华北特低渗透砂砾岩油藏储层特征及渗流规律实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以华北乌里雅斯太油田不同特低渗透砂砾岩储层为实验对象,结合恒速压汞、核磁共振以及物理模拟等实验手段,对比了华北不同特低渗透砂砾岩储层的微观孔隙结构和可动流体含量,在此基础上,对特低渗透砂砾岩相和两相渗流规律进行了较系统的研究。主要研究内容及成果如下:
     1、华北特低渗透砂砾岩油藏平均喉道半径与渗透率呈良好的幂函数关系,喉道半径是控制储层渗透率的主要因素。喉道半径小、非均质程度强以及粘土矿物含量较多是特低渗透砂砾岩储层敏感性强的主要因素。
     2、核磁共振测试结果表明:特低渗透砂砾岩储层T2谱峰结构增多,最大T2驰豫时间介于砂岩和砾岩之间,T2截止值高于常规特低渗透砂岩储层;随着渗透率增加,可动流体百分数、可动流体孔隙度增大,相关性变好;渗透率越低,非均质程度越强。
     3、通过启动压力梯度实验可知,对于同一实验岩样,油测启动压力梯度要大于水测启动压力梯度。随着渗透率增大,水、油测启动压力梯度逐渐减小,且降低幅度逐渐减弱。
     4、在油水相对渗透率测试实验中,通过考虑油、水粘度以及油、水相的有效渗透率,分别计算得到油、水相最大流度,通过该流度反映并对比了各特低渗透砂砾岩储层的油水两相流动难易程度。
     5、将核磁共振和物理模拟实验相结合,提出了特低渗透油田相渗曲线测试新方法。该方法校正了束缚水饱和度和残余油饱和度,提高了实验精度,使渗透率与驱油效率的关系得到很大加强;对于不同渗透率的相渗曲线来说,T2几何均值与可动流体百分数、可动油饱和度、渗吸效率、驱替效率和总的驱油效率有很好的相关关系。
     6、根据研究的华北特低渗透砂砾岩储层特性,结合前人建立的低渗透油藏储层评价标准,采用综合评判的方法对华北特低渗透砂砾岩进行储层评价。
Combining with the experiments of rate-controlled mercury penetration, nuclear magnetic resonance(NMR) and physical simulation, the paper compared analyses the micro pore structure and the content of moveable fluid of the different ultra-low permeability glutenite reservoirs of Huabei Uliastai oil field. Then, based on the above research, the seepage law of the singe phase fluid and two phase fluids were studied. The research results are as following:
     1.The average of throat radius and permeability of the ultra-low permeability glutenite reservoirs have a fine power function relationship. Throat radius is the main factor of controlling the permeability of reservoirs. Small throat radius, high heteroge-neous degree and higher content of clay are the main factors of strong reservoir sensitivity of the ultra-low permeability glutenite reservoirs.
     2.NMR testing results show, for the ultra-low permeability glutenite reservoirs, T2 relaxation pectrum have more mono peaks than sandstone. The maximum value of T2 relaxation time lies between sandstone and conglomerate. The value of cutoff T2 is larger than general ultra-low permeability sandstone reservoirs. Parameters of moveable fluid become lager as permeability increases, and their relation gets better as permeability increases. Heterogeneous degree is stronger as permeability decreases.
     3.From the experiments of starting pressure gradient testing, for the same rock sample, starting pressure gradient of oil phase is larger than that of water phase. With permeability increasing, starting pressure gradient of oil and water phase decrease, and the decreasing degree becomes weak.
     4. Considering oil and water viscosity and effective permeability, the maximum of oil and water mobility were calculated in the relative permeability testing. By the maximum, oil and water flowability of the different ultra-low permeability glutenite reservoirs were compared.
     5. Combining NMR with physical simulation of low permeability reservoir, a new method of testing relative permeability curve was put forward. The new method adjusts irreducible water saturation and residual oil saturation, improves experimental precision, and makes the relation between permeability and oil displacement efficiency gets better. For the differently relative permeability curve, there are evident relationship between T2 geometric mean value and movable fluid percentage, movable oil saturation, imbibitions efficiency, expulsion efficiency, total oil displacement efficiency.
     6. Based on the reservoir characters of ultra-low permeability glutenite reservoirs in this paper, combining with previous evaluation standard suiting with the low permeability reservoirs, a comprehensive evaluation has been taken on the ultra-low permeability glutenite reservoirs of Huabei oil field.
