靠,所得结果可以反映地埋管换热器的全年运行条件。最后,为了便于工程应用,本文还利用MATLAB编制了对应于该测试数据处理方法的计算界面,用户可在此界面中输入相应数据,并得到设计中所需的土壤导热系数。
     此外,由于基于二维有限长线热源模型的测试数据处理方法有其自身的局限性,本文还提出了一种基于数值模型的参数估计法用来在热响应试验中计算土壤及回填材料的导热系数,将此方法用于前述热响应试验,并对比了分别运用二维有限长线热源模型和数值方法所得的土壤导热系数,发现两种方法所得土壤导热系数之间有一定偏差,最后分析了产生这一偏差的原因。
Utilizing the ground as heat source and sink, ground source heat pump (GSHP) system has the advantage of lower carbon dioxide emissions and higher energy efficiency compared with conventional system. As a result, it is widely used at present in China.
     In practice, the thermal performance and economical efficiency of GSHP system is largely dependent on the local ground thermal conductivity.“Technical Code for Ground Source Heat Pump System”(GB50366-2005) recommends using the in-situ thermal response test (TRT) to determine this thermal property which is based on injecting or extracting a constant heating power to or from the ground and measuring the inlet and outlet fluid temperatures continuously during the test, and then the ground thermal conductivity can be calcalated from the measured temperature history.
     The average temperature of circulating fluid in BHE is the basic test data for computing the ground thermal conductivity. Conventionally, the arithmetic mean value of inlet and outlet temperatures is taken as the average fluid temperature, this method is simple but lack of theoretical foundation. This paper used the CFD software FLUENT to simulate the three-dimensional transient temperature field of circulating fluid in a typical TRT and found that the arithmetic mean temperature has little difference with the volume integration temperature. So, in practice, it can be used to represent the average temperature of circulating fluid.
     Conventional test equipment can only conduct the heat injection test. Focus on the situation, this paper constructed a new kind of test equipment for TRT. Compared with the conventional test equipments, this test equipment can conduct the heat injection and extraction tests simultaneously, in addition, it is more stable while running and requires much less test duration.
     Moreover, this paper proposed a new data analysis method based on the two-dimensional finite line source model. With the new test equipment a TRT was conducted in Tianjin, and the ground thermal conductivity was determined by the data analysis method. By comparison, it was found that this method is more accurate than conventional methods, and the resulting ground thermal conductivity can reflect the annual operation condition for BHE. Besides, for the convenience of engineering application, the paper developed a computing interface corresponding to the data analysis method based on MATLAB. The users can input relative information and get the ground thermal conductivity in this interface.
     Finally, it should be noted that the data analysis method based on the two-dimensional finite line model has some limitations, so this paper also proposed a parameter estimated method based on the one-dimensional numerical model to evaluate the thermal conductivity of ground and grout. Applying this method to the TRT mentioned above, the resulting ground thermal conductivity was compared with that resulted from the analytical method, and it was found that there was a bit difference between the results. The reasons for this difference were also analyzed.
引文
[1]杨秀.基于能耗数据的中国建筑节能问题研究[D].北京:清华大学建筑学院, 2009.
    [2] International Energy Agency (IEA). Heat pumps can cut global CO2 emissions by nearly 8%[M]. Sweden: International Energy Agency, 2010.
    [3] Yang H, Cui P, Fang Z. Vertical-borehole ground-coupled heat pumps: A review of models and systems[J]. Applied Energy, 2010, 87(1): 16-27.
    [4]於仲义.土壤源热泵垂直地埋管换热器传热特性研究[D].武汉:华中科技大学环境科学与工程学院, 2008.
    [5]易新,梁仁义.现代空调用制冷技术[M].北京:机械工业出版社, 2003.
    [6] J. Lund, B. Sanner, L. Rybach, et al. Geothermal (ground-source) heat pumps a world overview[M]. Sweden: GHC Bulletin, 2004.
    [7]徐伟.中国地源热泵发展研究报告[M].北京:中国建筑工业出版社, 2008.
    [8] Yang Wei, Zhou Jin, Xu Wei, et al. Current status of ground-source heat pumps in China[J]. Energy Policy, 2010, 38(1): 323-332.
    [9] International Energy Agency (IEA). Clean energy progress report 2011[M]. Sweden: International Energy Agency, 2011.
    [10] R. Cane, D. Forgas. Modeling of ground-source heat pump performance[J]. ASHRAE Transactions, 1991, 98(3): 43-45.
