用于芳香烃选择分离的改性聚苯乙烯材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于芳香烃和链烷烃组成物相近的沸点以及混合物中恒沸组成的存在,芳香烃和链烷烃的分离一直是分离、吸附领域研究的难点和热点之一。传统的分离方法是利用环丁砜、N-甲基吡咯烷酮、N-甲酰基吗啉等有机溶剂对烃类混合物进行液液萃取和抽提蒸馏。由于这些溶剂的沸点均较高,再生处理时需要以蒸汽的形式从回收器的顶端返回到脱单塔底部,导致了成本的增加和大量能源的消耗。还有一部分溶剂残留在非芳烃相中,这些溶剂的回收需要大量的水洗和能耗。另外,两种分离方法对于质量浓度低于20%的芳香烃均达不到很好的分离效果。近年来,离子液作为有希望替代传统溶剂的一种新的分离溶剂被广泛的研究。然而离子液也存在着粘度高;价格高;有腐蚀性;在湿空气和水中不稳定等诸多问题,难以实现工业化。膜渗透汽化技术是基于混合物各组成在膜中不同的溶解和扩散能力对芳香烃/链烷烃混合物进行分离的一门新兴技术。早期的渗透汽化膜材料,如聚乙烯、聚丙烯等,尽管成膜性好、通量大,但是易于溶胀,选择性欠佳。而芳香族聚氨酯、聚醚酰胺和聚苯并噁唑等膜材料,尽管不易被普通溶剂溶解,获得了较高选择系数,但存在着通量小、操作条件苛刻的缺点。
     聚苯乙烯材料由于其优良的机械性能、良好的热稳定性和化学稳定性,在色谱、吸附、离子交换树脂以及印记高分子领域被广泛地应用。将改性聚苯乙烯材料用于芳香烃/链烷烃的分离,具有成本低,回收方便,操作简单的优势。与传统的分离技术相比,改性交联聚苯乙烯球分离芳香烃/链烷烃技术以其对芳烃的选择性溶胀为基础,主要利用苯乙烯侧链上的苯环与芳烃之间较强的π-π作用,在聚苯乙烯侧链上引入极性基团,使得芳烃仍然能溶胀于聚苯乙烯中,而链烷烃则不能溶胀于聚苯乙烯,从而提高改性交联聚苯乙烯的芳烃选择性。
     本论文的主旨是设计和制备可应用于芳香烃/链烷烃分离的改性聚苯乙烯材料。我们制备了几种不同结构和组成的聚苯乙烯材料,并研究了其对多种芳香烃/链烷烃的分离效果。
     在本论文第一章,我们简要介绍了芳烃/链烷烃分离的主要方法,并介绍了聚合物极性修饰的主要方法。在此基础上,提出了本论文的设计思想及主要内容。
     在本论文第二章,我们设计合成了磺酰化低分子量的聚苯乙烯,采用核磁、红外、元素分析等测试手段对产物进行了详细的表征。将其用于甲苯/正庚烷溶液萃取,结果发现甲苯分配系数和选择性系数均随磺化比例的增大明显提高。该材料表现出较好的热稳定性,可以重复使用。
     在本论文的第三章,我们制备了酯基、酰胺基以及砜基修饰的交联聚苯乙烯球。考察了各种影响球粒径的因素以及修饰基团的含量对树脂球溶胀能力和选择性能的影响。发现酰胺基修饰交联聚苯乙烯的溶胀率较大,在43-54%的范围内。后磺化法制备的砜基修饰交联聚苯乙烯球具有较高的选择因子。比较用于改性砜基的三种磺化剂,发现其反应活性为苯磺酰氯〉对甲苯磺酰氯〉甲磺酰氯。对甲苯磺酰氯与苯磺酰氯改性树脂球的选择因子均高于甲基磺酰氯磺化聚苯乙烯球。当甲苯/正庚烷喂料中甲苯含量为的13wt.%时,溶胀率为24%,甲苯的选择因子为3.27。
     在本论文的第四章,我们通过碳酸钙晶须占位及刻蚀的方法制备了具有微米级通道结构的交联聚苯乙烯球,对磺化后交联聚苯乙烯中硫元素分布情况进行了表征,发现具有通道结构的树脂球砜基分布更均匀。与不具有通道结构的交联聚苯乙烯球相比较,通道结构交联聚苯乙烯球达到饱和溶胀的时间明显缩短。该材料用于苯/正己烷混合物分离,溶胀率31%,分离因子为6.37。
The separation of aromatics hydrocarbons from aliphatic hydrocarbon ischallenging due to their close boiling points and azeotropes formation. The traditionalseparation methods are extraction and extractive distillation with organic solventssuch as N-formyl morpholine, N-methyl pyrrolidone or sulfolane. The regeneration ofsolvents needs to remove them from the extract and raffinate phase, partial residualsolvents in aliphatic phase needs to be removed using large amounts of water, whichcause an additional investment and energy consumption. In addition, two kinds ofmethods can not obtain high selective factors for feeds with low aromatic content(<20%). Recently, ionic liquids, which are considered to be promising as replacementsfor the aforementioned organic solvents, have been studied widely. However, mostionic liquids have unfavorable chemical properties which disable their use on biggerscales in industries. These limitations are mainly due to instability as a result ofcorrosiveness and moisture instability as well as insolubility in water. Anotherdisadvantages of ionic liquids is its high viscosity and high price. Permeability is anemerging method of aromatic/aliphatic separation. Permeability through polymericmembranes is mainly dependent on solubility and diffusion differences between thecomponents of mixture. The membranes based on polyethylene, polypropylene havedisplayed good film-forming ability and large flux, but swelling of membrane insolvents and low selectivity have been some problems difficult to be solved. Althoughthe membranes based on aromatic polyurethane, polyether amide and polybenzoxazole can not be dissolved by common solvents and displayed highseparation factors, the major roadblocks in pervaporation are the low flux and harshoperation conditions. For all these reasons, the industry has always been eager to lookfor a viable alternative to the conventional aromatics/aliphatics separation processes.
     Polystyrene have excellent mechanical properties, good chemical and thermalstability. Their excellent performances provide wide applications in chromatography,adsorption, ion-exchange resins and imprinted polymer fields. As a type of absorbentfor potential separation of aromatics/aliphatics, polystyrene has a lower raw materialcost, simple operation and recovery. Compared with traditional separation methods,the separation of aromatics/aliphatics using polystyrene based on selective swelling inaromatic hydrocarbons, mainly depends on the strong π-π interaction between thephenyl group of the styrene and aromatics. In addition, due to the introduction ofpolar groups, polystyrene still can swell in aromatics, but can not do in aliphatics.
