深部大理岩的加卸载力学特性及多场耦合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深埋地下工程岩体由于所处的特殊的“三高”复杂力学环境,即高地应力、高地温、高岩溶水压,使得其与浅部岩体相比具有明显不同的工程响应特征。深埋上千米的工程,在开挖、施工与运营的过程中,往往带来很多难以预测的问题,如岩爆、瓦斯突出、突水等一系列灾害性事故频频发生。为了避免突发性地质灾害对人民生命和财产造成危害,同时也为了尽量减少重大灾害的发生,必须对深埋岩体在开挖时引起力学特征进行深入细致的研究,分析研究深部岩石复杂的赋存地质环境,在高围压下的加卸载力学特性以及多场耦合模型。这样使得深部岩体工程面临着严峻的挑战,同时也是许多学者和工程技术人员进行科学研究的热点问题之一
     论文在研究“深部”及“深部工程”概念的基础上,收集大量国内深部工程的资料文献,参照Hoek-Brown的方法对深部岩体地应力特征进行了初步的分析,回归分析了深部岩体垂直应力随埋深的分布规律;最大和最小水平主应力随埋深的分布规律以及侧压力系数随埋深的分布规律等。分析了深部岩体结构面及二次应力分布的主要特征,并制定了相应的室内试验计划。
     从位于雅砻江上的锦屏二级水电站引水隧洞现场取得了白山组大理岩,岩石被加工成了标准的圆柱形试件(直径50mm,长100mm)。采用MTS815.03型岩石力学试验机系统对大理岩试样进行了一系列的常规三轴加载试验和卸围压试验。首先,进行了常规单轴试验和高围压下的三轴压缩试验,试验结果为后续的三轴卸荷试验的设计提供了指导和依据。其次,进行了不同初始卸荷围压下的三轴峰前、峰后卸荷试验。试验的卸荷方式采取恒定轴压、卸围压的方式。对三轴压缩试验和三轴卸荷试验的全应力应变曲线以及岩样破坏特征的进行了对比分析。
     在多场耦合理论方面,从应力和应变的角度研究了岩石渗透性演化规律,考虑岩石损伤对渗流场和应力场的影响,以弹性多孔介质孔隙度与体积应变的关系式为桥梁,建立深部岩石破裂过程的应力场、渗透场、损伤场相耦合的力学模型。根据锦屏二级水电站深埋引水隧洞地质条件以及室内试验相关结果,运用有限元分析方法研究了白山组大理岩地段引水隧洞的开挖及围岩的受力变形特征,计算主要考虑了常规的隧洞开挖支护计算工况以及考虑渗流应力耦合的隧洞开挖支护计算工况,进行了对比分析并得到了相关结论和工程建议。
The engineering response characters of the deep rock masses are obviously distinct from that of the shallow part because of its complicated mechanical environment, that mean high in-situ geostress, high temperature and extra-high hydraulic pressure. There are a lot of doubtful questions, such as rock burst, water inrush and gas burst, in the process of construction, excavation and operation in deep rock engineering. In order to avoid the burst geological disaster and reduce the harm to the people's life and the property, we have to do meticulous research in the mechanical characteristics of deep rock mass in the process of excavation. It is also essential to study the occurrence regularity of geological environment in deep rock, the load-unload mechanical behaviors of deep rock mass under the effect of high confining pressure, and the multi-filed coupling model. Deep rock mass has become one of the most important issues for many scholars and engineers, that is also a rigorous challenge for the current scientific research.
     Based on the research of the concept of "deep stratum" and "deep project", a large number of domestic document literatures about deep engineering have been gathered. Based on this, a preliminary analysis about the characteristics of geostress in deep stratum has been made referring the method of Hoek-Brown. Some regression analysis of the geostress in deep rock has been done, such as the distribution of the vertical geostress varying with depth, the distribution of maximum and minimum horizontal geostress varying with the depth and the distribution of the lateral pressure coefficient with the depth, etc. In addition, the distribution characteristics of the structural surface and the quadratic stress field in deep rock have been studied. The corresponding laboratory test plan has been designed for the paper.