    [11]王书中,由世俊,张光平.热响应测试在土壤热交换器设计中的应用[J].太阳能学报, 2007, 28(4): 405-410.
    [12] M.H. Sharqawy, S.A. Said, E.M. Mokheimer, et al. First in situ determination of the ground thermal conductivity for borehole heat exchanger applications in Saudi Arabia[J]. Renewable Energy, 2009, 34(10): 2218-2223.
    [13] H. Esen, M. Inalli. In-situ thermal response test for ground source heat pump system in Elaz??, Turkey[J]. Energy and Buildings, 2009, 41(4): 395-401.
    [14] G. Florides, S. Kalogirou. First in situ determination of the thermal performance of a U-pipe borehole heat exchanger, in Cyprus[J]. Applied Thermal Engineering, 2008, 28(2-3): 157-163.
    [15] K. Lim, S. Lee, C. Lee. An experimental study on the thermal performance of ground heat exchanger[J]. Experimental Thermal and Fluid Science, 2007, 31(8): 985-990.
    [16]于明志,彭晓峰,方肇洪.用于现场测量深层岩土导热系数的简化方法[J].热能动力工程, 2003, 18(5): 512-514.
    [17]于明志,方肇洪.现场测试地下岩土平均热物性参数方法[J].热能动力工程, 2002, 17(101): 489-492.
    [18] L.R. Ingersoll, H.J. Plass. Theory of the ground pipe heat source for the heat pump[J]. Heating, Piping & Air Conditioning, 1948, 20(7): 119-122.
    [19]单奎,张小松,李舒宏.一种现场测定土壤源热泵岩土热物性的新方法[J].太阳能学报, 2010, 31(1): 22-26.
    [20] P. Morgensen. Fluid to duct wall heat transfer in duct system heat storage[C] // International Conference on Surface Heat Storage in Theory and Practice. Stockholm, Sweden, 1983: 652-657.
    [21] C. Eklof, S. Gehlin. TED-a mobile equipment for thermal response test[D]. Sweden: School of Mathmatics, Lulea University of Technology, 1996.
    [22] W.A. Austin. Development of an in situ system for measuring ground thermal properties[D]. USA: School of Mechanical Engineering, Oklahoma State University, 1995.
    [23] S. Gehlin. Thermal response test-method development and evaluation[D]. Sweden: School of Mathmatics, Lulea University of Technology, 2002.
    [24] H.J.L. Witte, A.J. van Gelder, J.D. Spitler. In Situ measurement of ground thermal conductivity-the Dutch perspective[J]. ASHRAE Transactions, 2002, 108(1): 1-21.
    [25] H.J.L. Witte, A.J. van Gelder. Geothermal response test using controlled multipower level heating and cooling pulses (MPL-HCP): Quantifying ground water effects on heat transport around a borehole heat exchanger[C] // 10th International Conference on Thermal Energy Storage. New Jersey, USA, 2006: 652-657.
    [26] H.J.L. Witte. Geothermal response test with heat extraction and heat injection: Examples of application in research and design of geothermal heat exchangers[M]. Netherland: Workshop Lausanne, 2001.
    [27] A.J. van Gelder, H.J.L. Witte. A ground source energy plant for the new assembly for Wales[C] // 10th International Conference on Thermal Energy Storage. New Jersey, USA, 2006: 652-657.
    [28] Wang Huajun, Qi Chengying, Du Hongpu, et al. Improved method and case study of thermal response test for borehole heat exchangers of ground source heat pump system[J]. Renewable Energy, 2010, 35(3): 727-733.
    [29] Wang Huajun, Qi Chengying, Du Hongpu, et al. Thermal performance of borehole heat exchanger under groundwater flow: A case study from Baoding[J]. Energy and Buildings, 2009, 41(12): 1368-1373.
    [30]赵军,段征强,宋著坤,等.基于圆柱热源模型的现场测量地下岩土热物性方法[J]. 2006, 27(9): 934-936.
    [31] J.A. Shonder, J.V. Beck. A new method to determine the thermal properties of soil formations from in situ field tests, ORNL/TM-2000/97[M]. USA: Oak Ridge Laboratory, 2000.
    [32] W. Austin, C. Yavuzturk, J.D. Spitler. Development of an in-situ system and analysis procedure for measuring ground thermal properties[J]. ASHRAE Transactions, 2000, 106(1): 365-379.
    [33] B. Sanner, G. Hellstr?m, J.D. Spitler. Thermal response test-current status and world-wide application[C] // World Geothermal Congress 2005. Antalya, Turkey, 2005: 652-657.