     In this dissertation, we aim at the design and preparation of polystyrene modifiedwith polar groups that can be used on the separation of aromatics/aliphatics. Severalkinds of polystyrene with different structure and composition have been prepared andthe separation effects on a variety of aromatic/aliphatic hydrocarbons have beenstudied.
     In chapter1, we have made a brief introduction of separation methods ofaromatics/aliphatics; then we reviewed the methods of modification of polystyrene.
     In chapter2, we have prepared the low molecular weight sulfonate polystyrene.Their properties were fully characterized by nuclear magnetic resonance, Fouriertransform infrared spectroscopy and elemental analyses. Modified polystyrene wasapplied to extract toluene from toluene/n-heptane solution.The results indicates thatwith increasing content of sulfone groups, the distribution coefficient and selectivefactor of toluene obviously increased. This kind of material displayed excellentthermal abilities and good regeneration capacities.
     In chapter3, we have prepared cross-linked polystyrene beads modified with ester,amide or sulfone groups. The influencing factors of particle size of beads were studied and the effect of modified group content on swelling ratio and selective factor wasobserved. The results indicate that the crosslinked polystyrene beads modified withamide groups displayed high swelling ratios in the range of43-54%. The beadsmodified with sulfone groups which was prepared using post-sulfonylation revealedhiger separation factors. A comparison of the experiments with three kinds ofsulfonating agent led to the conclusion that the order of reactivity of sulfonatingagents is:benzenesulfonyl chloride〉4-toluene sulfonyl chloride〉methanesulfonylchloride. The separation factors of sulfonated polystyrene with4-toluene sulfonylchloride and benzenesulfonyl chloride were also higher than that of methanesulfonylchloride. The swelling ratio was24%and the separation factor was3.27when thetoluene content was13wt.%in the feed mixture.
     In chapter4, the cross-linked polystyrene beads with channels were successfullyprepared by occupation and etch of CaCO3whiskers. These beads were sulfonated andthe distribution of sulfur was characterized by EDAX. Results indicate that thechannel structure facilitated the uniform distribution of sulfone groups. Comparedwith that of nonchannel polystyrene beads, the saturated swelling time of channelbeads obviously decreased. These beads were applied to separate benzene/hexane andresults indicate that swelling ratio was31%and selective factor was6.37.
引文
[1] MACKAY D, SHIU W Y. Aqueous solubility of polynuclear aromatichydrocarbons [J]. J Chem Eng Data,1977,22:399-402.
    [2] GUENTHER K, KLEIST E, THIELE B. Estrogen-active nonylphenols from anisomer-specific viewpoint: a systematic numbering system and future trends [J]. AnalBioanal Chem,2006,384:542-546.
    [3]张文良.《植物油抽提溶剂》新标准对浸出溶剂生产和应用的影响[J].中国油脂,2010,35(10):71-73.
    [4] CHEN J, DUAN L P, MI J G, et al. Liquid-liquid equilibria of multi-componentsystems including n-hexane, n-octane, benzene, toluene, xylene and sulfolane at298.15K and atmospheric pressure [J]. Fluid Phase Equilibria,2000,173(1):109-119.
    [5] CHEN J, LI Z C, DUAN L P. Liquid-liquid equilibria of ternary and quaternarysystems including cyclohexane,1-heptene, benzene, toluene, and sulfolane at298.15K [J]. Journal of Chemical and Engineering Data,2000,45(4):689-692.
    [6] CHOI Y J, CHO K W, CHO B W, et al. Optimization of the sulfolane extractionplant based on modeling and simulation [J]. Industrial&Engineering ChemistryResearch,2002,41(22):5504-5509.
    [7] FRE R M D, VERHOEYE L A. Phase equilibria in systems composed of analiphatic and an aromatic hydrocarbon and sulpholane [J]. J Appl Chem Biotechnol,1976,26(1):469-487.
    [8] CHEN J, LI Z C, DUAN L P. Liquid-Liquid Equilibria of Ternary and QuaternarySystems Including Cyclohexane,1-Heptene, Benzene, Toluene, and Sulfolane at298.15K [J]. J Chem Eng Data,2000,45(4):689-692.
    [9] CHOI Y J, CHO K W, CHO B W, et al. Optimization of the Sulfolane ExtractionPlant Based on Modeling and Simulation [J]. Ind Eng Chem Res,200241(4):5504-5509.
    [10] MOHAMMAD D F S, MOHSEN-NIA M. Ternary Liquid-Liquid Equilibria forSystems of (Sulfolane+Toluene or Chloronaphthalene+Octane)[J]. J Chem EngData,2006,51(4):1431-1435.
    [11] RAWAT B S, GULATI I B, MALLIK K L. Study of some sulphur-groupsolvents for aromatics extraction by gas chromatography [J]. J Appl Chem Biotechnol,1976,26(1):247-252.
    [12] DARWISH N A, ABDELKARIM M A, HILAL N, SHOUR I. Analysis andEvaluation of the Liquid-Liquid Equilibrium Data of the Extraction of Aromatics fromHydrocarbons by Tetraethylene Glycol [J]. J Chem Eng Data,2003,48(6):1614-1619.
    [13] WANG W, GOU Z, ZHU S L. Liquid Liquid Equilibria for Aromatics ExtractionSystems with Tetraethylene Glycol [J]. J Chem Eng Data,1998,43(1):81-83
    [14] AL-SAHHAF T A, KAPETANOVIC E. Measurement and prediction of phaseequilibria in the extraction of aromatics from naphtha reformate by tetraethyleneglycol [J]. Fluid Phase Equilib,1996,118(2):271-285.
    [15] WANG W, GOU Z, ZHU S. Liquid-Liquid Equilibria for Aromatics ExtractionSystems with Tetraethylene Glycol [J]. Journal of Chemical&Engineering Data,1998,43(1):81-3.
    [16] RAWAT B S, PRASAD G. Liquid-Liquid Equilibria for Benzene-n-HeptaneSystems with Triethylene Glycol, Tetraethylene Glycol, and Sulfolane ContainingWater at Elevated Temperatures [J]. J Chem Eng Data,1980,25:227-30.