     The typical Baishan marble rocks were obtained from headrace tunnel in Jinping II Hydropower Station lying on Yalong River and they were prepared as standard columniform specimens of 50mm in diameter and 100mm in length. A series of tri-axial tests under loading and unloading conditions are carried out by MTS815.03 rock mechanics test system for the marble samples. First, both conventional uniaxial and tri-axial tests under high confining pressure are conducted. The experimental results can provide scientific evidence for the design of tri-axial unloading tests. Second, tri-axial pre-peak and post-peak unloading tests are conducted under different initial confining pressure. The unloading mode is keeping axial stress and unloading confining pressure. The complete stress-strain curves and the rock sample failure characteristics are studied and compared between tri-axial compression and unloading confining pressure tests.
     In the theory of multi-filed coupling aspect, the permeability evolvement law of rock is studied from the point of stress and strain. The connection of the damage of rock mass with stress and seepage were analyzed. Take the relationship of the porosity and volumetric strain in elastic porous medium as a bridge, the stress-seepage-damage coupling model in the fracture process of deep rock was obtained. According to the geological condition of the deep-lying headrace tunnel in JinpingⅡHydropower Station and the related results from the laboratory tests, the excavation of the headrace tunnel in Baishan marble and the stress and deformation performance of the adjoining rock are analyzed by the finite element method. The conventional condition of the excavation process with support and the stress-seepage coupling condition are considered in the calculation. Some conclusions and engineering proposals are put forward through the comparative analysis in the last.
引文
[1]谢和平,彭苏萍,何满潮.深部开采基础理论与工程实践[M].北京:科学出版社,2006.
    [2]朱珍德,郭海庆.裂隙岩体水力学基础[M].北京:科学出版社,2007.
    [3]郭海庆.岩质坝基渗流、流变及其耦合的分析理论与方法研究.河海大学博士后研究报告,2005.
    [4]何满潮,吕晓俭.深部工程围岩特性及非线性动态力学设计理念.岩石力学与工程学报,2002,21(8):1215-1224.
    [5]钱七虎.深部岩体工程响应的特征科学现象及“深部”的界定.东华理工学院学报.2004,27(1):1-5.
    [6]朱焕春,陶振宇.不同岩石中地应力分布.地震学报,1994,16(1):49-63.
    [7]白世伟,李光煜.二滩水电站坝区岩体应力场研究.岩石力学与工程学报,1982,1(1):45-46.
    [8]Stacey T R, Wesseloo J. The in-situ stress regime in South Africa//Vouille G, Berest P. Proceedings of the 9th International Congress on Rock Mechanics. Rotterdam:A. A. Balkema Pubishers,1999:1189-1192.
    [9]Fuchs K,Muller B. World stress map of the earth:A key to tectonic Processes and technological applications. Natruwissen-schaften,2001,88:357-371.
    [10]谢和平;冯夏庭.灾害环境下重大工程安全性的基础研究.北京:科学出版社,2009,20-21.
    [11]谢富仁,陈群策,崔效锋.中国大陆地壳应力环境研究.北京:地质出版社,2003,24-40.
    [12]ZhangWohua, Valliapan S.Analysis of randam anisotropic damage mechanics problems of rockmass.Rocking,1990,23:91-112.
    [13]Cleary M. Effects of depth on rock fracture. In:Maury and Foumlaintraux eds. Rock at Great Depth. Rotterdam:AA Balkema,1989,7:1153-1163.
    [14]Gibowicz S J, Kijko A. An introduction to mining seismology. San Diego:Academic Press, 1994,12:399-411.
    [15]Singh J et al. Strength of rocks at depth. In:Maury & Fourmaintraux eds. Rock at great depth. Rotterdam:A A Balkema,1989,7:37-44.
    [16]周小平,钱七虎,杨海清.深部岩体强度准则.岩石力学与工程报,2008,27(1):117-123.
    [17]Karman T Von. Festigkeitsversuche unter allseitigem Druck zeit d Ver Deutscher Ing,1911, 55:1749-1757.
    [18]Heard H C. Transition from brittle fracture to ductile flow in Solenhofen limestone as a function of temperature, confining pressure, and interstitial fluid pressure. Bull Geol Soc Am,1960,79:193-226.
    [19]Kwasniewski M A. Laws Of brittle failure and of B-D transition in sandstone. In:Maury and Fourmaintraux eds. Rock at Great Depth. Rotterdam:A A Balkema,1989,45-58.
    [20]Hoek E, Brown E T.Strength of jointed rock masses.Geotechnique,1983,33 (3):157-223.
    [21]J J Riedel,J.F.Labuz.Propagation of a shear band sandstone. Int. J. Numer. Anal. Meth. Geomech,2006,1:1-30.
