大孔载体上MFI型分子筛膜的制备及分离性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沸石分子筛膜由于其优异的性能引起了人们的普遍关注,其中以MFI型分子筛膜的研究最为广泛和深入,在分离、催化等领域中具有重要潜在应用价值。但是,目前MFI分子筛膜一般需在小孔径(≤1.0μm)、表面无缺陷的载体上制备;b轴取向膜的制备需要在预先涂覆介孔中间层的载体上进行,涂晶过程复杂。本论文采用大孔性的多孔氧化铝管和多孔玻璃管为载体,设计了新型的晶种涂覆方法和新颖的合成方式,简便高效地制备了(b轴取向)MFI分子筛膜,并进行了分离性能的测试。(1)低成本大孔氧化铝管载体上MFI分子筛渗透汽化膜的制备及分离性能
     本论文构建了一种新型的溶剂润湿辅助擦涂涂晶法。采用低成本、表面存在大洞缺陷的大孔氧化铝管(平均孔径1~3μm)为载体,预先将该载体于溶剂中润湿,然后在其外表面擦涂MFI分子筛晶种粉末。对比并分析了水、正丁醇、乙醇、正丙醇等不同的润湿试剂对涂晶效果和膜分离性能的影响,结果表明,醇特别是正丁醇是一种非常有效的润湿试剂,可以在这种低成本的大孔氧化铝管载体上制备均匀无缺陷的MFI分子筛晶种层,再通过二次水热合成法制备了无缺陷的MFI分子筛膜。测试了其对60℃下质量分数为5%的乙醇/水混合溶液的渗透汽化分离性能,结果表明,175℃下合成仅4h的MFI分子筛膜,分离因子和通量分别高达62和1.82kg m-2h-1。该涂晶方法所合成的MFI分子筛膜重复性高,且可放大用于长载体(20cm)上膜的制备。
     探讨了二次水热条件对MFI分子筛膜的微观结构及其分离性能的影响。目前,人们对二次合成的条件与膜的微观结构,以及微观结构与膜的分离性能的关系并不十分清楚。本论文详细考察了二次合成过程中的重要参数如碱度、模板剂浓度等的影响,采用SEM-EDX.水接触角测试、气体透过、单组份渗透汽化等手段深入表征了MFI分子筛膜的结构性质,并测试了MFI分子筛膜的乙醇/水分离性能。结果表明,MFI分子筛膜焙烧后的致密性是影响其分离性能的关键因素。当合成液中TPA+/TEOS比为0.17时,二次合成得到的MFI分子筛膜层中会产生较多的孪晶,这些孪晶在焙烧过程中会导致膜缺陷的产生,降低了MFI分子筛膜的致密性。当TPA+/TEOS比降低至0.05以下时,MFI分子筛膜层中孪晶的数量大大减少,从而避免了焙烧过程中膜缺陷的产生,膜的致密性大大提高,其对乙醇/水的渗透汽化分离性能也进一步提高,在通量大于1.00kg m-2h-1时,MFI分子筛膜的分离因子高达80以上。
     (2)多孔玻璃表面b轴取向MFI分子筛膜的制备
     本论文直接在孔径为0.1μm的多孔玻璃载体上原位水热合成b轴取向MFI分子筛膜。将多孔玻璃完全浸没于合成液中,难以得到连续的膜层。部分浸入合成液时,在露出的多孔玻璃表面获得了b轴取向MFI分子筛膜,靠近液面的表面膜比较致密,越向上越稀少。据此,我们提出由于载体孔的毛细作用力将合成液吸引至露出部分的载体表面,形成一层合成液液膜,该液膜在合成过程中形成了取向膜。通过系统地调变合成液配方以及合成时间等相关参数,得到了适宜的合成条件,当合成配比为0.64TPAOH:1TEOS:165H2O时,部分浸入165℃下合成3h,可以在多孔玻璃表面形成大面积连续的b轴取向MFI分子筛膜。延长合成时间至6h,载体上的膜层连续致密,但是呈现随机取向。研究还发现在气泡处的多孔玻璃表面获得了非常致密的b轴取向膜。这对原位水热合成b轴MFI分子筛膜具有指导意义。
     构建了一种新颖的、简单有效的取向晶种层印刷转移技术,在多孔玻璃载体上二次水热合成连续致密的b轴取向MFI分子筛膜。预先在印刷载体(如保鲜膜)上采用手工自组装的方式涂覆一层b轴取向MFI晶种层,再将其包裹在多孔玻璃表面,取向晶种层即被印刷于载体上,二次生长时合成液从载体管内侧渗透到晶种层,晶种长大连生后即形成连续的b轴取向MFI分子筛膜。通过对比不同材质的保鲜膜的影响,发现聚甲基戊烯(PMP)保鲜膜是一种合适的印刷载体。在此基础上,进一步优化了二次水热合成的方式以及合成液配方等,结果表明,通过两步合成法,能够提高所合成的b轴取向MFI分子筛膜的致密程度,同时也大大增强了膜层和载体之间的相互结合力。采用该方法制备的b轴取向MFI分子筛膜对于对邻二甲苯/对二甲苯混合物表现出了一定的分离性能,该制膜方法值得进一步深入研究。
Zeolite membranes, due to their unique properties, have been attracted a great deal of research interests worldwide. Among all of these membranes, the most intensively investigated is the MFI-type zeolite membrane. It has been targeted for potential applications in many research fields such as separation and catalysis. At present, however, MFI zeolite membranes are usually prepared on small pore (≤1.0μm) and defect-free supports. b-oriented MFI zeolite membranes should be prepared on supports with pre-coated mesoporous intermediate layer, and the seeding process is also complex. In this dissertation, macroporous alumina tubes and glass tubes are investigated as membrane supports. Novel seeding methods and synthesis strategies are proposed to facilely and effectively prepare (b-oriented) MFI zeolite membranes, and there separation performances are also investigated.
     (1) Preparation of zeolite MFI pervaporation membranes on low-cost macroporous alumina tube support and their separation performance
     We developed a novel seeding method of wetting assisted rub-coating technique. Low-cost, macroporous alumina tubes (average pore size:1~3μm) with many large "holes" are employed as membrane supports. With this new method, support outer surface is first wetted with a liquid agent followed by rubbing dry MFI seed crystals. Effects of many wetting agents such as H2O, n-butanol, ethanol, and n-propanol on the seed layer formation and membrane performance are investigated. Experimental results show that alcohol wetting liquid, especially n-butanol, is much more effective for preparation of a uniform and defect-free MFI seed layer on the defective alumina support. The zeolite MFI membranes synthesized at175℃for only4h on the well-seeded supports exhibit a high pervaporation performance with the ethanol/water separation factor of62and permeation flux of1.82kgm-2h-1for the5wt.%ethanol/water mixture separation at60℃. The reproducibility of MFI zeolite membranes synthesized by this novel seeding method is very high. The seeding method can be extended to prepare MFI zeolite membrane on the alumina support of20cm length.
