天线结构位移场与电磁场耦合建模及分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子装备作为机电结合的系统,其机电耦合问题已成为制约电子装备性能提高并影响下一代装备研制的一个瓶颈。本文在多个国家重点项目的支持下,以电子装备中典型案例—反射面天线和平板裂缝天线为研究对象,针对其在分析与设计过程中,存在的机械结构位移场与电磁场的场耦合问题进行了深入研究与探索,主要内容包括:
     (1)针对反射面天线机电场耦合问题,综合考虑结构位移场引起的系统误差,以及制造和装配精度带来的随机误差,针对影响电磁场边界的主反射面变形、馈源位置和指向误差等主要误差,确定其与天线远场方向图的影响关系,建立反射面天线结构位移场与电磁场的场耦合理论模型。针对反射面天线结构和电磁网格不匹配的问题,采用结构和电磁网格矩阵转换的方法进行场耦合模型求解。经3.7米Ku频段卡塞格伦天线变形实验,验证了场耦合理论模型的正确性。
     (2)为降低反射面天线结构变形对电性能影响,提出一种基于机电场耦合理论模型的馈源调整方法。在天线结构设计变量不变的情况下,构建以馈源位置和指向为设计变量,以天线电性能为目标函数的优化设计数学模型,弥补机电分离时馈源调整方法的不足。与最佳吻合面的馈源调整方法相比,可有效改善天线电性能。相关结论可为工程实践提供参考。
     (3)针对平板裂缝天线机电场耦合问题,综合考虑系统误差和随机误差,从天线阵面平面度入手,针对影响电磁场边界的辐射单元(辐射缝)位置偏移、指向偏转,以及结构变形引起的缝电压幅相误差,确定其与天线远场方向图的影响关系,建立平板裂缝天线结构位移场与电磁场的场耦合理论模型。给出场耦合模型的顺序求解方法,并重点说明缝电压误差的计算方法。分别经Ku频段弹载和X频段机载平板裂缝天线的实物实验,验证了场耦合理论模型的正确性。
     (4)就随机振动对机载雷达天线电性能的影响问题进行了研究。首先利用随机振动环境下天线结构响应的位移协方差矩阵,提出天线结构变形的随机样本生成方法,结合平板裂缝天线机电场耦合理论模型分析随机振动对天线电性能的影响。其次,根据天线结构响应的位移和应力分布信息,确定出天线结构的薄弱环节,提出结构改进方案,并分析随机振动对改进模型电性能的影响。数值结果表明改进模型可有效降低增益损失和指向误差,可为机载雷达天线工程设计人员提供参考。
     (5)针对平板裂缝天线焊接后存在的结构变形对电性能影响问题,应用有限元方法和生死单元技术,对天线热加工过程进行数值模拟,分析材料物性参数和温度曲线与焊接后结构残余应力和变形的影响关系,并结合机电场耦合理论模型分析焊接变形对天线电性能的影响。着重讨论温度曲线与焊接变形及其电性能的影响关系,提出了焊接温度曲线的改进方案,降低焊接后的结构残余应力和变形,改善天线电性能。相关结论可为工程实践提供参考。
As a kind of electromechanical system, electronic equipments have serious electromechanical coupled problems, which constrain the improvement of the actual electromechanical equipments and the development of the next generation equipments. With the support of several national key projects, this paper studies the coupled problem between structural displacement field and electromagnetic field, which mainly takes place on the design and analysis period of reflector antennas and planar slotted waveguide array antennas. The modeling and synthesis analyses of the coupled problems are studied in detail. The author’s major contributions on the subject can be summarized as follows:
     (1) The electromechanical coupled field problem of the reflector antenna is studied, and an electromechanical coupled model of the antenna is acquired to relate the structural displacement field with the electromagnetic field. In the model, the structural displacement field is a kind of system errors including the errors of main reflector, the position and orientation of the feed. The random errors from the process of manufacture and assembly of the antenna are considered in the model too. These errors change the amplitude and phase distribute of antenna aperture to affect the far electric field of antenna. For the non-matching grids problem of structure and electromagnetism in the solution of the coupled field model, the transformation matrix between two grids is used. The deformation experiment of a cassegrain reflector antenna with the diameter of 3.7m is accomplished to prove the correctness and effectiveness of the model.
