河床漂石—砂卵石介质渗透特性的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国,尤其在北方地区水资源严重短缺,地下水超采已成为北方地区的共性问题。地下水限量开采也已成为地下水资源保护的主要措施。因此,为了满足人类日常生活及社会发展的用水需求,近几年来,我国北方地区傍河取水工程与日俱增。在实际开采河槽地下潜水工程建设中遇到的技术问题是理论计算结果与实际工程取水量相差过大。现场的详细踏勘分析认为,这与河床堆积砂卵石层中存在的漂石有直接的关系。本文对河床漂石-砂卵石介质渗透特性展开研究,对于傍河取用地下水工程建设以及提高取水效率有重大的意义。
     本文以柳林黄河滩地原状自然堆积砂卵石及其漂石为研究对象,运用试验研究的方法,从漂石形状、尺度、级配、剖面结构、淤积层等对砂卵石的渗透系数和渗流通量的影响方面,进行了系统研究。取得了以下几点主要结论:
     (1)天然河床漂石--砂卵石介质的粒径特征对渗透系数的影响很大。粒径特征不同,砂卵石介质其孔隙的数量与大小、渗透水流的过水面积以及细颗粒的充填度不同,渗透系数随砂卵石粒径特征的变化而发生变化。砂卵石介质的渗透系数与砂卵石有效粒径d10、限制粒径d60和不均匀系数Cu均具有密切的相关关系。渗透系数K随着d10的增大而增大,随着d60的增大而增大,随着Cu的增大而减小。渗透系数与有效粒径d,。和限制粒径d60均呈二次函数相关关系,与不均匀系数Cu呈对数相关关系。砂卵石介质的渗透系数及水力梯度与漂石的截面面积及体积之间亦具有高度的相关性。
     (2)当河道水深不变,淤泥含量较小时,大部分淤泥将通过砂卵石介质孔隙通道被水流带出,淤泥对渗流通量的影响因而不明显。但是,当淤泥层厚度增加到一定程度之后,砂卵石介质部分孔隙将被累积增加的淤泥堵塞,此时,渗流通量将逐渐减小。在等厚度淤积层的覆盖下,河床中砂卵石的渗流通量随着河道水深的增大而增大。但是,在砂卵石表面淤积层厚度较大的情况下,随着试验的进行,河道水深的增大对砂卵石渗流通量的影响逐渐减弱。
     (3)在大粒径卵石覆盖层及细颗粒介质与土工布复合覆盖层下对砂卵石的阻泥保渗效果较好,细颗粒介质与土工布复合覆盖层最佳阻泥保渗效果组合结构为:土工布+细颗粒+土工布。在综合考虑砂砾石介质的渗透系数和水质状况的情况下,得出人工渗床最佳砂砾石剖面结构从上到下依次是:14cm厚1~0.25mmm细颗粒+土工布+20cm厚3~1m1n砂砾石+20cm厚6-3mm砂砾石+20cm厚10~6mm砂砾石+20cm厚30-1Omm砂砾石+20cm厚50~30mm砂砾石+15cm厚90-50mm砂砾石。
     本文对不同粒径配比砂砾石介质人工渗床剖面结构的研究,只是根据试验结构进行初步分析,最终得出的最佳剖面结构需要日后的工程实践验证。
The serious short of water resources in our country, especially in the northern regions, the groundwater overdraft has become the common problems of the northern regions. The limited exploitation of groundwater has also become the main measures for protection of groundwater resources. Therefore, in recent years, the water intake project near the river has gradually increase in the northern china in order to meet the water demand of human daily life and social development. The technological problem is the large difference between theoretical calculated result and practical engineering water intake quantity in the exploitation riverbed underground water project construction actually. It was considered through the detailed reconnaissance in the field analysis that it have a direct relationship with boulder of accumulation sand pebble layer in the river trough. The paper researches permeability characteristics of the boulder and sandy gravel media the river trough, which possesses important significance for taking underground water project construction near the river and improving water intake efficiency.