    [17] LIN W C, TSAI T, LIN T Y, et al. Influence of the Temperature on theLiquid-Liquid Equilibria of Heptane+Toluene+Sulfolane and Heptanem-Xylene+Sulfolane [J]. J Chem Eng Data2008,53:760-764.
    [18] CASSEKK G W, HGSSAN M M, HEINES A L. Correlation of the PhaseEquilibrium Data for the Heptane-Toluene-Sutfolane and Heptane-Xylene-SutfolaneSystems [J]. Journal of Chemical and Engineering Data,1989,34:434-438.
    [19] SCHNEIDER D F. Avoid sulfolane regeneration problems [J]. ChemicalEngineering Progress,2004,100(7):34-39.
    [20] HAMID S H, ALI M A. Comparative study of solvents for the extraction ofaromatics from naphtha [J] Energy Sources,1996,18:65-84.
    [21] KRISHNA R, GOSWANI A N, NANDTI S M, et al. Extraction of aromaticsfrom63–69oc naphtha fraction for food grade hexane production using sulpholaneand NMP as solvents [J]. Ind J Technol,1987,10:25-28.
    [22] NAIDOO R D, LETCHER T M, RAMJUGERNATH D. Ternary Liquid-LiquidEquilibra for Pseudoternary Mixtures Containing an n-Alkane+an AromaticHydrocarbon+{N-Methyl-2-pyrrolidinone+a Solvent} at298.2K and1atm [J]. JChem Eng Data,2001,46(6):1375-1380.
    [23] FANDARY M S, AL-JIMAZ A S, AL-KANDARY J A, et al. Extraction ofpentylbenzene from high molar mass alkanes (C14and C17)by N-methyl-2-pyrrolidone [J]. J Chem Thermodynamics,2006,38(4):455-460.
    [24] AL-JIMAZ A S, FANDARY M S, AL-KANDARY J A. Measurement andCorrelation of Phase Equilibria for Dodecane+sec-Butylbenzene+N-Methyl-2-pyrrolidone [J]. J Chem Eng Data,2005,50(5):1740-1746.
    [25] SAHA. M. Liquid-Liquid Equilibrium Studies on Toluene+Heptane+Solvent [J].J Chem Eng Data,1998,43:422-426.
    [26] AL-JIMAZ A S, FANDARY M S, AL-KANDARY J A, et al. Liquid–liquidequilibria for n-alkanes (C12, C14, C17)+propylbenzene+NMP mixtures attemperatures between298and328K [J]. Fluid Phase Equilibria,2005,231:163-170.
    [27] MOHSEN-NIA M, MODARRESS H, DOULABI, F. Liquid-liquid Equilibriafor Ternary Mixtures of (Solvent+Aromatic Hydrocarbon+Alkane)[J]. J ChemThermodynamics,2005,37:1111-1118.
    [28] MONDRAGON-GARDUNO M, ROMERO-MARTINEZ A, TREJO A.Liquid-Liquid Equilibria for Ternary Systems. I. C6-isomers+Sulfolane+Toluene at298.15K [J]. Fluid Phase EquilibEquilib,1991,64:291-303.
    [29] ASHOUR I, ABU-EISHAH S I. Liquid-Liquid-Equilibria for Cyclohexane+Ethylbenzene+Sulfolane [J]. J Chem Data,2006,51:859-63.
    [30] FOLKINS H O, Benzene. Ullmann’s Encyclopedia of Industrial Chemistry [M].John Wiley&Sons,2000.
    [31] DIEHL T, KOLBE B, GEHRKE H. Extractive Distillation-Where do we stand?Conference Proceedings: ERTC Petrochemical Conference, Prague, Czech Rebuplic,October3-5,2005[C].
    [32] EMMRICH G, ENNENBACH F, RANKE U. Krupp Uhde Processes forAromatics Recovery. Conference Proceedings:1st European PetrochemicalsTechnology Conference, London, U.K., June21-22,1999[C].
    [33] COLLIN G, HOKE H, TALBIERSKY J. Ullmann’s Encyclopedia of IndustrialChemistry [M]. John Wiley&Sons,2006.
    [34] WASSERSCHEID P, KEIM W. Ionic liquid-new solutions for transition metalcatalysis [J]. Angew Chem Int Ed,2000,39:3772-3789.
    [35] WANG W, GOU Z, ZHU S. Liquid-liquid equilibria for aromatics extractionsystems with tetraethylene glycol [J]. Journal of Chemical&Engineering Data,1998,43(1):81-83.
    [36] MEINDERSMA G W, HAAN A B. Conceptual process design foraromatic/aliphatic separation with ionic liquids [J]. Chemical Engineering Researchand Design,2008,86(7):745-752.
    [37] GORDON C M. New developments in catalysis using ionic liquids [J]. AppliedCatalysis A: General,2001,222(1–2):101-117.
    [38] SEDDON K R, STARK A, TORRES M J. Influence of Chloride, Water, andOrganic Solvents on the Physical Properties of Ionic Liquids [J]. Pure Appl Chem,2000,72:2275-2287.
    [39] GORDON, CHARLES M. New developments in catalysis using ionic liquids [J].Applied Catalysis A:General,2001,222(1-2):101-117.
    [40] PLECHKOVA N V, SEDDON KR. Applications of Ionic Liquids in theChemical Industry [J]. Chem Soc Rev,2008,37:123-150.
    [41] JORK C, SEILER M, BESTE Y A. Influence of Ionic Liquids on the PhaseBehavior of Aqueous Azeotropic Systems [J]. J Chem Eng Data,2004,49:852-857.
    [42] ACRE A, EARLE M J, RODRIGUEZ H. Separation of Aromatic Hydrocarbonsfrom Alkanes Using the Ionic Liquid1-ethyl-3-methyl-imidazoliumbis{(trifluoromethyl)sulfonyl}amide [J]. Green Chem,2007,9:70-74.
    [43] DEENADAYALU N, NGCONGO K C, LETCHER T M. Liquid-LiquidEquilibria for Ternary Mixtures (an Ionic Liquid+Benzene+Heptane or Hexadecane)at T=298.2K and Atmospheric Pressure [J]. J Chem Eng Data2006,51:988-991.