     (2) Basing on the coupled field model, a kind of feed adjusting method is presented to decrease the effect of the distorted reflector antenna on the electrical performances. The method determines the position and orientation of feed by the optimization model with the object of electrical performances in changeless structural design variables, and make up for the methods of feed adjusting when structure and electromagnetic are separate. Compared with the best-fitting parabolic method, this method is good for improving the electrical performances. These results could be referenced in engineering practice.
     (3) The electromechanical coupled field problem of planar slotted waveguide array antenna is studied, and an electromechanical coupled model of the antenna is acquired to relate the structural displacement field with the electromagnetic field. In the model, the structural displacement field includes the errors of the position and orientation of radiating slots. The errors of the slots voltages in the model are from the distorted slotted waveguide array and the process of manufacture and assembly of the antenna. These errors change the amplitude and phase distribute of radiating slots, a simple vectorial superposition is used to calculate far electric field of antenna. The coupled field model can be solved in the sequence way, the computational method of slots voltages is studies in detail. The deformation experiments of two prototype antennas with frequency bands of Ku and X are accomplished to certify the correctness and effectiveness of the model separately.
     (4) The effect of random vibration on the electrical performances in the air-bone antenna is addressed. Firstly, the displacement covariance matrix of the responded antenna structure from random vibration is calculated, the method of making the random samples of the distorted antenna is given according to the matrix, the electrical performances is obtained by the coupled field model of planar slotted waveguide antenna. Secondly, the weak regions are found by the responded distribution of the displacement and stress of the antenna and improved subsequently. Finally, numerical results indicate that the improved model decreases the effect of random vibration on the gain loss and pointing error, and can be referenced in engineering practice.
     (5) The effect of the deformation of antenna structure from the braze welding on the antenna electrical performances is carried out. Firstly, the deformation is analyzed by the finite element method and the technology of birth and death element, the effect of the physical properties of materials and temperature curves in the braze welding on the residual stress and deformation is obtained, the electrical performances are given by the coupled field model of planar slotted waveguide antenna. By analyzing the relations among temperature curves, the deformation and electrical performances, the temperature curve is improved to decrease the residual stress, the deformation and the influence on electrical performances. These results can be referenced in engineering practice.
引文
[1] Zohdi T I. Modeling and simulation of a class of coupled thermo-chemo-mechanical processes in multiphase solids[J]. Computer Methods in Applied Mechanics and Engineering. 2004, 193(6-8): 679-699.
    [2]钟掘,段吉安.现代复杂工业制造系统的若干设计理论问题[J].机械工程学报. 2001(12): 1-6.
    [3]董平川,徐小荷,何顺利.流固耦合问题及研究进展[J].地质力学学报. 1999, 5(1): 17-25.
    [4]叶正寅,张伟伟,史爱明.流固耦合力学基础及其应用[M].哈尔滨:哈尔滨工业大学出版社, 2000.
    [5] Voeller J. 25 technologies to watch[J]. Civil Engineering. 2001, 71: 64-69.
    [6]宋少云.多场耦合问题的协同求解方法研究与应用[D].武汉:华中科技大学, 2007.
    [7]宋少云.多场耦合问题的分类及其应用研究[J].武汉工业学院学报. 2008, 27(3): 46-49.
    [8] Boivin C, Ollivier-Gooch C. A toolkit for numerical simulation of PDEs. II. Solving generic multiphysics problems[J]. Computer Methods in Applied Mechanics and Engineering. 2004, 193(36-38): 3891-3918.
    [9] Hameyer K, Driesen J, Gersem D, et al. The classification of coupled field problems[J]. IEEE Transaction on Magnetics. 1999, 35(3): 1618-1621.
    [10]宋少云.多场耦合问题的建模与耦合关系的研究[J].武汉工业学院学报. 2005(04): 21-23.
    [11]宋少云,李世其.多场问题求解策略研究[Z]. 2006.
    [12]孙道恒. MEMS耦合场分析与系统级仿真[J].中国机械工程. 2002, 13(9): 765-768.