     Taking the original state natural accumulation sandy pebble and boulders at Liulin County Yellow River bottomland as the research object, using the method of experimental study, from the aspect of the influence of boulders shape, scale, gradation, profile structure, sediment deposit to osmotic coefficient and osmotic flus of sandy pebble carrying out systematically study. The following main conclusions were drawn:
     (1) The characteristic diameter index of boulder and sandy gravel media on natural riverbed contributed significantly to the permeability coefficient. The characteristic diameter indexes are different, and the numbers and size of pore space of sandy gravel media, the discharge area of seepage flow and the percentage filling of fine particle are different too, that is characteristic diameter indexes have influences on the permeability coefficient. There are the close correlation among permeability coefficient of sandy gravel media and its effective diameter (d10), limit diameter (d60) and Non-uniform coefficient (Cu). The permeability coefficient (K) increases with the increase of the d10, the same as with the increase of the d60, while the permeability coefficient decreases with the increase of the Cu, there is a logarithmic relationship between permeability and Non-uniform coefficient (Cu), while a quadratic equation can be fitted to the correlation between permeability coefficient and effective diameter (d10) the same as with Non-uniform (Cu). There are the close correlation among permeability coefficient of sandy gravel media and the size of boulder and hydraulic gradient.
     (2)When the depth of water in the river course is kept constant and the content of sullage occurs in small amounts, a majority of sullage will be taken away by water through pore way in the cobblestone medium. Therefore, the effect of sullage on the seepage flux is less visible. But when the depth of sullage increases to certain extent, a part pore of cobblestone medium will be jammed by the increasing sullage. And at the same time, seepage flux decreases gradually. Covered by the sullage with the same depth, the seepage flux of cobblestone in the river course increases with the increase of water depth. But in the context of lager depth of sullage on the surface of cobblestone, alone with the progress of the experiment, the influence of the increasing depth of water on the seepage flux is weaken little by little.
     (3)The coating which consists by large size cobble, fine particle and geotextile has the best mud resist and keep infiltrating function. The best composite structure of fine particle and geotextile compound coating which to resist mud and keep seepage is geotextile+fine particle+geotextile. After overall consideration to osmotic coefficient and water quality, the top to bottom best sand gravel profile structure of artificial percolating filter is1~0.25mm pine particle14cm+geotextile+3~1mm sand gravel20cm+6~3mm sand gravel20cm+10~ 6mm sand gravel20cm+30~10mm sand gravel20cm+50~30mm sand gravel20cm+90~50mm sand gravel15cm.
     The research on artificial percolating filter profile structure of different particle size matching sandy gravel media in this paper,which only belongs to preliminary analysis according to the test structure, the best profile structure eventually got need the future project practice verification.
引文
[1]黄文熙.土的工程性质[M].北京:水利电力出版社,1983.
    [2]Scheidegger,A.E.,The Physics of Flow through Porous Media[M],3rd Edition,The Macmillan Co.,1974.
    [3]屈智炯,吴剑明.压实石渣料渗透变形试验研究[J].成都科技大学学报,1984,(2),67-76.
    [4]郭庆国.粗粒土的渗透特性及渗流规律[J].西北水电,1985,(1),42-47.
    [5]Forchheimer,P.H.Wasserbewegun durch Boden. Zeitschrift des Vereines. Deutscher Ingenieure.49,1736-1749,No.50,1781-1788.
    [6]黄俊.渗流基本规律研究的综述[J].四川水利发电,1984,(12),86-95.
    [7]Jaeger,C.Engineering Fluid Mechanics[M].Blackie and Son,Ltd.,London,U.K.,1956.
    [8]郭庆国.粗粒土的工程特性及应用[M].郑州:黄河水利出版社,1999.
    [9]Bingjun Li.Vinod K.Garga,Michael H.Davies.Relationships for Non-Darcy Flow in Rockfill[J]Journal of Hydraulic Engineering,1998,124(2),206-212
    [10]Ergun,S..Fluid flow through packed columns[J].Chemical Engrg Progress,1952,48(2),89.
    [11]Gent,M.R. A.van..Formulae to describe porous flow[C].Communications on Hydr.and Geotech.Engrg.,ISSN 0169-6548 No.922,Delft Univ. of Technol. And MAST-G6S Rep.,Project 1,Delft University of Technology,Delft,The Netherlands.
    [12]毛昶熙.渗流计算分析与控制[M].北京:水利水电出版社,2003.
    [13]J.贝尔.多孔介质流体动力学[M].李竞生,陈崇希译.北京:中国建筑工业出版社,1983.
    [14]Fair G M,Hatch L P.Fundamental factors governing the streamline flow of water through sand,J.Amer.Water Works Ass.,25,1551-1565
    [15]刘杰.土的渗流稳定与渗流控制[M].北京:水利电力出版社,1992
    [16]TAYLOR D W. Fundamentals of soil mechanics[M]. New York:John Wiley & Sons, Inc,1948.