引文
[1]胡复唐.砂砾岩油藏开发模式[M].北京:石油工业出版社,1997
    [2]朱水桥.提高砾岩油藏中高含水期开发水平[M].北京:石油工业出版社,2003
    [3]申本科,胡永乐,田昌炳等.陆相砂砾岩油藏裂缝发育特征分析——以克拉玛依油田八区乌尔禾组油藏为例[J].石油勘探与开发,2005,32(3):41-44
    [4]庄博,刘玉琴.三维可视化技术在陈家庄地区砂砾岩储集层描述中的应用[J].石油勘探与开发,2005,32(3):64-66
    [5]马丽娟,何新贞,孙明江等.东营凹陷北部砂砾岩储层描述方法[J].石油物探,2002,41(3):354-358
    [6]潘元林,宗国洪,郭玉新等.济阳断陷湖盆层序地层学及砂砾岩油气藏群[J].石油学报,2003,24(3):17-23
    [7]隋风贵.断陷湖盆陡坡带砂砾岩扇体成藏动力学特征——以东营凹陷为例[J].石油与天然气地质,2003,24(2):335-340
    [8]武法东,谢风猛,李湘军等.利津断裂带复杂砂砾岩扇体的迁移研究[J].石油勘探与开发,2002,29(6):22-24
    [9]王金铎,于建国,孙明江.陆相湖盆陡坡带砂砾岩扇体的沉积模式及地震识别[J].石油物探,1998,37(3):40-47
    [10]刘书会,张繁昌,印兴耀等.砂砾岩储集层的地震反演方法[J].石油勘探与开发,2003,30(3):124-128
    [11]林松辉,王华,王兴谋等.断陷盆地陡坡带砂砾岩扇体地震反射特征——以东营凹陷为例[J].石油学报,2005,24(5):55-59
    [12]孔凡仙.东营凹陷北带砂砾岩扇体勘探技术与实践[J].石油学报,2000,21(5):27-31
    [13]王永刚,杨国权.砂砾岩油藏的地球物理特征[J].石油大学学报(自然科学版),2001,25(5):16-20
    [14]彭传圣,王永诗,常国贞等.罗家地区砂砾岩储集层地球物理预测技术[J].油气地质与采收率,2001,8(2):36-38
    [15]张丽艳.砂砾岩储层孔隙度和渗透率预测方法[J].测井技术,2005,29(3):212-215
    [16]田中元,穆龙新,孙德明等.砂砾岩水淹层测井特点及机理研究[J].石油学报,2002,23(6):50-55
    [17]张宇晓.砂砾岩厚油层的水淹层测井评价技术[J].测井技术,1997,21(4):284-288
    [18]刘敬奎.砾岩储层结构模态及储层评价探讨[J].石油勘探与开发,1983,10(2)
    [19]罗明高.碎屑岩储层结构模态的定量模型[J].石油学报,1991,12(4)
    [20]罗蛰谭,王允诚.油气储集层的孔隙结构[M].科学出版社,1986
    [21]P. Egermann, N. Doerler, M. Fleury, J. Behot, F. Deflandre. Petrophysical Measurements From Drill Cuttings:An Added Value for the Reservoir Characterization Process. SPE88684
    [22]F. Ferrer, M. Vielma, A. Lezama, Permeability Model Calibration and Pore Throat Radius Determination Using Core Analysis and Nuclear Magnetic Resonance Data in Mixed-Lithology Reservoirs, Southwestern Venezuela. SPE108078
    [23]J. Ouzzane, M. Okuyiga, N. Gomaa. Application of NMR T2 Relaxation for Drainage Capillary Pressure in Vuggy Carbonate Reservoirs. SPE101897
    [24]沈平平.油水在多孔介质中的运动理论与实践[M].北京:石油工业出版社,2000
    [25]姚军,赵秀才,衣艳静等.数字岩心技术现状及展望[J].油气地质与采收率,2005,12(6):52-54
    [26]金成志,杨双玲,舒萍等.升平开发区火山岩储层孔隙结构特征与产能关系综合研究[J].大庆石油地质与开发,2007,26(2):38-41
    [27]胡志明.低渗透储层的微观孔隙结构特征研究及应用[D].中国科学院渗流流体力学研究所,2006
    [28]王为民,冯义濂.多孔介质体元内随机运动的核磁共振成像研究[J].波谱学杂志,1995,12(1)
    [29]杨正明,张英芝,郝明强等.低渗透油田储层综合评价方法[J].石油学报,2006,27(2):64-67
    [30]张人雄,高约友,李建民.驱替条件对砂砾岩油藏水驱油效率的影响[J].河南石油,1995,9(4):32-37