    [13] Matthies H G, Niekamp R, Steindorf J. Algorithms for strong coupling procedures[J]. Computer Methods in Applied Mechanics and Engineering. 2006, 195(17-18): 2028-2049.
    [14] Felippa C A, Park K C. Staggered transient analysis procedures for coupled mechanical systems: Formulation[J]. Computer Methods in Applied Mechanics and Engineering. 1980, 24(1): 61-111.
    [15]赖远明.寒区隧道温度场、渗透场和应力场耦合问题的非线性分析[D].兰州:中国科学院寒区旱区环境与工程研究所, 1999.
    [16] Sigmund O. Design of multiphysics actuators using topology optimization - Part II: Two-material structures[J]. Computer Methods in Applied Mechanics and Engineering. 2001, 190(49-50): 6605-6627.
    [17] Sigmund O. Design of multiphysics actuators using topology optimization - Part I: One-material structures[J]. Computer Methods in Applied Mechanics and Engineering. 2001, 190(49-50): 6577-6604.
    [18]王艾伦,钟掘.复杂机电系统的全局耦合建模方法及仿真研究[J].机械工程学报. 2003(04): 1-5.
    [19]邱家俊.机电分析动力学[M].北京:科学出版社, 1992.
    [20] Project Summary. High performance simulation of multiphysics problems[R]. http://titan.colorado.edu/CF.d/.
    [21]郑晓静.电磁固体力—磁—电作用的耦合效应[J].兰州大学学报. 1999(03): 17-21.
    [22] Belytschko T, Yen H J, Mullen R. Mixed methods for time integration[J]. Computer Methods in Applied Mechanics and Engineering. 1979, 17-18: 259-275.
    [23] Hughes T J R, Liu W K. Implicit-Explicit Finite Elements in Transient Analysis: Stability Theory[J]. Journal of Applied Mechanics. 1978, 45(2): 371-374.
    [24] Hughes T J R, Liu W K. Implicit-Explicit Finite Elements in Transient Analysis: Implementation and Numerical Examples[J]. Journal of Applied Mechanics. 1978, 45(2): 375-378.
    [25] Hughes T J R, Pister K S, Taylor R L. Implicit-explicit finite elements in nonlinear transient analysis[J]. Computer Methods in Applied Mechanics and Engineering. 1979, 17-18: 159-182.
    [26] Park K C, Park Y H. Partitioned Component Mode Synthesis via A Flexibility Approach[J]. AIAA Journal. 2004, 42(6): 1236-1245.
    [27] Felippa C A, Deruntz J A. Finite element analysis of shock-induced hull cavitation[J]. Computer Methods in Applied Mechanics and Engineering. 1984, 44(3): 297-337.
    [28] Felippa C A, Park K C, Farhat C. Partitioned analysis of coupled mechanical systems[J]. Computer Methods in Applied Mechanics and Engineering. 2001, 190(24-25): 3247-3270.
    [29] Lawrence C. An overview of three approaches to multidisciplinary aeropropulsion simulations[J]. NASA TM-107443. 1997.
    [30] Ansys Gui Help Manual. ANSYS MultiPhysics Software V10.0[DB/CD]. ANSYS公司, 2005.
    [31] J W A. FEMLAB 3: Multiphysics modeling, scientific computing & instrumentation[DB/CD]. ABI / INFORM Trade & Industry, 2004.
    [32]北京飞箭软件有限公司. http://www.fegensoft.com/fepg.htm[DB/CD].
    [33] Dughiero F. Numerical and experimental analysis of an elector-thermal coupled problem for transverse flux induction heating equipment[J]. IEEE Transaction on Magnetics. 1998, 34(5): 35-46.
    [34] Yaralioglu G G, Ergun A S, Bayram B, et al. Calculation and measurement of electromechanical coupling coefficient of capacitive micromachined ultrasonic transducers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 2003, 50(4): 449-456.
    [35] Amari S, Vahldieck R, Bornemann J. Analysis of propagation in corrugated waveguides of arbitrary corrugation profile[C]. IEEE Antennas and Propagation Society International Symposium: 1999.
    [36] Rahmat-Samii Y, Wu S C. Average pattern and beam efficiency characterization of reflector antenna with random surface errors[J]. Journal of Electromagnetic Waves and Applications. 1991, 5(10): 1069-1087.