    [17]中华人民共和国水利部编.土的分类标准(GBJ145-90)[S].中国建筑工业出版社.1991.8.1
    [18]屈智炯吴剑明.压实石渣料渗透变形的实验研究[J].成都科技大学学报,1984.2(2)
    [19]许宝田阎长虹李小昭.隧道开挖过程中的渗透变形问题分析-结合南京地区工程实例[J].水文地质工程地质,2002.(2),47-50
    [20]刘建刚陈建生赵维炳.堤基渗透变形与计算[J].长江科学院院报,2001.12(6),38-40+44
    [21]范振国孟昭惠.黄河中游河床覆盖层渗透变形特性研究[J].水文地质工程地质,1987.(2)
    [22]张致寇菊茹.东输林水库坝基应用塑模防渗防止坝基渗透变形的分析[J].水利水电技术,1991.(7)
    [23]盛金保.沟后坝溃坝渗流初步分析[J].大坝观测与土工测试,1996.]0(5),11-15
    [24]刘原英.海滨含水层渗透系数的估计[J].地下水,1994.6(2),37-39
    [25]崔伯华.一种粗粒土室内渗透比较试验研究[J].大坝观测与土工测试,1996.4(2),15-18
    [26]常中华,张二勇,柴建峰等.应用主成分分析法研究渗透介质的渗透稳定问题[J].水文地质.]995.1,16-21
    [27]郭见扬.防汛堤防、坝基结构与渗透变形[J].岩石力学与工程学报,1998.12(6),674-678
    [28]肖四喜,李银平.大堤管涌型成机理分析及治理方法[J].湖南大学学报,1994.4(2)
    [29]王传雷,许顺方,潘志炎等.堤坝管涌隐患的综合物探勘察与加固处理实例[J].工程勘察,1994(4)69-71
    [30]前苏联B.H.阿拉文c.H.奴米罗夫.土工建筑物的渗流计算[M].北京:水利电力出版社,1959.6
    [31]张斌、屈智炯.考虑剪胀和软化特性的粗粒土应力-应变模型[J].岩土工程学报,1991.11,66-71
    [32]保华富屈智炯.粗粒土的本构模型研究.[J].成都科技大学学报,1990.4(4)
    [33]肖晓军.不同应力路径下粗粒土的应力应变强度特性[J].成都科技大学学报,1992.5(5)
    [34]王昆耀常亚屏.往返荷载下粗粒土的残余变形特性[J].土木工程学报,2000.6(3)
    [35]刘开明屈智炯.粗粒土的工程特性及本构模型研究[J]. 成都科技大学学报,1993.6(6)
    [36]陆会青.关于粗粒土原级配大型固结试验的几点体会[J].大坝观测与土工测试,1994.12,42-45
    [37]赵久柄,王正良.熙-宝高速公路粗粒土路基压实度的试验研究[J].国外公路,1996.12(6)
    [38]张智,屈智炯.粗粒土湿化特性的研究[J].成都科技大学学报,1990.5(5)
    [39]冯郭铭,付琼华.测定土的双向渗透系数的仪器装置和方法[J].大坝观测与土工测试1997.6
    [40]田树玉,史颜文.测定粗粒料最大密度之HUMPHREY公式的校正[J].水力发电学报,1994(1),28-34
    [41]田思进王英敏.崩落矿岩渗漏风特性的实验研究[J].金属矿山,1994.9(9),28-31
    [42]陈希哲.粗粒土的强度与咬合力的研究[J].工程力学,1994.12(4),56-63
    [43]杨维训.秦沈客运专线A5标段粗粒土填筑路基技术[J].铁道标准设计,2001.10,41-42
    [44]郭庆国.粗粒土在高层建筑黄土地基处理中的应用[J]. 岩土工程师1992.11(4)
    [45]李云蜂.黄土渗透性与空隙性关系的研究[M].北京:地质出版社,1994.10
    [46][奥]A.E.薛定谔.多孔介质中的渗流物理[M].北京:石油工业出版社,1982.8
    [47]石金良主编.砂砾石地基工程地质[M].北京:水利电力出版社,1991.2
    [48]李广诚主编.南水北调工程地质分析研究论文集[N].北京:中国水利水电出版社,2002.4
    [49]赵明华,张常耀,梁伟民.处理颗分曲线的最佳数值方法[J].勘察科学技术,1995(6),27-30
    [50]张士辰,李雷.粗砂渗透系数与抗剪强度的概型分布[J].水利水运工程学报,2004.9(3)
    [51]杨光煦.堤防险情及其处理[J].人民长江,1999.9(9)15-17+52
    [52]刘先珊,张立君.改进的渗流参数反演方法及其工程应用[J].水电能源科学,2004.9(3)
    [53]童羽湘,过培鑫.岩土工程的现状与发展[J].电力勘测,1997.12(4),1-9