    [44] LETCHER T, DEENADAYALU N. Ternary Liquid-Liquid Equilibria forMixtures of1-Methyl-3-octyl-imidazolium Chloride+Benzene+an Alkane at T=298.2K and1atm [J]. J Chem Thermodyn,2003,35:67-76.
    [45] MARSH K N, BOXALL J A. Room temperature ionic liquids and their mixtures[J]. Fluid Phase Equilib,2004,219:93-98.
    [46] LETCHER T, REDDY P. Ternary (liquid+liquid) Equilibria for Mixtures of1-Hexyl-3-Methylimidazolium (Tetrafluoroborate or Hexafluorophosphate)+Benzene+an Alkane at T=298.2K and p=0.1MPa [J]. J Chem Thermodyn,2005,37:415-421.
    [47] ZHANG J, Huang C P, CHEN B H. Extraction of aromatic hydrocarbons fromaromatic/aliphatic mixtures using chloroaluminate room-temperature ionic liquids asextractants [J].Energy&Fuels,2007,21(3):1724-1730.
    [48] DOMANSKA U, POBUDROWSKA A. Zolek-Tryznowska Effect of an IonicLiquid (IL) Cation on the Ternary System (IL+p-Xylene+Hexane) at T=298.15K.[J]. J Chem Eng Data,2007,52:2345-2349.
    [49] ARCE A, EARLE M, RODRIGUEZ H.1-ethyl-3-methyl-imidazoliumbis{(trifluoromethyl)sulfonyl}amide as Solvent for the Separation of Aromatic andAliphatic Hydrocarbons by Liquid Extraction-Extension to C7-and C8-fractions [J].Green Chem,2008,10:1294-1300.
    [50] HEINTZ A, KULIKOV D V, VEREVKIN S. Thermodynamic Properties ofMixtures Containing Ionic Liquids.1. Activity Coefficients at Infinite Dilution ofAlkanes, Alkenes, And Alkylbenzenes in4-Methyl-n-butylprydidiniumTetrafluoroborate Using Gas-Liquid Chromatography [J]. J Chem Eng Data,2001,46:1526-1529.
    [51] DOMANSKA U, MARCINIAK A. Liquid Phase Behaviour of1-hexyloxymethyl-3-methyl-imidazolium-based Ionic Liquids with Hydrocarbons:The Influence of the Anion [J]. J Chem Thermodyn,2005,37:577-585.
    [52] EIKE D M, BRENNECKE J F, MAGINN E J. Predicting Infinite-DilutionActivity Coefficients of Organic Solutes in Ionic Liquids [J]. Ind Eng Chem Res,2004,43:1039-1048.
    [53] FOCO G M, BOTTINI S B, QUEZADA N. Activity Coefficients at InfiniteDilution in1-Alkyl-3-methylimidazolium Tetrafluoroborate Ionic Liquids [J]. JChemEng Data,2006,51:1088-1091.
    [54] URSZULA D. Thermophysical properties and thermodynamic phase behavior ofionic liquids [J]. Thermochimica Acta,2006,448(1):19-30.
    [55] LETCHER T M, MARCINIAK A, MARCINIAK M. Determination of ActivityCoefficients at Infinite Dilution of Solutes in the Ionic Liquid1-Butyl-3-methylimidazolium Octyl Sulfate Using Gas-Liquid Chromatography at aTemperature of298.15K,313.15K, or328.15K [J]. J Chem Eng Data,2005,50:1294-1298.
    [56] MATSUMOTO M, INOMOTO Y, KONDO K. Selective Separation of AromaticHydrocarbons through Supported Liquid Membranes Based on Ionic Liquids [J]. JMembr Sci,2005,246:77-81.
    [57] DOMANSKA U, POBU, ADKONSKA A, KROLIKOWSKI M. Separation ofAromatic Hydrocarbons from Alkanes using Ammonium Ionic Liquid C2NTf2N at T=298.15K [J]. Fluid Phase Equilib,2007,259:173-179.
    [58] ZHAO H, XIA S, MA P. Use of ionic liquids as―green‖solvents for extractions[J], Journal of Chemical Technology&Biotechnology,2005,80(10):1089-1096.
    [59] MEINDERSMA G W, PODT A J G, HAAN A B. Ternary Liquid-LiquidEquilibria for Mixtures of Toluene+n-Heptane+an Ionic Liquid [J]. Fluid PhaseEquilib,2006,247:158-168.
    [60] MEINDERSMA G W, PODT A J G, HAAN A B. Ternary Liquid-LiquidEquilibria for Mixtures of an Aromatic+an Aliphatic Hydrocarbon+4-Methyl-Nbutylpyridinium Tetrafluoroborate [J]. J Chem Eng Data,2006,51:1814-1849.
    [61] ZHU J, CHEN J, LI C Y, et al. Centrifugal extraction for separation ofethylbenzene and octane using1-butyl-3-methylimidazolium hexafluorophosphateionic liquid as extractant [J]. Sep Purif Technol,2007,56:237-240.
    [62] DOPONT J, CONSORTI C S, SPENCER J. Room temperature molten salts:neoteric―green‖solvents for chemical reactions and processes [J], J Braz Chem SocRev,2000,11(4):337-344.
    [63] YAN R, SHAO M, LIANG Z, et al. Determination of four pesticides in soil byhomogeneous ionic liquid-based micro extraction coupled with high-performanceliquid chromatography [J]. Chem Res Chin Univ,2013,29(2):218-222.
    [64] BLANCHARD L A, BRENNECKE J F. Recovery of organic products fromionic liquids using supercritical carbon dioxide [J]. Ind Eng Chem Res,2001,40(1):287-292.
    [65] DAVID W, LETCHER T M, RAMJUGERNATH D, et al. Activity coefficientsof hydrocarbon solutes at infinite dilution in the ionic liquid,1-methyl-3-octyl-imidazolium chloride from gas-liquid chromatography [J]. J ChemThermodyn,2003,35(8):1335-1341.
    [66] CHIAPPE C, PIERACCINI D. Ionic liquids: solvent properties and organicreactivity [J]. Journal of Physical Organic Chemistry,2005,18(4):275-297.
    [67] MEINDERSMA G W, PODT A, HAAN A B. Selection of ionic liquids for theextraction of aromatic hydrocarbons from aromatic/aliphatic mixture [J]. FuelProcessing Technology,2005,87:59-63.