    [37] Jahagirdar D R. Effects of tolerances on sidelobe levels in slotted waveguide arrays[C]. IEEE Antennas and Propagation Society International Symposium : 2004. 3277-3280.
    [38] Wang H S C. Performance of phased-array antennas with mechanical errors[J]. IEEE Transactions on Aerospace and Electronic Systems. 1992, 28(2): 535-545.
    [39] Bahadori K, Rahmat-Samii Y. Characterization of effects of periodic and aperiodic surface distortions on membrane reflector antennas[J]. IEEE Transactions on Antennas and Propagation. 2005, 53(9): 2782-2791.
    [40] Schippers H, Van Tongeren J H, Knott P, et al. Vibrating antennas and compensation techniques Research in NATO/RTO/SET 087/RTG 50[C]. IEEE Aerospace Conference: 2007.
    [41] Knott P. Deformation and vibration of conformal antenna arrays and compensation techniques[R]. NATO/OTAN, RTO-MP-AVT-141.
    [42] Pham T H, Wendling P F, Salon S J, et al. Transient finite element analysis for an induction motor with external circuit connections and electromechanical coupling[J]. IEEE Transactions on Energy Conversion. 1999, 14(4): 1407-1412.
    [43] Aderman H M, Padula S L. Integrated thermal-structural- electromagnetic design optimization of large space antenna reflectors[R]. NASA-TM-87713, 1986.
    [44] Price D C. A review of selected thermal management solutions for militaryelectronic systems[J]. IEEE Transactions on Components and Packaging Technologies. 2003, 26(1): 26-39.
    [45] Liu J S, Hollaway L. Integrated structure-electromagnetic optimization of large reflector antenna systems[J]. Structural and Multidisciplinary Optimization. 1998, 16(1): 29-36.
    [46]徐国华,施浒立.双反射面天线表面形状预优设计[J].西北电讯工程学院学报. 1984(04): 13-19.
    [47] Duan B Y, Qi Y H, Xu G H, et al. Study on optimization of mechanical and electronic synthesis for the antenna structural system[J]. Mechatronics. 1994, 4(6): 553-564.
    [48]刘京生,曾余庚.天线副面(馈源)支撑结构的机电综合优化设计[J].通信学报. 1988(6): 60-63.
    [49]徐国华,王五兔.反射面变形对天线辐射方向图的影响[J].电子学报. 1994, 22(12): 46-49.
    [50] Su X Y, Duan B Y. Application of steawart platform in the next generation large radio telescope[J]. International Journal of Robotic Systems. 2000, 17(7): 375-383.
    [51] Ruze J. Antenna tolerance theory-A review[J]. Proceedings of the IEEE. 1966, 54(4): 633-640.
    [52] Vu T B. The effect of aperture errors on the antenna radiation pattern[J]. Proceedings of the IEEE. 1969, 116: 195-202.
    [53] Rahmat-Samii Y. An efficient computational method for characterizing the effects of random surface errors on the average power pattern of reflectors[J]. IEEE Transactions on Antennas and Propagation. 1983, 31(1): 92-98.
    [54] Rahmat-Samii Y, Hoferer R A, Mosallaei H. Beam efficiency of reflector antennas: the simple formula[J]. IEEE Antennas and Propagation Magazine. 1998, 40(5): 82-87.
    [55] Wu S C, Rahmat-Samii Y. Average pattern and beam efficiency characterization of reflector antennas with random surface errors[J]. Journal of Electromagnetic Waves and Applications. 1991, 5(10): 1069-1087.
    [56] Sinton S, Rahmat-Samii Y. Random surface error effects on offset cylindrical reflector antennas[J]. IEEE Transactions on Antennas and Propagation. 2003, 51(6): 1331-1337.
    [57] Rahmat-Samii Y. Effects of deterministic surface distortions on reflector antenna performance[J]. Annals of Telecommunications. 1985, 40(7): 350-360.
    [58]王从思,段宝岩,仇原鹰.变形面天线的分块Coons拟合方法[J].系统工程与电子技术. 2005, 27(11): 1822-1825.