    [34] D. Marcotte, P. Pasquier. On the estimation of thermal resistance in borehole thermal conductivity test[J]. Renewable Energy, 2008, 33(11): 2407-2415.
    [35]贾瑞博.风力机叶尖加小翼动力放大的数值模拟研究[D].呼和浩特:内蒙古工业大学机械学院, 2005.
    [36]吴君华.渗滤取水技术在海水源热泵系统中的应用研究[D].天津:天津大学环境科学与工程学院, 2009.
    [37]王会鹏.基于变负荷的地源热泵土壤温度模拟研究[D].天津:天津大学环境科学与工程学院, 2010.
    [38] M. Piechowski. Heat and mass transfer model of a ground heat exchanger: Validation and sensitivity analysis[J]. International Journal of Energy Reservation, 1998, 22(11): 965-979.
    [39]陶文铨.数值传热学[M].西安:西安交通大学出版社, 2001.
    [40]康龙.地源热泵U型埋管换热的数值模拟及优化研究[D].武汉:华中科技大学环境科学与工程学院, 2007.
    [41]张也影.流体力学[M].北京:高等教育出版社, 1986.
    [42] P. Eskilson. Thermal analysis of heat extraction boreholes[D]. Sweden: Faculty of Engineering, University of Lund, 1987.
    [43] H. Zeng, N. Diao, Z. Fang. A finite line-source model for boreholes in geothermal heat exchangers[J]. Heat Transfer Asian Research, 2002, 31(7): 558-567.
    [44] D. Marcotte, P. Pasquier. On the estimation of thermal resistance in borehole thermal conductivity test[J]. Renewable Energy, 2008, 33(11): 2407-2415.
    [45] L. Lamarche, B. Beauchamp. A new contribution to the finite line-source model for geothermal boreholes[J]. Energy and Buildings, 2007, 39(2): 188-198.
    [46] J.A. Shonder, J.V. Beck. Field test of a new method for determining soil formation thermal conductivity and borehole resistance[J]. ASHRAE Transactions, 1999, 106(1): 843-850.
    [47] N.D. Paul. The effect of grout thermal conductivity on vertical geothermal heat exchanger design and performance[D]. USA: School of Mechanical Engineering, South Dakota University, 1996.
    [48] M.H. Sharqawy, E.M. Mokheimer, H.M. Badr. Effective pipe-to-borehole thermal resistance for vertical ground heat exchangers[J]. Geothermics, 2009, 38(1): 271-277.
    [49] J. Bennet, J. Claesson, G. Hellstrom. Multipole method to compute the conductive heat transfer to and between pipes in a composite cylinder[D]. Sweden: Faculty of Engineering, Lund Institute of Technology, 1987.
    [50] L. Lamarche, S. Kajl, B. Beauchamp. A review of methods to evaluate borehole thermal resistances in geothermal heat-pump systems[J]. Geothermics, 2010, 39(2): 187-200.
    [51] G. Hellstrom, B. Sanner. EED-Earth Energy Designer, Version 1.0 User’s Manual[M]. Germany: Prof. Dr. Knoblich & Partner GmbH, 1997.
    [52]陈少青.两种不同长度竖向排水体在真空预压法中应用的研究[D].天津:天津大学建筑工程学院, 2010.
    [53] S. Gehlin. The influence of the thermosiphon effect on the thermal response test[J]. Renewable Energy, 2003, 28(14): 2239-2254.
    [54] A.M. Gustafsson, L. Westerlund, G. Hellstr?m. CFD-modelling of natural convection in a groundwater-filled borehole heat exchanger[J]. Applied Thermal Engineering, 2010, 30(6-7): 683-691.
    [55]袁正道.动态心电图采集和混沌处理系统[D].无锡:苏州大学医学部, 2009.
    [56]罗华飞. MATLAB GUI学习手记[M].北京:北京航空航天大学出版社, 2009.
    [57] J.E. Bose, J.D. Parker, F.C. McQuiston. Design/data manual for closed-loop ground-coupled heat pump systems[M]. USA: American Society of Heating, Refrigerating and Air-conditioning Engineers, 1985.
    [58] R.A. Beier, M.D. Smith, J.D. Spitler. Reference data sets for vertical borehole ground heat exchanger models and thermal response test analysis[J]. Geothermics, 2011, 40(1): 79-85.
    [59] J.E. Bose. Soil and rock classification for the design of ground-coupled heat pump systems-Field manual[M]. USA: Electric Power Research Institute Special Report, 1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700