    [68] HOLBREY J D, RIICHERT W M, NIEUWENHUYZEN M, et al. Liquidclathrate formation in ionic liquid-aromatic mixtures [J]. Chem Commun,2003,4:476-477.
    [69] RUMMEN M, WASSERSCHEID P, GMEHLING J. Measurements of ActivityCoefficients at Infinite Dilution in Ionic Liquids Using the Dilutor Technique [J]. JChem Eng Data,2002,47:1411-1417.
    [70] PEREIRO A B, RODRIEZ A. Application of the ionic liquid Ammoeng102foraromatic/aliphatic hydrocarbon separation [J]. J Chem Thermodynamics,2009,41:951-956.
    [71] CALVAR N, DOMINGUEZ I, GOMEZ E, et al. Separation of binary mixturesaromatic+aliphatic using ionic liquids: Influence of the structure of the ionic liquid [J].Chemical Engineering Journal,2011,175:213-221.
    [72]曾昭容,丁立,彭勇,王保国.用于芳烃/烷烃体系蒸汽渗透分离的离子液体支撑液膜研究[J]. Journal of Chemical Engineering of Chinese Universities,2009,23(5):762-767.
    [73] ARCE A, EARLE M, RODRIGUEZ H. Separation of Benzene and Hexane bySolvent Extraction with1-Alkyl-3-methylimidazolium Bis{(trifluoromethyl)sulfonyl}amide Ionic Liquids: Effect of the Alkyl-Substituent Length [J]. J Phys Chem B,2007,111(18):4732-4736.
    [74] OKOTURO O O, VANDERNOOT T J. Temperature dependence of viscosity forroom temperature ionic liquids [J]. Journal of Alectroanalytical Chemistry,2004,568:167-181.
    [75] SCHWARZ H H, SCHWARZ H H, MALSCH G. Polyelectrolyte membranesfor aromatic–aliphatic hydrocarbon separation by pervaporation [J]. Journal ofMembrane Science,2005,247:143–152.
    [76] TOPF M, INGRAM T, MEHLING T, et al. Product recovery in surfactant-basedseparation processes: Pervaporation of toluene from concentrated surfactant solutions[J]. J Membr Sci,2013,444(1):32-40.
    [77] MANDAL M K, BHATTACHARYA P K. Poly (vinyl acetal)membrane forpervaporation of benzene-isooctane solution [J]. Sep Purif Technol,2008,61:332.
    [78] LIU K, FANG C J, LI Z Q, et al. Separation of thiophene/n-heptane mixturesusing PEBAX/PVDF-composited membranes via pervaporation [J]. J Membr Sci,2014,451(1):24-31.
    [79] LI Z, ZHANG B, QU L X, et al. A novel atmosphericc dielectric barrierdischarge (DBD) plasma graft-filling technique to fabricate the composite membranesfor pervaporation of aromatic/aliphatic hydrocarbons [J]. J Membr Sci,2011,371:163-170.
    [80] BINNING R C, JAMES F E. New separation by membrane permeation [J].Petrol Refiner1958,37:214–215.
    [81] MAJI S, BANERJEE S, PRADHAN N C. Separation of benzene/cyclohexanemixture using semifluorinated aromatic poly(ether amide) membranes with andwithout cardo unit in the main chain [J]. Separation and Purification Technology,2009,70:128–135.
    [82] GREENLAW F W, SHELDEN R A, THOM SON E V. Dependence of diffusivepermeation rates on upstream and downstream pressures: II. Two component permeant[J]. J Membr Sci,1977,2:333-248.
    [83] BRUN J P, LARCHER C, MELET R, et al. Modelling of the pervaporation ofbinary mixtures through moderately swelling, non-reacting membranes [J]. J MembrSci,1985,23:257-283.
    [84] YOEM C K, HUANG R Y. Modelling of the pervaporation separation ofethanol-water mixtures through crosslinked poly (vinyl alcohol) membrane [J]. J Membr Sci,1992,67:39-55.
    [85] FREEMAN B D. Basis of permeability/selectivity tradeoff relations inpolymeric gas separation membranes [J]. Macromolecules,1999,32:375–380.
    [86] SMITHA B, SUHANYA D, SRIDHAR S, et al. Separation of organic–organicmixtures by pervaporation—a review [J]. J Membr Sci,2004,241:1-21.
    [87] GARCIA-VILLALUENGA J P, TABE-MOHAMMADI A. A review on theseparation of benzene/cyclohexane mixtures by pervaporation processes [J]. J MembrSci,2000,169:159-174.
    [88] YOSHIKAWA M, TSUBOUCHI K. Specialty polymeric membranes.10.Separation of benzene from benzene/cyclohexane mixtures with modified nylon6membranes [J]. Sep Purif Technol,1999,17:213-223.
    [89] REN J, STAUDT-BICKEL C, LICHTENTHALER R N. Separation ofaromatics/aliphatics with crosslinked6FDA based copolyimides [J]. Sep Purif Technol,2001,22-23:31-43.
    [90] MATSUI S, PAUL D R. Pervaporation separation of aromatic–aliphatichydrocarbons by crosslinked poly(methyl acrylate-co-acrylic acid) membranes [J]. JMembr Sci2002,195:229-245.
    [91] VILLALUENGA J P G, KHAYET M, GODINO P, et al. Pervaporation oftoluene/alcohol mixtures through a coextruded linear low-density polyethylenemembrane,[J]. Ind Eng Chem Res,2003,42:386-391.
    [92] YOSHIKAWA M, TAKEUCHI S, KITAO T. Pervaporation separation ofbenzene/cyclohexane mixtures with nylon-6-graft-poly(oxyethylene) membranes,[J].Macromol Mater Eng,1997,245:193–202.
    [93] YAMASAKI A, SHINBO T, MIZOGUCHI K. Pervaporation ofbenzene/cyclohexane and benzene/n-hexane mixtures through PVA membranes [J]. JAppl Polym Sci1997,64:1061–1065.
    [94] NAM S Y, LEE Y M. Pervaporation separation of methanol/methyl t-butyl etherthrough chitosan composite membranes modified with surfactants [J]. J Membr Sci1999,157:63-71.
    [95] SCHWARZ H H, APOSTET R, POUL D. Membranes based on polyelectrolyte–surfactant complexes for methanol separation [J]. J Membr Sci,2001194:91-102.
    [96] SEMENOVA S I. Polymer membranes for hydrocarbon separation and removal[J]. J Membr Sci2004,231:189-207.