    [59]王从思,段宝岩,仇原鹰.大型天线变形反射面的新拟合方法[J].西安电子科技大学学报. 2005(06): 839-843.
    [60]王从思,段宝岩,仇原鹰.天线表面误差的精确计算方法及电性能分析[J].电波科学学报. 2006, 21(3): 403-409.
    [61]朱钟淦,叶尚辉.天线结构设计[M].北京:国防工业出版社, 1980.
    [62] Joo-Wan K, Byung S K, Sangwook N, et al. Computation of the average power pattern of a reflector antenna with random surface errors and misalignment errors[J]. IEEE Transactions on Antennas and Propagation. 1996, 44(7): 996-999.
    [63]漆一宏.变形反射面天线的效率[J].中国空间科学技术. 1992, 4(2): 1-4.
    [64]徐国华,漆一宏,段宝岩, et al.变形反射面天线效率与馈源相位中心的研究[J].西安电子科技大学学报. 1990, 17(4): 63-70.
    [65]漆一宏,吴鸿适.反射面天线馈源的混合相位中心[J].电子学报. 1992, 20(9): 22-26.
    [66]魏文元,宫德明,陈必森.天线原理[M].北京:国防工业出版社, 1985.
    [67]王从思,段宝岩,仇原鹰. Coons曲面结合B样条拟合大型面天线变形反射面[J].电子与信息学报. 2008, 30(1): 233-237.
    [68]兰佩锋,仇原鹰,邵晓东.一种反射面天线机电耦合分析的新方法[J].系统工程与电子技术. 2009, 31(2): 296-299.
    [69]李鹏,张志华,王伟, et al.基于不同网格形式的反射面天线方向图分析[J].系统工程与电子技术. 2009, 31(2): 347-351.
    [70]李鹏,郑飞,季祥.大型宽带反射面天线的机电耦合分析[J].西安电子科技大学学报. 2009, 38(3): 473-479.
    [71]王伟,李鹏,宋立伟.面板位置误差对反射面天线功率方向图的影响机理[J].西安电子科技大学学报. 2009, 36(4): 708-713.
    [72]漆一宏,李映红,徐国华, et al.大型反射面天线的系统误差补偿法综述[J].中国空间科学技术. 1991(06): 27-31.
    [73] Rahmat-Samii Y. Array feeds for reflector surface distortion compensation: concepts and implementation[J]. IEEE Antennas and Propagation Magazine. 1990, 32(4): 20-26.
    [74] Bailey M C. Determination of array feed excitation to improve performance of distorted or scanned reflector antennas[C]. Antennas and Propagation Society International Symposium: 1991.
    [75] Rahmat-Samii Y. Novel array-feed distortion compensation techniques for reflector antennas[J]. IEEE Aerospace and Electronic Systems Magazine. 1991, 6(6): 12-17.
    [76] Shenheng X, Rahmat-Samii Y, Imbriale W A. Subreflectarrays for ReflectorSurface Distortion Compensation[J]. IEEE Transactions on Antennas and Propagation. 2009, 57(2): 364-372.
    [77] Ruze J. Pattern degradion of space fed phased arrays[R]. Project report SBR-1, M.I.T. Lincoln Laboratory, Lexington, MA, 1979.
    [78] Wang H S C. A comparison of the performance of reflector and phased-array antennas under error conditions[C]. IEEE Aerospace Applications Conference : 1991.
    [79] Wang H S C. Performance of phased-array antennas with mechanical errors[J]. IEEE Transactions on Aerospace and Electronic Systems. 1992, 28(2): 535-545.
    [80] Wang H S C. Performance of phased array antennas under error conditions[C]. IEEE Aerospace Applications Conference: 1989.
    [81] Hsiao J K. Array sidelobes, error tolerance, gain and beamwidth[R]. NRL Report 8841, 1984.
    [82] Jeongheum L, Yongbeum L, Hyeongdong K. Decision of error tolerance in array element by the Monte Carlo method[J]. IEEE Transactions on Antennas and Propagation. 2005, 53(4): 1325-1331.
    [83] Stevenson A F. Theory of slots in rectangular waveguides[J]. Journal of Applied Physics. 1948, 19(1): 24-38.