     The effects of secondary hydrothermal growth conditions on the micro-structure and separation performance of as-synthesized MFI zeolite membranes are investigated. At present, the relationship between secondary growth condition and membrane micro-structure, and membrane micro-structure and separation performance are not very clear. We investigate several important parameters in secondary growth such as alkalinity, template concentration. SEM-EDX, water contact angle test, gas permeation, and single component pervaporation are used to characterize the membrane structure properties in detail. It is found that the dense degree of template-removed MFI zeolite membrane is the key factor influencing membrane pervaporation performance. When the TPA+/TEOS ratio of the synthesis solution is0.17, many twin crystals can be found in the synthesized membrane layer. These twin crystals results in the formation of cracks during calcination process. Then the membrane denseness is significantly reduced. When the TPA+/TEOS ratio is decreased to lower than0.05, twin crystals are suppressed and therefore the formation of defects during calcination is significantly eliminated. Thus the pervaporation performance of zeolite MFI membrane is further improved. The ethanol/water separation factor is higher than80when the flux is higher than1.00kg m-2h-1.
     (2) Preparation of b-oriented MFI zeolite membrane on porous glass support
     Here b-oriented zeolite MFI membranes are prepared directly on porous glass support with pore size of~0.1μm by in situ hydrothermal synthesis method. It is difficult to obtain continuous MFI zeolite membrane if the porous glass is immersed in the synthesis solution completely. When the support is partly immersed in the synthesis solution,b-oriented zeolite MFI membrane is obtained on the un-immersed part of the support. The membrane obtained near the synthesis solution level is much denser, while the membrane obtained on the top of the un-immersed support is much looser. We therefore propose that the un-immersed support surface can be covered by the synthesis solution film through the capillary force that occurred in the support pores. Then the synthesis solution film is crystallized during the secondary synthesis process, thus the b-oriented membrane is obtained. The preparation parameters such as the synthesis solution composition and crystallization time are systematically investigated. Under the optimized synthesis condition (0.64TPAOH:1TEOS:165H2O,165℃,3h),b-oriented zeolite MFI membrane with high coverage is achieved on support surface. When the crystallization time is extended to6h, the support can be fully covered by zeolite MFI membrane, however, the membrane is randomly oriented. We also find that dense b-oriented zeolite MFI membrane with a cycle shape can be obtained on the support nearing the bubble place. These results can provide guidelines for the mechanism research of b-oriented zeolite MFI membrane formation by in situ hydrothermal synthesis.
     We developed a simple yet effective oriented (MFI crystal) seed printing-transfer technique to prepare continuous and dense b-oriented zeolite MFI membrane on porous glass support by secondary growth. With this technique, a monolayer b-oriented MFI seeds is prepared on the printing support (e.g., wrap film) by manual assembly. Then the outer surface of the porous glass is wrapped by this seeded wrap film, and therefore the oriented seed crystals are printed on the porous glass. During secondary growth, the synthesis solution permeated to the seed layer from the inner side of the support and then continuous b-oriented zeolite MFI membrane is obtained. Many kinds of wrap films such as PMP, PVDC, and PE are investigated as printing supports. Using these wrap films, the quality of seed layer and the dense degree of synthesized b-oriented zeolite MFI membrane are compared in detail. It is found that PMP wrap film is the most effective printing support. The secondary growth strategies and synthesis solution compositions are then optimized. We find that, by using two-step secondary growth method, the dense degree of b-oriented zeolite MFI membrane can be improved and the interaction between membrane layer and support is highly strengthened. The synthesized oriented MFI membrane exhibits certain separation performance for the p-/o-xylene mixture. This membrane manufacturing technique deserves further research.
引文
[1]Tavolaro A, Drioli E. Zeolite membranes, Adv. Mater.,1999,11:975-996
    [2]Coronas J, Santamaria J. Separations using zeolite membranes, Sep. Purif. Rev., 1999,28:127-177
    [3]Caro J, Noack M, Kolsch P, Schafer R. Zeolite membranes-state of their development and perspective, Microporous Mesoporous Mater.,2000,38:3-24
    [4]Caro J, Noack M. Zeolite membranes-recent developments and progress, Microporous Mesoporous Mater.,2008,115:215-233
    [5]Bernardo P, Drioli E, Golemme G Membrane gas separation:a review/state of the art, Ind. Eng. Chem. Res.,2009,48:4638-4663
    [6]Ockwig N W, Nenoff T M. Membranes for hydrogen separation, Chem. Rev., 2007,107:4078-4110
    [7]Wee S L, Tye C T, Bhatia S. Membrane separation process-pervaporation through zeolite membrane, Sep. Purif. Technol.,2008,63:500-516
    [8]McLeary E E, Jansen J C, Kapteijn F. Zeolite based films, membranes and membrane reactors:progress and prospects, Microporous Mesoporous Mater., 2006,90:198-220
    [9]Fong Y Y, Abdullah A Z, Ahmad A L, Bhatia S. Development of functionalized zeolite membrane and its potential role as reactor combined separator for para-xylene production from xylene isomers, Chem. Eng. J.,2008,139:172-193
    [10]Lew C M, Cai R, Yan Y S. Zeolite thin films:from computer chips to space stations, Acc. Chem. Res.,2010,43:210-219
    [11]Volksen W, Miller R D, Dubois G Low dielectric constant materials, Chem. Rev., 2010,110:56-110
    [12]Sano T, Yanagishita H, Kiyozumi Y, Kitamoto D, Mizukami F. Separation of ethanol/water mixture by silicalite membrane, Chem. Lett.,1992,21:2413-2414
    [13]Shabtai Y, Chaimovitz S, Freeman A, Katchalski-Katzir E, Linder C, Nemas M, Perry M, Kedem O. Continuous ethanol production by immobilized yeast reactor coupled with membrane pervaporation unit, Biotechnol. Bioeng.,1991,38: 869-876.