    [54]郭见扬.防汛堤坝、坝基结构与渗透变形[J].岩石力学与工程学报,1998.12(6),674-678
    [55]陈定安.塑性混泥土渗透及渗透变形试验模型与指标测定[J].工业安全与防尘,2001.(11)
    [56]王瑗.高等数学(第二分册).概率统计[M].现代出版社.2000.10
    [57]腾素珍编著.数理统计.大连理工大学出版社[M].2000.1
    [58]朱崇辉,刘俊民,王增红,无粘性粗粒土的渗透试验研究[J].人民长江,2005.11,36(11):53-55
    [59]朱崇辉,刘俊民,王增红.粗粒土的颗粒级配对渗透系数的影响规律研究[J].人民黄河,2005.12,27(12):79-81
    [60]孙陶.无粘性粗粒土渗透系数的近似计算[J].四川水力发电,2003.6,22(2):29—31
    [61]梁军,孙陶,李蓉.瓦屋山面板坝含软岩堆石体长期渗流研究[J].四川水利,1997.4,18(4):26-6
    [62]邱贤德,阎宗岭,姚本军,陶世宏;.堆石体渗透特性的试验研究[J].四川大学学报,2003.3,35(2):6-9
    [63]邱贤德,阎宗岭,刘立,王辉.堆石体粒径特征对其渗透性的影响[J].岩土力学,2004.6,25(6):950—954
    [64]黄会勇.变分法求解边坡稳定问题[D].武汉大学,2004
    [65]毛昶熙.电模拟试验与渗流研究[M].水利出版社.1981
    [66]黄文熙等.土的工程性质[M].北京:水利水电出版社.1983
    [67]康顺祥.天然滤层[J].防渗技术.1999.3,2-6+18
    [68]崔荣方.无粘性土的渗透特性及其管涌破坏机理研究[D].南京:河海大学硕士学位论文,2006
    [69]中华人民共和国水利部.土工试验规程(SL237-1999)[S].中国水利水电出版社出版.1999.12
    [70]Fredlund D G, Xing A, Huang S G. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve. Canadian Geotechnical Journal,1994,31:533—546.
    [71]Jarvis N J, Messing I. Near-saturated hydraulic conductivity in soils of contrasting textureas measured by tension infiltrometers. Soil Science Society of America Journal,1995,59:27-34.
    [72]王勇.堆石料渗透特性试验研究[D].南京:河海大学硕士学位论文,2006
    [73]凤家骥.连续级配理论在混凝土面板堆石坝坝料中的应用.混凝土面板堆石坝会议论文集[C].南京:河海大学出版社,1990.
    [74]傅志安,凤家骥.混凝土面板堆石坝[M].武汉:华中理工大学出版社,1993.
    [75]郭庆国.粗粒土的工程特性及应用[M].郑州:黄河水利出版社,1998.
    [76]田湖南.非饱和砂土工程性状的细粒效应试验研究[D].武汉:中国科学院武汉岩土力学研究所,2009.
    [77]费雷德隆德D G,H拉哈尔佐著.非饱和土土力学.陈仲颐等译.北京:中国建筑工业出版社,1997.
    [78]黄文熙.土的工程性质.北京:水利电力出版社,1983:110-119.
    [79]Vanapalli S K, Fredlund D G. Pufahl D E. Comparison of saturated-unsaturated shear strength and hydraulic conductivity behavior of a compacted sandy-clay till. In:50th Canadian Geotechnical Conference, Ottawa,1997,625-632.
    [80]徐永福,叶翠明,赵书权等.压应力对非饱和渗透系数的影响.上海交通大学学报,2004,38(6):982-986.
    [81]李永乐,刘翠然,刘海宁等.非饱和土的渗透特性试验研究.岩石力学与工程学报,2004,23(22):3861-3865.
    [82]李晓.天然河床渗滤取水技术研究[D].成都:西南交通大学博士学位论文,2003
    [83]李晓,杨立中.利用天然河床渗滤取水的新技术[J].中国给水排水.2003,19(6):74-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700