    [84] Oliner A. The impedance properties of narrow radiating slots in the broad face of rectangular waveguide: Part I--Theory[J]. IEEE Transactions on Antennas and Propagation. 1957, 5(1): 4-11.
    [85] Vu Khac T, Carson C. Impedance properties of a longitudinal slot antenna in the broad face of a rectangular waveguide[J]. IEEE Transactions on Antennas and Propagation. 1973, 21(5): 708-710.
    [86] Hung Y. Impedance of a narrow longitudinal shunt slot in a slotted waveguide array[J]. IEEE Transactions on Antennas and Propagation. 1974, 22(4): 589-592.
    [87] Josefsson L. Analysis of longitudinal slots in rectangular waveguides[J]. IEEE Transactions on Antennas and Propagation. 1987, 35(12): 1351-1357.
    [88] Elliott R, Kurtz L. The design of small slot arrays[J]. IEEE Transactions on Antennas and Propagation. 1978, 26(2): 214-219.
    [89] Elliott R. An improved design procedure for small arrays of shunt slots[J]. IEEE Transactions on Antennas and Propagation. 1983, 31(1): 48-53.
    [90] Elliott R, O'loughlin W. The design of slot arrays including internal mutual coupling[J]. IEEE Transactions on Antennas and Propagation. 1986, 34(9): 1149-1154.
    [91]王伟,吕善伟.单脉冲平面缝隙阵列天线设计和误差分析[J].无线电工程. 1996, 26(2): 58-64.
    [92]王伟,吕善伟.单脉冲平面阵列天线误差分析[J].宇航学报. 1996, 19(4): 91-96.
    [93] Gulick J J, Elliott R S. The design of linear and planar arrays of waveguide-fed longitudinal slots[J]. Electromagnetics. 1990, 10(4): 327-347.
    [94] Li J Y, Li L W, Gan Y B. Method of moments analysis of waveguide slot antennas using the EFIE[J]. Journal of Electromagnetic Waves and Applications. 2005, 19: 1729-1748.
    [95]周小林.毫米波引信天线的仿真设计与误差分析[J].制导与引信. 2006, 27(4): 28-31.
    [96] Wang C, Duan B, Zhang F, et al. Analysis of performance of active phased array antennas with distorted plane error[J]. International Journal of Electronics. 2009, 96: 549-559.
    [97] Congsi W, Hong B, Fushun Z, et al. Analysis of electrical performances of planar active phased array antennas with distorted array plane[J].系统工程与电子技术(英文版). 2009, 20(4): 726-731.
    [98] Wang C S, Duan B Y, Zhang F S, et al. Coupled structural-electromagnetic-thermal modelling and analysis of active phased array antennas[J]. IET Microwaves, Antennas & Propagation. 2010, 4(2): 247-257.
    [99]余伟,顾卫军,郭先松.平板裂缝天线子阵形变后的方向图分析[J].现代雷达. 2008, 30(12): 70-73.
    [100] Peter T B, Bela L, Jozsef P. A Coupled analytical–finite element technique for the calculation of radiation from tilted rectangular waveguide slot antennas[J]. IEEE Transaction on Magnetics. 2008, 44(6): 1666-1669.
    [101] Jacob C C, Johan J, Derek A M. Off-center-frequency analysis of a complete planar slotted-waveguide array consisting of subarrays[J]. IEEE Transaction on Antennas and Propagation. 2000, 48(11): 1746-1755.
    [102]王芳林,高伟,陈建军.风荷激励下天线结构的随机振动分析[J].工程力学. 2006, 23(2): 168-172.
    [103]马娟,陈建军.模糊随机桁架结构的平稳随机振动分析[J].哈尔滨工程大学学报. 2007, 28(4): 440-446.
    [104] Lei Z, Qiu C. Neumann dynamic stochastic finite element method of vibration for structures with stochastic parameters to random excitation[J]. Computers and Structures. 2000, 28(4): 440-446.
    [105]王敏,王小静.弹载天线随机振动的仿真分析[J].制导与引信. 2007, 28(2): 57-60.
    [106]张瑜.机载天线结构的疲劳寿命分析[D].西安电子科技大学, 2008.
    [107]黄莉榕.机载环境下雷达波导的疲劳特性分析[D].南京理工大学, 2010.