    [31]张人雄,李玉梅.砂砾岩油藏油水相对渗透率曲线异常形态成因探讨[J].石油勘探与开发,1996,23(2):79-83
    [32]高约友,张新宁,师树义.双河油田砂砾岩油藏微观水驱油机理[J].河南石油,1996,10(4):14-17
    [33]崔浩哲,姚光庆,周锋德.低渗透砂砾岩油层相对渗透率曲线的形态及其变化特征[J].地质科技情报,2003,22(1):88-91
    [34]沈平平,袁士义,邓宝荣等.化学驱波及效率和驱替效率的影响因素研究[J].石油勘探与开发,2004,31(增刊):1-3
    [35]王瑞飞.低渗砂岩储层微观特征及物性演化研究[D].西北大学,2007
    [36]Barenblatt,G.I.Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[J]. Journal of Applied Mathematical Mechanics,1960,24(5):1286-1303
    [37]J.贝尔著,李竞生译.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983
    [38]J.W.Cooper, Xiuli Wang,and K.K.Mohanty.Non-darcy-flow studies in anisotropic porous media.SPE:57775
    [39]邓英尔,阎庆来,马宝岐.界面分子力作用与渗透率的关系及其对渗流的影响[J],石油勘探与开发,1998,25(2)
    [40]黄延章.低渗透油层渗流机理[M].北京:石油工业出版社,1998
    [41]黄延章.低渗透油层非线性渗流特征[J].特种油气藏,1997,4(1)
    [42]徐绍良,岳湘安,侯吉瑞等.边界层流体对低渗透油藏渗流特性的影响[J],西安石油大学学报,2007,27(2)
    [43]徐绍良,岳湘安.低速非线性流动特性的实验研究[J].中国石油大学学报(自然科学版),2007,31(5)
    [44]李克文.原油与浆体流变学[M].北京:石油工业出版社,1994
    [45]罗哲鸣,原油流变性及测量[M].东营:石油大学出版社,1994
    [46]时宇.海拉尔——塔木查格盆地不同类型油藏储层特征及渗流规律研究[D]中国科学院渗流流体力学研究所,2008
    [47]张英芝,杨铁军,王文昌等.特低渗透油藏开发技术研究[M].北京:石油工业出版社,2004
    [48]徐运亭,徐启,杨正明等.低渗透油藏渗流机理研究及应用[M].北京:石油工业出版社,2006
    [49]王瑞飞.特低渗透砂岩油藏储层微观特征[M].北京:石油工业出版社,2008
    [50]李道品.低渗透砂岩油田开发[M].北京:石油工业出版社,1997
    [51]雷群,杨正明,刘先贵等.复杂天然气藏储层特征及渗流规律研究[M].北京:石油工业出版社,2008
    [52]王为民.核磁共振岩石物理研究及其在石油工业中的应用[D].中国科学院武汉数学与物理研究所.2001
    [53]王为民,郭和坤,叶朝辉.利用核磁共振可动流体评价低渗透油田开发潜力[J].石油学报,2001,22(6)40-44
    [54]杨正明,苗盛,刘先贵等.特低渗透油藏可动流体百分数参数及其应用[J].西安石油大学学报,2007,22.(2):96-99
    [55]李海波.岩心核磁共振可动流体Tz截止值实验研究[D].廊坊:中国科学院研渗流流体力学 研究所,2008
    [56]杨胜来,魏俊之等.油层物理学[M].北京:石油工业出版社,2004
    [57]张绍槐.保护储集层技术[M].北京:石油工业出版社,1993
    [58]裘亦楠.油气储层评价技术[M].北京:石油工业出版社,1997
    [59]黄柱花,杨丽华,张金等.含油岩样注水敏感性试验评价方法研究[J].石油钻采工艺,2000,20(6):55-59
    [60]高博禹,周涌沂,彭仕宓.储层孔隙度应力敏感性研究[J].石油实验地质,2005,27(2):197-201
    [61]李宁,张清秀.裂缝型碳酸盐岩应力敏感性评价室内实验方法研究[J].天然气工业,2000,20(3):30-33
    [62]秦积舜.变围压条件下低渗砂岩储层渗透率变化规律研究[J].西安石油学院学报,2002,17(4):28-35
    [63]王正波,岳相安,韩东等.影响低渗透油藏低速非线性渗流的实验研究[J].矿物学报,2008,28(1):48-54
    [64]刘志远,杨正明,刘学伟等.低渗透油藏非线性渗流实验研究[J].科技导报,27(17):57-60
    [65]李治硕,杨正明,刘学伟等.特低渗透砂砾岩储层核磁共振可动流体参数分析[J].科技导报,2010,28(7):88-90

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700