    [14]Ikegami T, Negishi H, Yanase H, Sakaki K, Okamoto M, Koura N, Sano T, Haraya K, Yanagishita H. Stabilized production of highly concentrated bioethanol from fermentation broths by Zymomonas mobilis by pervaporation using silicone rubber-coated silicalite membranes, J. Chem. Technol. Biotechnol. 2007,82:745-751
    [15]Snyder M A, Tsapatsis M. Hierarchical nanomanufacturing:from shaped zeolite nanoparticles to high-performance separation membranes, Angew. Chem. Int. Ed.,2007,46:7560-7573
    [16]Bowen T C, Noble R D, Falconer J L. Fundamentals and applications of pervaporation through zeolite membranes, J. Membr. Sci.,2004,245:1-33
    [17]Caro J, Noack M, Kolsch P. Zeolite membranes:from the laboratory scale to technical applications, Adsorption,2005,11:215-227
    [18]Yu M, Noble R D, Falconer J L. Zeolite membranes:microstructure characterization and permeation mechanisms, Acc. Chem. Res.,2011,44: 1196-1206
    [19]Gascon J, Kapteijn F, Zornoza B, Sebastian V, Casado C, Coronas J. Practical approach to zeolitic membranes and coatings:state of the art, opportunities, barriers, and future perspectives, Chem. Mater.,2012,24:2829-2844
    [20]郎林,张超,阴秀丽,吴创之,b-轴取向MFI型分子筛膜制备工艺,化学进展,2011,23:1022-1032
    [21]颜正朝,宋军,林晓,徐南平,沸石分子筛膜的合成与应用,石油化工,2004,33:891.900
    [22]刘昶,王金渠,刘春艳,邵国林,吕丹,分子筛膜制备研究进展,科学技术与工程,2003,3:601.606
    [23]冯建立,李书珍,王磊,沸石分子筛膜的应用与研究进展,上海化工,2005,30:31.34
    [24]冼江强,黄肖容,隋贤栋,分子筛膜的制备和研究进展,广东化工,2005,5:7.10
    [25]郭杨龙,邓志勇,卢冠忠,分子筛膜的研究进展,石油化工,2008,37:865.872
    [26]孙国锋,王金渠,刘垚,二次生长法合成沸石膜技术的研究进展,膜科学与技术,2008,28:73.78
    [27]李邦民,王金渠,丁长胜,沸石分子筛膜研究新进展,膜科学与技术,2003,23:59.68
    [28]许中强,陈庆龄,分子筛膜的研究及进展,化工进展,1998,4:8.13
    [29]张延风,卢冠忠,许中强,陈庆龄,分子筛膜的性能和制备研究进展,化学反应工程与工艺,2000,16:60.66
    [30]张延风,许中强,陈庆龄,分子筛膜制备技术,化工进展,2002,21:270-274
    [31]成岳,李健生,刘媚,孙秀云,王连军,分子筛膜的研制进展与应用前景,中国陶瓷工业,2004,11:40.44
    [32]刘赞,王新忠,陈爱民,分子筛膜分离技术的研究进展,工业水处理,2006,26:12.18
    [33]张彦改,高会元,朱国颖,闫健娜,分子筛膜的合成与应用研究进展,化工生产与技术,2011,18:22.26
    [34]辛春玲,连丕勇,李其明,分子筛膜合成的研究进展,化工科技,2011,19:48-52
    [35]成岳,李健生,王连军,孙秀云,ZSM-5分子筛膜的研究进展,化学进展,2006,18:221-229
    [36]Sano T, Yanagishita H, Kiyozumi Y, Mizukami F, Haraya K. Separation of ethanol/water mixture by silicalite membrane on pervaporation, J. Membr. Sci., 1994,95:221-228
    [37]Chen H L, Li Y S, Yang J S, Hou Y X, Song X Y, Hu X J, Yang W S. Preparation of high selectivity silicalite-1 membranes by two-step in situ hydrothermal synthesis, Chinese Sci. Bull.,2011,56:3578-3582
    [38]Chen H L, Li Y S, Yang W S. Preparation of silicalite-1 membrane by solution-filling method and its alcohol extraction properties, J. Membr. Sci., 2007,296:122-130
    [39]孙维国,杨建华,王爱芳,王金渠,韩会林,鲁金明,两步变温水热合成制 备纯硅分子筛膜及其渗透性能,过程工程学报,2008,8:599-602
    [40]Lin X, Chen X S, Kita H, Okamoto K. Synthesis of silicalite tubular membranes by in situ crystallization, AIChE J.,2003,49:237-247
    [41]欧阳晓金,周荣飞,钟鸣,陈祥树,Silicalite-1分子筛膜的制备与表征,江西师范大学学报(自然科学版),2009,33:166.169
    [42]Zhang X L, Zhu M H, Zhou R F, Chen X S, Kita H. Synthesis of silicalite-1 membranes with high ethanol permeation in ultradilute solution containing fluoride, Sep. Purif. Technol.,2011,81:480-484
    [43]Zhang X L, Zhu M H, Zhou R F, Chen X S, Kita H. Synthesis of a silicalite zeolite membrane in ultradilute solution and its highly selective separation of organic/water mixtures, Ind. Eng. Chem. Res.,2012,51:11499-11508
    [44]周荣飞,孔佑鑫,朱美华,张飞,张小亮,陈祥树,含硼MFI型分子筛膜制备与渗透汽化性能研究,无机化学学报,2012,28:942-948
    [45]Sebastian V, Mallada R, Coronas J, Julbe A, Terpstra R A, Dirrix R W J. Microwave-assisted hydrothermal rapid synthesis of capillary MFI-type zeolite-ceramic membranes for pervaporation application, J. Membr. Sci.,2010, 355:28-35
    [46]Shan L J, Shao J, Wang Z B, Yan Y S. Preparation of zeolite MFI membranes on alumina hollow fibers with high flux for pervaporation, J. Membr. Sci.,2011, 378:319-329
    [47]袁文辉,罗仡科,胡小芳,MFI型分子筛膜的制备及表征,化学工程,2006,34:35.37
    [48]Shu X J, Wang X R, Kong Q Q, Gu X H, Xu N P. High-flux MFI zeolite membrane supported on YSZ hollow fiber for separation of ethanol/water, Ind. Eng. Chem. Res.,2012,51:12073-12080
    [49]Lin X, Kita H, Okamoto K. A novel method for the synthesis of high performance silicalite membranes, Chem. Commun.,2000,36:1889-1990
    [50]Lin X, Kita H, Okamoto K. Silicalite membrane preparation, characterization, and separation performance, Ind. Eng. Chem. Res.,2001,40:4069-4078
    [51]Shen D, Xiao W, Yang J H, Chu N B, Lu J M, Yin D H, Wang J Q. Synthesis of silicalite-1 membrane with two silicon source by secondary growth method and its pervaporation performance, Sep. Purif. Technol.,2011,76:308-315
    [52]Stoeger J A, Choi J, Tsapatsis M. Rapid thermal processing and separation performance of columnar MFI membranes on porous stainless steel tubes, Energy Environ. Sci.,2011,4:3479-3486
    [53]Zou X Q, Bazin P, Zhang F, Zhu G S, Valtchev V, Mintova S. Ethanol recovery from water using silicalite-1 membrane:an operando infrared spectroscopic study, ChemPlusChem,2012,77:437-444
    [54]Yoo W C, Stoeger J A, Lee P S, Tsapatsis M, Stein A. High-performance randomly oriented zeolite membranes using brittle seeds and rapid thermal processing, Angew. Chem. Int. Ed.,2010,49:8699-8703
    [55]Xiao W, Chen Z, Zhou L, Yang J H, Lu J M, Wang J Q. A simple seeding method for MFI zeolite membrane synthesis on macroporous support by microwave heating, Microporous Mesoporous Mater.,2011,142:154-160
    [56]Wang Z B, Ge Q Q, Gao J S, Shao J, Liu C J, Yan Y S. High-performance zeolite membranes on inexpensive large-Pore supports:highly reproducible synthesis using a seed paste, ChemSusChem,2011,4:1570-1573