    [97] PARK C K, OH B K, CHOI M J, et al. Separation of benzene/cyclohexaneby pervaporation through chelate poly(vinyl alcohol)/poly(allyl amine) blendmembrane,[J]. Polym Bull,1994,33:591-598.
    [98] INUI K, NOGVCHI T, MIYATA T, et al. Pervaporation characteristics ofmethyl methacrylate-methacrylic acid copolymer membranes ionically cross-linkedwith metal ions for a benzene/cyclohexane mixture [J]. J Appl Polym Sci,1999,71:233-241.
    [99] LIOU G S, HSIAO S H, NEGI Y S, et al. Soluble aromatic polyamides andcopolyamides [J]. J M S Rev Macromol Chem Phy1999,39:391-403.
    [100] KATARZYNSKI D, PITHAN F, STAUDT C. Pervaporation of multicomponentaromatic/aliphatic mixtures through copolyimide membranes [J]. Separation Scienceand Technology,2008,43:59-70.
    [101] XU W, PAUL D R, KOROS W J. Carboxylic acid containing polyimides forpervaporation separations of toluene/i-octane mixtures [J]. Journal of MembraneScience,2003,219:89–102.
    [102] KATARZYNSKI D, STAUDT C. Temperature-dependent separation ofnaphthalene/n-decane mixtures using6FDA-DABA-copolyimide membranes [J].Journal of Membrane Science,2010,348:84-90.
    [103] WANG H, UGOMOKI T, TANAKA K, et al. Sorption and pervaporationproperties of sulfonyl-containing polymide membrane to aromatic/non-aromatichydrocarbon mixtures [J]. Journal of Polymer Science: Part B: Polymer Physics,2000,38:2954-2958.
    [104] TANIHARA N T, TANAKA K, KITA H, et al. Pervaporation of organic liquidmixtures through membranes of polyimides containing methyl-substitutedphenylenediamine moieties [J]. J Membr Sci,1994,95:161-169.
    [105] HAO J Q, TANAKA K, HOYASH ITA S, et al. The pervaporation propertiesof sulfonyl-containing polyimide membranes to aromatic/aliphatic hydrocarbonmixtures [J]. J Membr Sci,1997,132(1):97-108.
    [106] SUDING M T H, STAUDT C. Sulfur-containing copolyimides for themembrane-based separation of aromatic/aliphatic mixtures [J]. J Appl Polym Sci,2013,127(6):5065-5074.
    [107] PARK H B, JUNG C H, LEE Y M, et al. Polymers with cavities tuned for fastselective transport of small molecules and ions [J]. Science,2007,318:254-258.
    [108] PARK H B, HAN S H, JUNG C H, et al. Thermally rearranged (TR) polymermembranes for CO2separation [J]. Journal of Membrane Science,2010,359:11-24.
    [109] RIBEIRO C P, FREEMAN B D, KALIKA D S, et al. Aromatic polyimide andpolybenzoxazole membranes for the fractionation of aromatic/aliphatic hydrocarbonsby pervaporation [J]. Journal of Membrane Science,2012,390-391:182-193.
    [110] CHEN L,WU L G, TAN J, et al. PVA membrane filled cyclodextrin forseparation of isomeric xylenes by pervaporation [J]. Chemical Engineering Journal,2000,78:159-164.
    [111] YAMASAKI A, IWATSUBO T, MASUOKA T, et al. Pervaporation ofethanolwater through a poly(vinyl alcohol) cyclodextrin (PVA CD) membrane [J].Journal of Membrane Science,1994,89:111-117.
    [112] KOZLOWSKI C A, SLIWA W. The use of membranes with cyclodextrin unitsin separation processes: recent advances [J]. Carbohydrate Polymers,2008,74:1-9.
    [113] PENG F, JIANG Z, HU C, et al. Pervaporation of benzene/cyclohexanemixtures through poly(vinyl alcohol) membranes with and without cyclodextrin [J].Desalination,2006,193:182-192.
    [114] LUE S J, PENG S H. Polyurethane (PU) membrane preparation with andwithout hydroxypropyl cyclodextrin and their pervaporation characteristics [J].Journal of Membrane Science,2003,222:203-217.
    [115] ROLLING P, LAMERS M, STAUDT C. Cross-linked membranes based onacrylated cyclodextrins and polyethylene glycol dimethacrylates for aromatic/aliphaticseparation [J]. Journal of Membrane Science,2010,362:154-163.
    [116] HARLE V, KASZTELAN S, KRESSMANN S. Catalyst for hydrotreatinghydrocarbon feeds in a fixed bed reactor. Compiler:US,6436280[P/OL].2002-08-20.http://www.google.com/patents/US6436280.
    [117]黄新龙,郑应绪,刘金龙等.加氢法生产低芳烃含量溶剂油的工艺技术[J].炼油技术与工程,2004,34(4):49-51.
    [118] CASSELL G W,HASSAN M M, et al. New selective solvents of aromaticshydrocarbons based on petroleum sulphoxides [J]. J Chem Eng Data,1989,34:434-438.
    [119] MASOHANE A, NANOTI S M, et al. Liquid-Liquid Equilibrium of MTBEEthanol Water and MTBE1-Hexanol Water over the Temperature Range of288.15to318.15K [J]. Fluid Phase Equil,1990,61:89-98.
    [120] LEE S, KIM H. Liquid-Liquid Equilibrium of MTBE Ethanol WaterandMTBE1-Hexanol Water over the Temperature Range of288.15to318.15K [J]. JChem Eng Data,1995,40:499-503.
    [121] DEAL C H, EVAN H D, OLIVER E D, et al. Basic consideration in theselection of solvents for aromatic extraction [J]. Fifth World Petr Congr Proc,1959,3:283-297.
    [122] RUTHVEN D M. Zeolites as Selective Adsorbents [J]. Chem Eng Progr,1988,84(2):42-50.
    [123] TAKAHASHI A, YANG R T. New Adsorbents for Purification: SelectiveRemoval of Aromatics [J]. AIChE J,2002,48(7):1457-1468.
    [124] SEKIYA R, NISHIKIORI S. Adsorption and separation of poly-aromatichydrocarbons by a hydrogen-bonded coordination polymer [J]. Chem Commun,2012,48:5022-5024.