    [108]张小安,贾建援.火炮随机激励对天线指向精度的影响[J].电子机械工程. 2004, 20(4): 1-3.
    [109]吴凤高.天线座结构设计[M].西安:西北电讯工程学院出版社, 1986.
    [110]宋立伟,段宝岩,郑飞, et al.表面误差对反射面天线电性能的影响[J].电子学报. 2009, 37(3): 552-556.
    [111]刘少东,焦永昌,张福顺.表面误差对侧馈偏置卡塞格伦天线辐射场的影响[J].西安电子科技大学学报. 2005, 32(6): 865-868.
    [112]张景惠,王超.工程随机振动理论[M].西安:交通大学出版社, 1988.
    [113]李直,何章峰,左防震.某共口径平板天线制造技术研究[J].电子机械工程. 2009, 25(6): 31-34.
    [114]余红华.铝钎焊技术在电子产品中的应用[J].电子机械工程. 2003, 19(3): 55-59.
    [115]黄剑波.机载雷达平板裂缝天线盐浴钎焊工艺研究[D].南京理工大学, 2010.
    [116]蒋文春,巩建鸣,陈虎, et al.不锈钢板翅结构钎焊残余应力三维数值模拟[J].江苏大学学报. 2007, 28(3): 224-227.
    [117]陶涛.铝合金组件钎焊变形及应力有限元分析[D].西南交通大学, 2008.
    [118]周帼彦,涂善东,轩福贞, et al.钎焊板翅结构残余应力的分布与优化研究[J].核动力工程. 2010, 31(4): 101-105.
    [119]郑卜祥,闫志鸿.铝合金结构件焊接变形数值模拟的研究现状及发展[C].北京,中国:轻金属与高强材料焊接国际论坛, 2008.
    [120] Riccardo M, Francesco C, Paolo G. Residual stress brazing process induced in hybrid package for ISP applications[J]. Acta Astronautica. 2010, 66: 897-913.
    [121] Farrell L D. Calculating residual manufacturing stresses in braze joints using ANSYS[J]. IEEE Transaction on Electron Devices. 1987, 34(5): 1214-1215.
    [122] Wikander L, Karlsson L, Nasstrom M. Finite element simulation and measurement of welding residual stresses[J]. Modelling and Simulation in Materials Science and Engineering. 1994, 2(4): 845-864.
    [123] Karlsson R I, Josefson B L. Three-dimensional finite element analysis of temperatures and stresses in a single-pass butt-welded pipe[J]. Journal of Pressure Vessel Technology. 1990, 112(1): 76-84.
    [124] Masubuchi K. Prediction and control of residual stresses and distortion in welded structure[J]. Transaction of JWRI. 1996, 25(2): 55-67.
    [125]田昕.面向焊接顺序优化的焊接变形仿真技术基础研究[D].南京航空航天大学, 2009.
    [126]王涛.多层多道焊接的有限元模拟[Z].南宁,中国:第五届全国计算机在焊接中的应用学术与技术交流会, 2008.
    [127]于文花,朱颖,康慧, et al.合金元素Cu,Si,Ni对Al基钎料的影响[J].焊接技术. 2003, 22(2): 33-35.
    [128]邹家生,罗新锋,赵宏权. Al-Si-Cu-Zn钎料性能研究[J].焊接技术. 2007(01): 50-52.
    [129]陆洋,王泽华.铝合金钎焊用钎料的发展动态[J].机车车辆工艺. 2007(01): 1-4.
    [130]杨静,邱绍宇,朱金霞, et al.低熔点Ag-Al-Sn合金钎料的钎焊工艺性能研究[J].核动力工程. 2005(02): 144-147.
    [131]杨静,邱绍宇,朱金霞, et al.低熔点Ag-Al-Mn-Si合金钎料的钎焊工艺性能研究[J].核动力工程. 2005(03): 259-263.
    [132]周健,孙扬善,薛烽.低熔点Sn-Zn-Bi无铅钎料的组织和性能[J].金属学报. 2005(07): 743-749.
    [133]李培,路文江,俞伟元, et al.低熔点铝基复合钎料的制备及其性能研究[J].电焊机. 2009(11): 22-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700