    [57]Holmes S M, Markert C, Plaisted R J, Forrest J O, Agger J R, Anderson M W, Cundy C S, Dwyer J. A novel method for the growth of silicalite membranes on stainless steel supports, Chem. Mater.,1999,11:3329-3332
    [58]Wen Q, Di J C, Jiang L, Yu J H, Xu R R. Zeolite-coated mesh film for efficient oil-water separation, Chem. Sci.,2013,4:591-595
    [59]Dong J H, Lin Y S, Hu M Z C, Peascoe R A, Andrew Payzant E. Template removal associated microstructural development of porous ceramic supported MFI zeolite membranes, Microporous Mesoporous Mater.,2000,34:241-253
    [60]Choi J, Jeong H K, Snyder M A, Stoeger J A, Masel R I, Tsapatsis M. Grain boundary defect elimination in a zeolite membrane by rapid thermal processing, Science,2009,325:590-593
    [61]Heng S, Lau P P S, Yeung K L, Djafer M, Schrotter J C. Low-temperature ozone treatment for organic template removal from zeolite membrane, J. Membr. Sci., 2004,243:69-78
    [62]Parikh A N, Navrotsky A, Li Q H, Yee C K, Amweg M L, Corma A. Non-thermal calcination by ultraviolet irradiation in the synthesis of microporous materials, Microporous Mesoporous Mater.,2004,76:17-22
    [63]Zhao J, Luo T, Zhang X W, Lei Y, Gong K, Yan Y S. Highly selective zeolite membranes as explosive preconcentrators, Anal. Chem.,2012,84:6303-6307
    [64]Nomura M, Yamaguchi T, Nakao S. Ethanol/water transport through silicalite membranes, J. Membr. Sci.,1998,144:161-171
    [65]Li S G, Tuan V A, Noble R D, Falconer J L. ZSM-11 membranes: Characterization and pervaporation performance, AIChE J.,2002,48:269-278
    [66]Jia W, Murad S. Molecular dynamics simulation of pervaporation in zeolite membranes, Mol. Phys.,2006,104:3033-3043
    [67]Takaba H, Koyama A, Nakao S. Dual ensemble monte carlo simulation of pervaporation of an ethanol/water binary mixture in silicalite membrane based on a Lennard-Jones interaction model, J. Phys. Chem. B,2000,104:6353-6359
    [68]Sano T, Hasegawa M, Ejiri S, Kawakami Y, Yanagishita H. Improvement of the pervaporation performance of silicalite membranes by modification with a silane coupling reagent, Microporous Mater.,1995,5:179-184
    [69]Matsuda H, Yanagishita H, Negishi H, Kitamoto D, Ikegami T, Haraya K, Nakane T, Idemoto Y, Koura N, Sano T. Improvement of ethanol selectivity of silicalite membrane in pervaporation by silicone rubber coating, J. Membr. Sci., 2002,210:433-437
    [70]Nomura M, Yamaguchi T, Nakao S. Transport phenomena through intercrystalline and intracrystalline pathways of silicalite zeolite membranes, J. Membr. Sci.,2001,187:203-212
    [71]Lang L, Liu X F, Zhang B Q. Controlling the orientation and coverage of silica-MFI zeolite films by surface modification, Appl. Surf. Sci.,2009,255: 4886-4890
    [72]刘秀凤,郎林,张宝泉,LinYS,在壳聚糖改性的硅锆复合中间层上原位水 热合成b.轴取向silicalite.1分子筛膜,化工学报,2006,57:1019.1022
    [73]Zhang F Z, Fuji M, Takahashi M. In situ growth of continuous 6-oriented MFI zeolite membranes on porous α-alumina substrates precoated with a mesoporous silica sublayer, Chem. Mater.,2005,17:1167-1173
    [74]Zhang F Z, Fuji M, Takahashi M. Preparation of b-oriented MFI zeolite membranes on porous a-alumina substrates precoated with mesoporous silica sublayer, J. Mater. Sci.,2005,40:2729-2732
    [75]郎林,张宝泉,刘秀凤,在玻璃上合成有取向的silicalite-1分子筛膜及其生长机理,化工学报,2006,57:2229-2232
    [76]王周翔,闫文付,田大勇,曹学静,于吉红,徐如人,高度b取向Silicalite-1分子筛膜的制备,物理化学学报,2010,26:2044.2048
    [77]Wang Z B, Yan Y S. Controlling crystal orientation in zeolite MFI thin films by direct in situ crystallization, Chem. Mater.,2001,13:1101-1107
    [78]Li X M, Yan Y S, Wang Z B. Continuity control of b-oriented MFI zeolite films by microwave synthesis, Ind. Eng. Chem. Res.,2010,49:5933-5938
    [79]Mintova S, Bein T. Microporous films prepared by spin-coating stable colloidal suspensions of zeolites, Adv. Mater.,2001,13:1880-1883
    [80]刘秀凤,张宝泉,林跃生,无模板剂二次生长法制备取向MFI型分子筛膜,无机化学学报,2008,24:1679.1683
    [81]Choi S Y, Lee Y J, Park Y S, Ha K, Yoon K B. Monolayer assembly of zeolite crystals on glass with fullerene as the covalent linker, J. Am. Chem. Soc.,2000, 122:5201-5209
    [82]Kulak A, Park Y S, Lee Y J, Chun Y S, Ha K, Yoon K B. Polyamines as strong molecular linkers for monolayer assembly of zeolite crystals on flat and curved glass, J. Am. Chem. Soc.,2000,122:9308-9309
    [83]Lee G S, Lee Y J, K B Yoon. Layer-by-layer assembly of zeolite crystals on glass with polyelectrolytes as ionic linkers, J. Am. Chem. Soc.,2001,123:9769-9779
    [84]Park J S, Lee G S, Lee Y J, Park Y S, Yoon K B. Organization of microcrystals on glass by adenine-thymine hydrogen bonding. J. Am. Chem. Soc.,2002,124: 13366-13367
    [85]Park J S, Lee Y J, Yoon K B, Marked increase in the binding strength between the substrate and the covalently attached monolayers of zeolite microcrystals by lateral molecular cross-linking between the neighboring microcrystals, J. Am. Chem. Soc.,2004,126:1934-1935
    [86]Lee J S, Lee Y J, Tae E L, Park Y S, Yoon K B. Synthesis of zeolite as ordered multicrystal arrays, Science,2003,301:818-821
    [87]Kulak A, Lee Y J, Park Y S, Yoon K B. Orientation-controlled monolayer assembly of zeolite crystals on glass and mica by covalent linkage of surface-bound epoxide and amine groups, Angew. Chem. Int. Ed.,2000,39: 950-953
    [88]Lee J S, Lim H, Ha K, Cheong H, Yoon K B. Facile monolayer assembly of fluorophore-containing zeolite rods in uniform orientations for anisotropic photoluminescence, Angew. Chem. Int. Ed.,2006,45:5288-5292
    [89]Lee J S, Kim J H, Lee Y J, Jeong N C, Yoon K B. Manual assembly of microcrystal monolayers on substrates, Angew. Chem. Int. Ed.,2007,46: 3087-3090