    [125] VEVERKA P, JERABEK K. Influence of hypercrosslinking on adsorption andabsorption on or in styrenic polymers [J]. React Funct Polym,2004,59:71-79.
    [126] VEVERKA P, JERABEK K. Mechanism of hypercrosslinking ofchloromethylated styrene-divinylbenzene copolymers [J]. React Funct Polym,1999,41:21-25.
    [127] AZANOVA V V, HRADIL J. Sorption properties of macroporous andhypercrosslinked copolymers [J]. React Funct Polym,1999,41:163-175.
    [128] PENNER N A, NESTERENKO P N. Application of neutral hydrophobichypercrosslinked polystyrene to the separation of inorganic anions by ionchromatography [J].J Chromatogr A,2000,884:41-51.
    [129] ZHOU Y, TANG X, XU Y, et al. Effect of quaternary ammonium surfactantmodification on oil removal capability of polystyrene resin [J]. Sep Purif Technol,2010,75(3):266-272.
    [130] YANG W W, LUO G S, GONG X C. Extraction and separation of metal ionsby a column packed with polystyrene microcapsules containing Aliquat336[J]. SepPurif Technol,2005,43(3):175-182.
    [131] GUPTA R K, SINGH R K, DUBEY S S. Removal of mercury ions fromaqueous solutions by composite of polyaniline with polystyrene[J]. Sep Purif Technol,2004,38(3):225-232.
    [132] KISELEVA M G, RADCJENKO L V, NESTERENKO P N. Ion-exchangeproperties of hypercrosslinked polystyrene impregnated with methyl orange [J]. JChromatogr A,2001,920:79-85.
    [133] MACINTYRE F S, SHERRINGTON D C. Control of Porous Morphology inSuspension Polymerized Poly (divinylbenzene) Resins Using Oligomeric Porogens [J].Macromolecules,2004,37:7628-7636.
    [134] QIN L, HE X W, ZHANG W, et al. Surface-modified polystyrene beads asphotografting imprinted polymer matrix for chromatographic separation of proteins [J].Journal of Chromatography A,2009,1216(5):807-814.
    [135] SAPUNOV V N, GRIGORYEV M Y, SULMAN E M, et al. d-GlucoseHydrogenation over Ru Nanoparticles Embedded in Mesoporous HypercrosslinkedPolystyrene [J]. J Phys Chem A,2013,117(20):4073-4083.
    [136] MIZUTANI A, NAGASE K, KIKUCHI A, et al. Thermo-responsive polymerbrush-grafted porous polystyrene beads for all-aqueous chromatography [J]. Journal ofChromatography A,2010,1217(4):522-529.
    [137] ZHANG X, SHEN S, FAN L. Studies progress of preparation, properties andapplications of hyper-cross-linked polystyrene networks [J]. J Mater Sci,2007,42(18):7621-7629.
    [138] BELFER S, GLOZMAN, R. Anion exchange resins prepared frompolystyrene crosslinked via a Friedel–Crafts reaction [J]. J Appl Polym Sci,1979,24(10):2147-2157.
    [139] JUN B H, BYNU J W, KIM J Y, et al. Facile method of preparingsilver-embedded polymer beads and their antibacterial effect [J]. J Mater Sci,2010,45(11):3106-3108.
    [140] YUN Y H, SHON H K, YOON S D. Preparation and characterization ofmolecularly imprinted polymers for the selective separation of2,4-dichlorophenoxyacetic acid [J]. J Mater Sci,2009,44(22):6206-6211.
    [141] WANG Q H, WANG C Z, WEI Y M. Preparation and Adsorption Propertiesof New Chelating Resin Based on Chloromethylated Polystyrene Beads viaSurface-initiated Atom Transfer Radical Polymerization [J]. Chem J ChineseUniversities,2012,33(11):2579-2584.
    [142] YU P Z, LI X Q, LI X, et al. Preparative purification of polyethylene glycolderivatives with polystyrene-divinylbenzene beads as chromatographic packing[J].Bioorganic&Medicinal Chemistry Letters,2007,17(20);5605-5609.
    [143]刘永宁,史作清,施荣富,范云鸽,何炳林.极性修饰的聚苯乙烯吸附树脂的结构和性能[J].高等学校化学学报,1994,15(3):450-3.
    [144] UEDA M, UEHIYAMA K, KANO T. A New Synthesis of Diaryl Sulfones [J].Synthesis,1984(4),323-325.
    [145] CHOUDARY B M, SARMA M R. A novel single pot reaction for substitutionand cross-coupling of vinylacetate to trans-stilbenes by interlamellar montmorillonitepalladium catalyst [J]. Tetrahedron Lett,1990,31(10):1495-1496.
    [146] CHOUDARY B M, CHOWDARY N S, KANTAM M L, et al. Fe(III)exchanged montmorillonite: A mild and ecofriendly catalyst for sulfonylation ofaromatics [J]. Tetrahedron Lett,1999,40(14):2859-2862.
    [147] CHOUDARY B M, CHOWDARI N S, KANTAM M L. Friedel–Craftssulfonylation of aromatics catalysed by solid acids: An eco-friendly route for sulfonesynthesis [J]. Journal of the Chemical Society, Perkin Transactions1,2000,16:2689-2693.
    [148] NARA S J, HARJANI J R, SALUNKHE M M. Friedel-Crafts Sulfonylationin1-Butyl-3-methylimidazolium Chloroaluminate Ionic Liquids [J]. J Org Chem,2001,66:8616-8620.
    [149] PARTOUCHE E, WAYSBORT D, MARGEL S. Surface Modification ofCrosslinked Poly(styrene-divinylbenzene) Micrometer-sized Particles of Narrow SizeDistribution by Ozonolysis [J]. J Colloid Interface Sci,2006,294(1):69-78.
    [150] BAYRAMOGLU G, SENKAL F B, CELIK G. Preparation andCharacterization of Sulfonyl-hydrazine Attached Poly(styrene-divinylbenzene) Beadsfor Separation of Albumin [J]. Colloid Surf A: Physicochem Eng Asp,2007,294(1/3):56-63.
    [151] QIN L, HE X W, ZHANG W, et al. Surface-modified polystyrene beads asphotografting imprinted polymer matrix for chromatographic separation of proteins [J].Journal of chromatography A,2009,1216(5):807-814.
    [152] MULDER M H V, SMOLDERS C A. On the mechanism of separation ofethanol/water mixtures by pervaporation I. Calculations of concentration profiles [J]. JMembr Sci,1984,17:289-307.