    [22]JAEGER J C.Brittle fracture of rocks[C]//Proceedings of the Eighth Symposium on Rock Mechanics.Baltimore:Port City Press,1967:3-57.
    [23]哈秋舲.加载岩体力学与卸荷岩体力学.岩土工程学报,1998.20(1):114.
    [24]李建林.卸荷岩体力学理论与应用.北京:中国建筑工业出版社,1999.
    [25]熊诗湖, 周火明.三峡永久船闸边坡岩体在复杂应力路径下的变形特性.岩石力学与工程学报,2006,25(Supp.2):3636-3641.
    [26]许东俊,耿乃光.岩体变形和破坏的各种应力途径.岩土力学,1986,7(2):17-25.
    [27]尤明庆,华安增.应力路径对岩样强度和变形特性的影响.岩土工程学报,1998,20(5):101-104.
    [28]Brace W F, Walsh J B, Frangos W T. Permeability of granite under high pressure. J.Geophys. Res.,1978,73(6):2225-2236.
    [29]Gangi A F. Variation of whole and fractured porous rock permeability with confining pressure. Int.J.Rock Mech. Min.Sci.&Geomech.Abstr,1978,15(5):249-257.
    [30]Walsh C B. Effect of Pore Pressure and Confining Pressure on Fracture Permeability. Int.J.Rock Mech. Min.Sci.&Geomech.Abstr,1981,18:429-435.
    [31]C.Louis. Rock Hydraulics in Rock Mechanics. Edited by L.Miller, Verlay Wien New York, 1974,254-325.
    [32]R.L.Kranz et al. The Permeability of Whole and Jointed Barre Granite. Int.J.Rock Mech. Min. Sci.&Geomech.Abstr.1979,16(4):225-234.
    [33]Snow D T. Rock fracture spacing, openings and porosities. J. Soil Mech. Found. Div., Proc. ASCE,1968,94(SM1):73-91.
    [34]F.O.Jones.A Laboratory Study of the Effects of Confining Pressure on Fracture Flow and Storage Capacity in Carbonate Rock.J.Petrol.Technol,1975,21:1714-1727.
    [35]仵彦卿,柴军瑞.裂隙网络岩体三维渗流场与应力场耦合分析.西安理工大学学报,2000,16(1):1-5.
    [36]周创兵,熊文林.不连续面渗流与变形耦合的机理研究.水文地质工程地质,1996,23(3):14-17.
    [37]刘继山.单裂隙受止应力作用时的渗流公式.水文地质工程地质,19887,4(2):22-28.
    [38]田开铭,万力,田际平.岩石渗透性随灰岩埋深的各向异性变化律.地质学报,2003,1.
    [39]刘泉声,张程远,刘小燕.DECOVALEX_IV TASK_D项目的热-水-力耦合过程的数值模拟.岩石力学与工程学报,2006,25(4):709-720.
    [40]张强勇,刘大文,蔡德文.渗流耦合法分析紫坪铺导流洞边坡整体稳定性.人民黄河,2007,296(11):73-77.
    [41]Krajcinovic D.Continuum damage mechanics. Applied Mech. Rev,1984,37(1):879-896
    [42]Kawamot T, IchikawaY, KyoyaT. Deformation and fracturing behavior of discontinuous rockmass and damage mechanics theory. Int. J. Num. Analy. Geo,1998,12:1-30.
    [43]周维垣,杨若琼,吴澎.节理岩体的损伤力学模型.沈阳:东北工学院出版社,1989.
    [44]哈秋龄,李建林,张永兴,刘国霖.节理岩体卸荷非线岩体力学.北京:中国建筑工业出版社,1998.
    [45]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学.北京:科学出版社,1995.
    [46]李新平,朱维中.多裂隙岩体的损伤断裂分析与工程应用.岩士工程学报,1992,14(4):1-8.
    [47]沈新普,慕容子,徐秉业.岩土料弹塑性正交异性损伤耦合本构理论.应用数学和力学,2001,22(9):927-932.
    [48]单仁亮,薛友松,张倩.岩石动态破坏的时效损伤本构模型.岩石力学与工程学报,2003,22(11):1771-1776.
    [48]Zhang S, Cox S F, Paterson M S. The influence of room temperature deformation on porosity and permeability in calcite aggregates. J. Geophys. Res.,1994,99:15761-15775.