    [90]Ha K, Park J S, Oh K S, Zhou Y S, Chun Y S, Lee Y J, Yoon K B. Aligned monolayer assembly of zeolite crystals on platinum, gold, and indium-tin oxide surfaces with molecular linkages, Microporous Mesoporous Mater.,2004,72: 91-98
    [91]Ha K, Lee Y J, Jung D Y, Lee J H, Yoon K B. Micropatterning of oriented zeolite monolayers on glass by covalent linkage, Adv. Mater.,2000,12:1614-1617
    [92]Ha K, Lee Y J, Lee H J, Yoon K B. Facile assembly of zeolite monolayers on glass, silica, alumina, and other zeolites using 3-halopropylsilyl reagents as covalent linkers, Adv. Mater.,2000,12:1114-1117
    [93]Lee J S, Ha K, Lee Y J, Yoon K B. Ultrasound-aided remarkably fast assembly of monolayers of zeolite crystals on glass with a very high degree of lateral close packing, Adv. Mater.,2005,17:837-841
    [94]Yoon K B. Organization of zeolite microcrystals for production of functional materials, Acc. Chem. Res.,2007,40:29-40
    [95]Lee J S, Ha K, Lee Y J, Yoon K B. Effect of method on monolayer assembly of zeolite microcrystals on glass with molecular linkages, Top. Catal.,2009,52: 119-139
    [96]Lee J S, Yoon K B. Linkage-nondestructive surface migration of zeolite microcrystals during monolayer assembly on glass through ionic linkages, J. Nanosci.Nanotechno.,2010,10:191-194
    [97]Park J S, Jeong N C, Lee Y J, Kim M J, Yoon K B. Control of mode of crystal networking during monolayer assembly of microcrystals on water, J. Nanosci. Nanotechno.,2010,10:370-374
    [98]Morawetz K, Reiche J, Kamusewitz H, Kosmella H, Ries R, Noack M, Brehmer L. Zeolite films prepared via the Langmuir-Blodgett technique, Colloid. Surface. A,2002,198-200:409-414
    [99]Liu Y, Li Y S, Yang W S. Phase-segregation-induced self-assembly of anisotropic MFI microbuilding blocks into compact and highly b-oriented monolayers, Langmuir,2011,27:2327-2333
    [100]Liu Y, Li Y S, Yang W S. Fabrication of highly b-oriented MFI monolayers on various substrates, Chem. Commun.,2009,45:1520-1522
    [101]Zhou M, Hedlund J. Oriented monolayers of submicron crystals by dynamic interfacial assembly, J. Mater. Chem.,2012,22:3307-3310
    [102]Di J C, Zhang C, Yan W F, Wang X F, Yu J H, Xu R R. Direct in situ crystallization of highly oriented silicalite-1 thin films on a surface sol-gel process modified substrate, Microporous Mesoporous Mater.,2011,145: 104-107
    [103]Lee I, Buday J L, Jeong H K. μ-Tiles and mortar approach:a simple technique for the facile fabrication of continuous b-oriented MFI silicalite-1 thin films, Microporous Mesoporous Mater.,2009,122:288-293
    [104]Liu Y, Li Y S, Yang W S. Fabrication of highly b-oriented MFI film with molecular sieving properties by controlled in-plane secondary growth, J. Am. Chem. Soc.,2010,132:1768-1769
    [105]Liu Y, Li Y S, Yang W S. Effective manipulation of the microstructure of zeolite film by hydrothermal pretreatment, J. Mater. Sci.,2011,46:3942-3951
    [106]Liu Y, Li Y S, Cai R, Yang W S. Suppression of twins in b-oriented MFI molecular sieve films under microwave irradiation, Chem. Commun.,2012,48: 6782-6784
    [107]Li X M, Peng Y, Wang Z B, Yan Y S. Synthesis of highly b-oriented zeolite MFI films by suppressing twin crystal growth during the secondary growth, CrystEngComm,2011,13:3657-3660
    [108]Lai Z P, Bonilla G, Diaz I, Nery J G, Sujaoti K, Amat M A, Kokkoli E, Terasaki O, Thompson R W, Tsapatsis M, Vlachos D G. Microstructural optimization of a zeolite membrane for organic vapor separation, Science,2003,300:456-460
    [109]Pham T C T, Kim H S, Yoon K B. Growth of uniformly oriented silica MFI and BEA zeolite films on substrates, Science,2011,334:1533-1538
    [110]Hedlund J, Sterte J, Anthonis M, Bons A J, Carstensen B, Corcoran N, Cox D, Deckman H, Gijnst W D, de Moor P P, Lai F, McHenry J, Mortier W, Reinoso J, Peters J. High-flux MFI membranes, Microporous Mesoporous Mater.,2002,52: 179-189
    [111]Hedlund J, Jareman F, Bons A J, Anthonis M. A masking technique for high quality MFI membranes, J. Membr. Sci.,2003,222:163-179
    [112]Keizer K, Burggraaf A J, Vroon Z A E P, Verweij H. Two component permeation through thin zeolite MFI membranes, J. Membr. Sci.,1998,147:159-172
    [113]Gump V, Tuan V A, Noble R D, Falconer J L. Aromatic permeation through crystalline molecular sieve membranes, Ind. Eng. Chem. Res.,2001,40: 565-577
    [114]Lai Z P, Tsapatsis M, Nicolich J P. Siliceous ZSM-5 membranes by secondary growth of b-oriented seed layers, Adv. Funct. Mater.,2004,14:716-729
    [115]Xomeritakis G, Tsapatsis M. Permeation of aromatic isomer vapors through oriented MFI-type membranes made by secondary growth, Chem. Mater.,1999, 11:875-878
    [116]Xomeritakis G, Lai Z P, Tsapatsis M. Separation of xylene isomer vapors with oriented MFI membranes made by seeded growth, Ind. Eng. Chem. Res.,2001, 40:544-552
    [117]Lee I, Jeong H K. Synthesis and gas permeation properties of highly b-oriented MFI silicalite-1 thin membranes with controlled microstructure, Microporous Mesoporous Mater.,2011,141:175-183
    [118]Wang Z B, Wang H T, Mitra A, Huang L M, Yan Y S. Pure-silica zeolite low-K dielectric thin films, Adv. Mater.,2001,13:746-749
    [119]Gora L, Kuhn J, Baimpos T, Nikolakis V, Kapteijn F, Serwicka E M. Selective sensor utilizing a thin monolayer of b-oriented silicalite-1 crystals magneto elastic ribbon assembly, Analyst,2009,134:2118-2122
    [1]Shabtai Y, Chaimovitz S, Freeman A, Katchalski-Katzir E, Linder C, Nemas M, Perry M, Kedem O. Continuous ethanol production by immobilized yeast reactor coupled with membrane pervaporation unit, Biotechnol. Bioeng.,1991,38: 869-876
    [2]Sano T, Yanagishita H, Kiyozumi Y, Mizukami F, Haraya K. Separation of ethanol/water mixture by silicalite membrane on pervaporation, J. Membr. Sci., 1994,95:221-228
    [3]Chen H L, Li Y S, Yang W S. Preparation of silicalite-1 membrane by solution-filling method and its alcohol extraction properties, J. Membr. Sci., 2007,296:122-130
    [4]Lin X, Chen X S, Kita H, Okamoto K. Synthesis of silicalite tubular membranes by in situ crystallization, AIChE J.,2003,49:237-247
    [5]Lin X, Kita H, Okamoto K. A novel method for the synthesis of high performance silicalite membranes, Chem. Commun.,2000,36:1889-1990
    [6]Lin X, Kita H, Okamoto K. Silicalite membrane preparation, characterization, and separation performance, Ind. Eng. Chem. Res.,2001,40:4069-4078
    [7]Sebastian V, Mallada R, Coronas J, Julbe A, Terpstra R A, Dirrix R W J. Microwave-assisted hydrothermal rapid synthesis of capillary MFI-type zeolite ceramic membranes for pervaporation application, J. Membr. Sci.,2010,355: 28-35
    [8]Shan L J, Shao J, Wang Z B, Yan Y S. Preparation of zeolite MFI membranes on alumina hollow fibers with high flux for pervaporation, J. Membr. Sci.,2011, 378:319-329
    [9]Shen D, Xiao W, Yang J H, Chu N B, Lu J M, Yin D H, Wang J Q. Synthesis of silicalite-1 membrane with two silicon source by secondary growth method and its pervaporation performance, Sep. Purif. Technol.,2011,76:308-315
    [10]Stoeger J A, Choi J, Tsapatsis M. Rapid thermal processing and separation performance of columnar MFI membranes on porous stainless steel tubes, Energy Environ. Sci.,2011,4:3479-3486
    [11]Zhang X L, Zhu M H, Zhou R F, Chen X S, Kita H. Synthesis of silicalite-1 membranes with high ethanol permeation in ultradilute solution containing fluoride, Sep. Purif. Technol.,2011,81:480-484
    [12]Zhang X L, Zhu M H, Zhou R F, Chen X S, Kita H. Synthesis of a silicalite zeolite membrane in ultradilute solution and its highly selective separation of organic/water mixtures, Ind. Eng. Chem. Res.,2012,51:11499-11508
    [13]Shu X J, Wang X R, Kong Q Q, Gu X H, Xu N P. High-flux MFI zeolite membrane supported on YSZ hollow fiber for separation of ethanol/water, Ind. Eng. Chem. Res.,2012,51:12073-12080
    [14]Lee J S, Kim J H, Lee Y J, Jeong N C, Yoon K B. Manual assembly of microcrystal monolayers on substrates, Angew. Chem. Int. Ed.,2007,46: 3087-3090
    [15]Pham T C T, Kim H S, Yoon K B. Growth of uniformly oriented silica MFI and BEA zeolite films on substrates. Science,2011,334:1533-1538
    [16]Huang A S, Lin Y S, Yang W S. Synthesis and properties of A-type zeolite membranes by secondary growth method with vacuum seeding, J. Membr. Sci., 2004,245:41-51
    [17]Algieri C, Bernardo P, Barbieri G, Drioli E. A novel seeding procedure for preparing tubular NaY zeolite membranes, Microporous Mesoporous Mater., 2009,119:129-136
    [18]Hedlund J, Noack M, Kolsch P, Creaser D, Caro J, Sterte J. ZSM-5 membranes synthesized without organic templates using a seeding technique, J. Membr. Sci., 1999,159:263-273
    [19]Wang Z B, Ge Q Q, Gao J S, Shao J, Liu C J, Yan Y S. High-performance zeolite membranes on inexpensive large-pore supports:highly reproducible synthesis using a seed paste, ChemSusChem,2011,4:1570-1573
    [20]Yoo W C, Stoeger J A, Lee P S, Tsapatsis M, Stein A. High-performance randomly oriented zeolite membranes using brittle seeds and rapid thermal processing, Angew. Chem. Int. Ed.,2010,49:8699-8703
    [21]Xiao W, Chen Z, Zhou L, Yang J H, Lu J M, Wang J Q. A simple seeding method for MFI zeolite membrane synthesis on macroporous support by microwave heating, Microporous Mesoporous Mater.,2011,142:154-160
    [22]Li X M, Peng Y, Wang Z B, Yan Y S. Synthesis of highly b-oriented zeolite MFI films by suppressing twin crystal growth during the secondary growth, CrystEngComm,2011,13:3657-3660
    [23]Wang Z B, Ge Q Q, Shao J, Yan Y S. High performance zeolite LTA pervaporation membranes on ceramic hollow fibers by dipcoating-wiping seed deposition, J. Am. Chem. Soc.,2009,131:6910-6911
    [24]Dong J H, Lin Y S, Hu M Z C, Peascoe R A, Andrew Payzant E. Template removal associated microstructural development of porous ceramic supported MFI zeolite membranes, Microporous Mesoporous Mater.,2000,34:241-253
    [25]Gu X H, Dong J H, Nenoff T M, Ozokwelu D E. Separation of p-xylene from multicomponent vapor mixtures using tubular MFI zeolite mmbranes, J. Membr. Sci.,2006,280:624-633
    [26]Xomeritakis G, Lai Z P, Tsapatsis M. Separation of xylene isomer vapors with oriented MFI membranes made by seeded growth, Ind. Eng. Chem. Res.,2001, 40:544-552
    [27]Hedlund J, Jareman F, Bons A J, Anthonis M. A masking technique for high quality MFI membranes, J. Membr. Sci.,2003,222:163-179
    [28]Vroon Z A E P, Keizer K, Burggraaf A J, Verweij H. Preparation and characterization of thin zeolite MFI membranes on porous supports. J. Membr. Sci.,1998,144:65-76
    [29]Jeong H K, Lai Z P, Tsapatsis M, Hanson J C. Strain of MFI crystals in membranes:An in situ synchrotron X-ray study, Microporous Mesoporous Mater.,2005,84:332-337
    [30]Gualtieri M L, Andersson C, Jareman F, Hedlund J, Gualtieri A F, Leoni M, Meneghini C. Crack formation in α-alumina supported MFI zeolite membranes studied by in situ high temperature synchrotron powder diffraction, J. Membr. Sci.,2007,290:95-104
    [31]Bhange D S, Ramaswamy V. Negative thermal expansion in silicalite-1 and zirconium silicalite-1 having MFI structure, Mater. Res. Bull.,2006,41: 1392-1402