    [50]李术才,李树忱,朱维中.裂隙水对节理岩体裂隙扩展影响的CT实时扫描实验研究.岩石力学与工程学报,2004,23(21):3584-3590.
    [51]Souley M, Homand F, Pepa S et al. Damage-induced permeability chages in granite:a case example at the URL in Canada. Int.J.Rock Mech. Min.Sci.,2001,38:297-310.
    [52]盛金昌,速宝玉,王媛.裂隙岩体渗流-弹塑性应力耦合分析.岩石力学与工程学报,1999,19(3):177-181.
    [53]黄润秋,王贤能,陈龙生.深埋隧道涌水过程的水力劈裂作用分析.岩石力学与工程学报,2000,9:573-576.
    [54]朱珍德,胡定.裂隙水压力对岩体强度的影响.岩土力学,2000,21(1):64-67.
    [55]Thallak S, Rothenbury L, Dusseault M. Simulation of multiple hydraulic fractures in a discrete element system. Rock mechanics as a multidisciplinary science Roegiers (eds.) Balkema Rotterdam ISBN 90 6191 194X, Proceedings of the 32nd U.S. Symposium: 1991:271-280.
    [56]谢和平,彭苏萍,何满潮.深部开采基础理论与工程实践[M].北京:科学出版社,2006.
    [57]何满潮,吕晓俭,景海河.深部工程围岩特性及非线性动态力学设计理念[J].岩石力学与工程学报,2002,21(8):1215-1224.
    [58]刘振宽.松辽盆地和海拉尔盆地裂缝储层地震预测研究[D].北京:中国地质大学2006.
    [59]黄润秋,许模,陈剑平,等.复杂岩体机构精细描述及其工程应用[M].北京:科学出版社,2004.
    [60]秦启荣.深部岩体结构面预测及其石油井壁工程稳定性应用[D].成都:成都理工大学,2001.
    [61]梁利喜.深部应力场系统性评价与油气井壁稳定性分析研究[D].成都:成都理工大学,2008.
    [62]尤明庆,苏承东,徐涛.岩石试样的加载卸载过程及杨氏模量[J].岩士工程学报,2001,23(5):588-592.
    [63]尤明庆,华安增.岩石试样单轴压缩的破坏形式与承载能力的降低[J].岩石力学与工程学报,1998,17(3):292-296.
    [64]尤明庆.基于黏结合摩擦特性的岩石变形与破坏的研究[J].地质力学学报,2005,13(3):286-292.
    [65]Jones F 0. A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate tocks[J]. J Petrol Tech,1975,9(2): 21-27.
    [66]仵彦卿,张倬元.岩体水力学导论[M].成都:西南交通大学出版社,1994.
    [67]陈祖安,伍向阳,孙德明,杨伟.砂岩渗透率随静压力变化的关系研究[J].岩石力学与工程学报,1995,14(2):155-159.
    [68]白矛,刘天泉.孔隙裂隙弹性理论及应用导论[M].北京:石油工业出版社,1999.
    [69]李世平,李玉寿,吴振业.岩石全应力应变过程对应的渗透率-应变方程[J].岩土工程学报,1995,17(2):13-19.
    [70]Liu J. Linking stress-dependent effective porosity and hydraulic conductivity fields to RMR[J]. Int J Rock Mech Min Sci & Geomech,1999,36(2):581-589.
    [71]杨天鸿,唐春安,朱万成,等.岩石破裂过程中渗流与应力耦合分析[J].岩土工程学报,2001,23(4):489-493.
    [72]葛秀润,任建喜,蒲毅彬,等.岩土损伤力学宏细观试验研究[M].北京:科学出版社,2004.
    [73]Mazars J. Application de la mecanique de 1'endommagement au comportement non lineaire et a la rupture du beton de structure[D]. These de doctotat d'Etat. Univ. Paris VI,1984.
    [74]Otto Schulze, Till Popp, Hartmut Kern. Development of damage and permeability in deforming rock salt[J]. Engineering geology,2001,61:163-180.
    [75]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [76]高继顺.雅砻江锦屏二级水电站引水隧洞围岩分类研究[D].成都:成都理工大学,2009.
    [77]吴世勇,任旭华,陈祥荣,等.锦屏二级水电站引水隧洞围岩稳定分析及支护设计[J].岩石力学与工程学报,2005,24(20):3777-3782.
    [78]张国平.锦屏二级水电站深埋长引水隧洞围岩稳定性分析与研究[D].南京:河海大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700