    [32]Marinkovic B A, Jardim P M, Saavedra A, Lau L Y, Baehtz C, de Avillez R R, Rizzo F. Negative thermal expansion in hydrated HZSM-5 orthorhombic zeolite, Microporous Mesoporous Mater.,2004,71:117-124
    [33]Wee L H, Tosheva L, Vasilev C, Doyle A M. Influence of the dispersion medium on the properties of spin-coated silicalite-1 films, Microporous Mesoporous Mater.,2007,103:296-301
    [34]Wang Z B, Wang H T, Mitra A, Huang L M, Yan Y S. Pure-silica zeolite low-k dielectric thin films, Adv. Mater.,2001,13:746-749
    [35]Liu Y, Sun M W, Lew C M, Wang J L, Yan Y S. MEL-type pure-silica zeolite nanocrystals prepared by an evaporation-assisted two-stage synthesis method as ultra-low-k materials, Adv. Funct. Mater.,2008,18:1732-1738
    [1]Jia W, Murad S. Molecular dynamics simulation of pervaporation in zeolite membranes, Mol. Phys.,2006,104:3033-3043
    [2]Takaba H, Koyama A, Nakao S. Dual ensemble monte carlo simulation of pervaporation of an ethanol/water binary mixture in silicalite membrane based on a Lennard-Jones interaction model, J. Phys. Chem. B,2000,104:6353-6359
    [3]Zou X Q, Bazin P, Zhang F, Zhu G S, Valtchev V, Mintova S. Ethanol recovery from water using silicalite-1 membrane:an operando infrared spectroscopic study, ChemPlusChem,2012,77:437-444
    [4]Nomura M, Yamaguchi T, Nakao S. Ethanol/water transport through silicalite membranes,J. Membr. Sci.,1998,144:161-171
    [5]Li S G, Tuan V A, Noble R D, Falconer J L. ZSM-11 membranes: Characterization and pervaporation performance, AIChE J.,2002,48:269-278
    [6]Li X M, Peng Y, Wang Z B, Yan Y S. Synthesis of highly b-oriented zeolite MFI films by suppressing twin crystal growth during the secondary growth, CrystEngComm,2011,13:3657-3660
    [7]Shan L J, Shao J, Wang Z B, Yan Y S. Preparation of zeolite MFI membranes on alumina hollow fibers with high flux for pervaporation, J. Membr. Sci.,2011, 378:319-329
    [8]徐如人,庞文琴,于吉红,分子筛与多孔材料化学,北京:科学出版社,2004
    [9]Bowen T C, Noble R D, Falconer J L. Fundamentals and applications of pervaporation through zeolite membranes, J. Membr. Sci.,2004,245:1-33
    [10]Yu M, Noble R D, Falconer J L. Zeolite membranes:microstructure characterization and permeation mechanisms, Acc. Chem. Res.,2011,44: 1196-1206
    [11]Chen H L, Li Y S, Yang W S. Preparation of silicalite-1 membrane by solution-filling method and its alcohol extraction properties, J. Membr. Sci., 2007,296:122-130
    [12]Lin X, Chen X S, Kita H, Okamoto K. Synthesis of silicalite tubular membranes by in situ crystallization, AIChE J.,2003,49:237-247
    [13]Zhang X L, Zhu M H, Zhou R F, Chen X S, Kita H. Synthesis of silicalite-1 membranes with high ethanol permeation in ultradilute solution containing fluoride, Sep. Purif. Technol.,2011,81:480-484
    [14]Zhang X L, Zhu M H, Zhou R F, Chen X S, Kita H. Synthesis of a silicalite zeolite membrane in ultradilute solution and its highly selective separation of organic/water mixtures, Ind. Eng. Chem. Res.,2012,51:11499-11508
    [15]Sebastian V, Mallada R, Coronas J, Julbe A, Terpstra R A, Dirrix R W J. Microwave-assisted hydrothermal rapid synthesis of capillary MFI-type zeolite-ceramic membranes for pervaporation application, J. Membr. Sci.,2010, 355:28-35
    [16]Shu X J, Wang X R, Kong Q Q, Gu X H, Xu N P. High-flux MFI zeolite membrane supported on YSZ hollow fiber for separation of ethanol/water, Ind. Eng. Chem. Res.,2012,51:12073-12080
    [17]Lin X, Kita H, Okamoto K. Silicalite membrane preparation, characterization, and separation performance, Ind. Eng. Chem. Res.,2001,40:4069-4078
    [18]Dong J H, Lin Y S, Hu M Z C, Peascoe R A, Andrew Payzant E. Template removal associated microstructural development of porous ceramic supported MFI zeolite membranes, Microporous Mesoporous Mater.,2000,34:241-253
    [19]Choi J, Jeong H K, Snyder M A, Stoeger J A, Masel R I, Tsapatsis M. Grain boundary defect elimination in a zeolite membrane by rapid thermal processing, Science,2009,325:590-593
    [20]Sano T, Hasegawa M, Ejiri S, Kawakami Y, Yanagishita H. Improvement of the pervaporation performance of silicalite membranes by modification with a silane coupling reagent, Microporous Mater.,1995,5:179-184
    [21]Matsuda H, Yanagishita H, Negishi H, Kitamoto D, Ikegami T, Haraya K, Nakane T, Idemoto Y, Koura N, Sano T. Improvement of ethanol selectivity of silicalite membrane in pervaporation by silicone rubber coating, J. Membr. Sci., 2002,210:433-437
    [22]Wang H B, Lin Y S. Effects of water vapor on gas permeation and separation properties of MFI zeolite membranes at high temperatures, AIChE J.,2012,58: 153-162
    [23]Wang H B, Lin Y S. Synthesis and modification of ZSM-5/silicalite bilayer membrane with improved hydrogen separation performance, J. Membr. Sci., 2012,396:128-137
    [24]Yu M, Amundsen T J, Hong M, Falconer J L, Noble R D. Flexible nanostructure of MFI zeolite membranes, J. Membr. Sci.,2007,298:182-189
    [25]Yu M, Falconer J L, Amundsen T J, Hong M, Noble R D. A controllable nanometer-sized valve, Adv. Mater.,2007,19:3032-3036
    [26]Yu M, Wyss J C, Noble R D, Falconer J L.2,2-Dimethylbutane adsorption and diffusion in MFI zeolite, J. Membr. Sci.,2008,111:24-31
    [27]Wegner K, Dong J H, Lin Y S. Polycrystalline MFI zeolite membranes:xylene pervaporation and its implication on membrane microstructure, J. Membr. Sci., 1999,158:17-27
    [28]Lee J S, Kim J H, Lee Y J, Jeong N C, Yoon K B. Manual assembly of microcrystal monolayers on substrates, Angew. Chem. Int. Ed.,2007,46: 3087-3090
    [1]Pham T C T, Kim H S, Yoon K B. Growth of uniformly oriented silica MFI and BEA zeolite films on substrates, Science,2011,334:1533-1538
    [2]Wang Z B, Yan Y S. Controlling crystal orientation in zeolite MFI thin films by direct in situ crystallization, Chem. Mater.,2001,13:1101-1107
    [3]Wang Z B, Yan Y S. Oriented zeolite MFI monolayer films on metal substrates by in situ crystallization, Microporous Mesoporous Mater.,2001,48:229-238
    [4]Zhang F Z, Fuji M, Takahashi M. In situ growth of continuous b-oriented MFI zeolite membranes on porous a-alumina substrates precoated with a mesoporous silica sublayer, Chem. Mater.,2005,17:1167-1173
    [5]郎林,张宝泉,刘秀凤,在玻璃上合成有取向的silicalite-1分子筛膜及其生长机理,化工学报,2006,57:2229-2232
    [6]王周翔,闫文付,田大勇,曹学静,于吉红,徐如人,高度b取向Silicalite-1分子筛膜的制备,物理化学学报,2010,26:2044.2048
    [7]Li X M, Peng Y, Wang Z B, Yan Y S. Synthesis of highly b-oriented zeolite MFI films by suppressing twin crystal growth during the secondary growth, CrystEngComm,2011,13:3657-3660
    [8]Li X M, Yan Y S, Wang Z B. Continuity control of b-oriented MFI zeolite films by microwave synthesis, Ind. Eng. Chem. Res.,2010,49:5933-5938
    [9]Lee G S, Lee Y J, K B Yoon. Layer-by-layer assembly of zeolite crystals on glass with polyelectrolytes as ionic linkers, J. Am. Chem. Soc.,2001,123:9769-9779
    [10]Lee J S, Kim J H, Lee Y J, Jeong N C, Yoon K B. Manual assembly of microcrystal monolayers on substrates, Angew. Chem. Int. Ed.,2007,46: 3087-3090
    [11]Liu Y, Li Y S, Yang W S. Phase-segregation-induced self-assembly of anisotropic MFI microbuilding blocks into compact and highly b-oriented monolayers, Langmuir,2011,27:2327-2333
    [12]Liu Y, Li Y S, Yang W S. Fabrication of highly b-oriented MFI monolayers on various substrates, Chem. Commun.,2009,45:1520-1522
    [13]Zhou M, Hedlund J. Oriented monolayers of submicron crystals by dynamic interfacial assembly, J. Mater. Chem.,2012,22:3307-3310
    [14]Di J C, Zhang C, Yan W F, Wang X F, Yu J H, Xu R R. Direct in situ crystallization of highly oriented silicalite-1 thin films on a surface sol-gel process modified substrate, Microporous Mesoporous Mater.,2011,145: 104-107
    [15]Lee I, Buday J L, Jeong H K. μ-Tiles and mortar approach:a simple technique for the facile fabrication of continuous b-oriented MFI silicalite-1 thin films, Microporous Mesoporous Mater.,2009,122:288-293
    [16]Liu Y, Li Y S, Yang W S. Fabrication of highly b-oriented MFI film with molecular sieving properties by controlled in-plane secondary growth, J. Am. Chem. Soc.,2010,132:1768-1769
    [17]Liu Y, Li Y S, Yang W S. Effective manipulation of the microstructure of zeolite film by hydrothermal pretreatment, J. Mater. Sci.,2011,46:3942-3951
    [18]Liu Y, Li Y S, Cai R, Yang W S. Suppression of twins in b-oriented MFI molecular sieve films under microwave irradiation, Chem. Commun.,2012,48: 6782-6784
    [19]Gora L, Kuhn J, Baimpos T, Nikolakis V, Kapteijn F, Serwicka E M. Selective sensor utilizing a thin monolayer of b-oriented silicalite-1 crystals magneto elastic ribbon assembly, Analyst,2009,134:2118-2122
    [20]Lee I, Jeong H K. Synthesis and gas permeation properties of highly b-oriented MFI silicalite-1 thin membranes with controlled microstructure, Microporous Mesoporous Mater.,2011,141:175-183
    [1]Li X M, Yan Y S, Wang Z B. Continuity control of b-oriented MFI zeolite films by microwave synthesis, Ind. Eng. Chem. Res.,2010,49:5933-5938
    [2]Li X M, Peng Y, Wang Z B, Yan Y S. Synthesis of highly b-oriented zeolite MFI films by suppressing twin crystal growth during the secondary growth, CrystEngComm,2011,13:3657-3660
    [3]郎林,张宝泉,刘秀凤,在玻璃上合成有取向的silicalite-1分子筛膜及其生长机理,化工学报,2006,57:2229-2232
    [4]王周翔,闫文付,田大勇,曹学静,于吉红,徐如人,高度b取向Silicalite-1分子筛膜的制备,物理化学学报,2010,26:2044-2048
    [5]Zhou M, Hedlund J. Oriented monolayers of submicron crystals by dynamic interfacial assembly, J. Mater. Chem.,2012,22:3307-3310
    [6]Lee J S, Kim J H, Lee Y J, Jeong N C, Yoon K B. Manual assembly of microcrystal monolayers on substrates, Angew. Chem. Int. Ed.,2007,46: 3087-3090
    [7]Lai Z P, Tsapatsis M, Nicolich J P. Siliceous ZSM-5 membranes by secondary growth of b-oriented seed layers, Adv. Funct. Mater.,2004,14:716-729
    [8]Zhang F Z, Fuji M, Takahashi M. In situ growth of continuous b-oriented MFI zeolite membranes on porous a-alumina substrates precoated with a mesoporous silica sublayer, Chem. Mater.,2005,17:1167-1173
    [9]Zhang F Z, Fuji M, Takahashi M. Preparation of b-oriented MFI zeolite membranes on porous a-alumina substrates precoated with mesoporous silica sublayer, J. Mater. Sci.,2005,40:2729-2732
    [10]Lai Z P, Bonilla G, Diaz I, Nery J G, Sujaoti K, Amat M A, Kokkoli E, Terasaki O, Thompson R W, Tsapatsis M, Vlachos D G. Microstructural optimization of a zeolite membrane for organic vapor separation, Science,2003,300:456-460
    [11]Ha K, Lee Y J, Jung D Y, Lee J H, Yoon K B. Micropatterning of oriented zeolite monolayers on glass by covalent linkage, Adv. Mater.,2000,12:1614-1617
    [12]Ha K, Lee Y J, Lee H J, Yoon K B. Facile assembly of zeolite monolayers on glass, silica, alumina, and other zeolites using 3-halopropylsilyl reagents as covalent linkers, Adv. Mater.,2000,12:1114-1117
    [13]Yoon K B. Organization of zeolite microcrystals for production of functional materials, Acc. Chem. Res.,2007,40:29-40
    [14]Kulak A, Park Y S, Lee Y J, Chun Y S, Ha K, Yoon K B. Polyamines as strong molecular linkers for monolayer assembly of zeolite crystals on flat and curved glass, J. Am. Chem. Soc.,2000,122:9308-9309

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700