    [153] YOO J S, KIM S J, CHOI J S. Swelling Equilibria of MixedSolvent/Poly(dimethylsiloxane) Systems [J]. J Chem Eng Data,1999,44(1):16-22.
    [154] MCKENNA G B, CRISSMAN J M. Temperature and crosslinking effects onthe swelling of poly(isoprene) in isopiestic conditions [J]. J Polym Sci, Part B: PolymPhys,1997,35(5):817-26.
    [155] MCKENNA G B, FLYNN K M, CHEN Y. Swelling in crosslinked naturalrubber: experimental evidence of the crosslink density dependence of χ [J]. Polymer,1990,31(10):1937-1945.
    [156] KRIGBAUM W R, CARPERTER D K. Phase equilibria in polymer–liquid1–liquid2systems [J]. J Polym Sci,1954,14(75):241-259.
    [157] PARK H-C, MEERTENS R M, MULDER M H V. Sorption ofAlcohol Toluene Mixtures in Poly(acrylic acid) Poly(vinyl alcohol) BlendMembranes and Its Role on Pervaporation [J]. Ind Eng Chem Res,1998,37(11):4408-4417.
    [158] WANG H, UGOMORI T, WANG Y, et al. Sorption and pervaporationproperties of crosslinked membranes of poly(ethylene oxide imide) segmentedcopolymer to aromatic/nonaromatic hydrocarbon mixtures [J]. J Polym Sci, Part B:Phys,2000,38(13):1800-1811.
    [159] MEULEMAN E E B, BOSCH B, MULDER M H V, et al. Modeling ofliquid/liquid separation by pervaporation: Toluene from water [J]. AIChEJ,1999,45(10):2153-2160.
    [160] WIENK I M, MEULEMAN E E B, BORNEMAN Z, et al. Chemicaltreatment of membranes of a polymer blend: Mechanism of the reaction ofhypochlorite with poly(vinyl pyrrolidone)[J]. Journal of polymer science:part A,1995,33(1):49-54.
    [161] MASA Z, POUCHLY J, PRIBILOVA J, et al. Swelling equilibrium in thesystem ethyl-benzene-1,3diphenylbutane-crosslinked polystyrene [J]. J Polym Sci:Symp,1975,53(1):271-282.
    [162] SCHLICK S, GAO Z, MATSUKAWA S, et al. Swelling and Transport inPolyisoprene Networks Exposed to Benzene/Cyclohexane Mixtures: A Case Study inMulticomponent Diffusion [J]. Macromolecules,1998,31:8124-8133.
    [163] NANDI S, WINTER H H. Swelling Behavior of Partially Cross-LinkedPolymers: A Ternary System [J]. Macromolecules,2005,38(10):4447-55.
    [164] OKEOWO O, DORGAN J R. Multicomponent Swelling of PolymerNetworks [J]. Macromolecules,2006,39(23):8193-8202.
    [165] LI Y, FAN Y, MA J. Thermal, physical and chemical stability of porouspolystyrene-type beads with different degrees of crosslinking [J]. PolymerDegradation and Stability,2001,73:163–167.
    [166] LEVCHIK G F, SI K, LEVCHIK S V, et al. The correlation betweencrosslinking and thermal stability: cross-linked polystyrenes and polymethacrylates.[J]. Polym Degrad Stab,1999,65(395.
    [167] GUPTA B, SCHERER G G, HIGHFIELD J G. Thermal stability of protonexchange membranes prepared by grafting styrene into pre-irradiated FEP films andeffects of crosslinking.[J]. Angew Makromol Chem Soc Rev,1998,256:81-85.
    [168] MA J, LI J, WANG L, et al. Synthesis of amino resins with low contents oftertiary amino and quaternary ammonium groups as well as their adsorption forgypenosides [J]. Chemical Journal of Chinese Universities,1992,13:1626-1631.
    [169] FAN Y, LIU Y, SHI Z, HE B. The synthesis of some macroporous crosslinkedpolystyrenes and their adsorption properties for chlorophyll copper [J]. ChemicalJournal of Chinese Universities,1994,15:1412-1418.
    [170] PODLESNYUK V V, HRADIL J, KRALOVA E. Sorption of organic vapoursby macroporous and hypercrosslinked polymeric adsorbents [J]. React Funct Polym,1999,42(3):181-191.
    [171] VEVERKA P, JERABEK K. Influence of hypercrosslinking on adsorptionand absorption on or in styrenic polymers [J]. React Funct Polym,2004,59(1):71-79.
    [172] PENNER N A, NESTERENKO P N. Application of neutral hydrophobichypercrosslinked polystyrene to the separation of inorganic anions by ionchromatography [J]. J Chromatogr A,2000,884(1-2):41-51.
    [173] KISELEVA M G, RADCHENKO L V, NESTERENKO P N. Ion-exchangeproperties of hypercrosslinked polystyrene impregnated with methyl orange [J].Journal of chromatography A,2001,920(1-2):79-85.
    [174] GUAN C J, CHEN L, DENG C H, et al. Synthesis and characterization ofperfluoro[1-(2-fluorosulfonyl)ethoxy]ethyl end-capped styrene oligomers [J]. JFluorine Chem,2003,119(1):97-100.
    [175] LIN Z, NI H, DU H, et al. A new type of hybridized macroreticular catalyst:Polystyrene with both perfluoroalkanesulfonic and sulfonic functional groups [J].Catalysis Communications,2007,8(1):31-35.
    [176] MAYA F, SVEC F. A new approach to the preparation of large surface areaoly(styrene-co-divinylbenzene) monoliths via knitting of loose chains using externalcrosslinkers and application of these monolithic columns for separation of smallmolecules [J].Polymer,2014,55(1):340-346.
    [177] OKAY O. Macroporous copolymer networks [J]. Prog Polym Sci,2000,25(6):711-779.
    [178] HUANG J H, WANG X L, WANG X M, et al.Hyper-cross-linked Polystyrene-co-divinylbenzene Resin Modified with Acetanilide:Synthesis, Structure, and Adsorptive Removal of Salicylic Acid from AqueousSolution [J]. Ind Eng Chem Res,2011,50(5):2891-2897.
    [179] LIU Q, WANG L, XIAO A, et al. A hyper-cross-linked PS with nanoporestructure [J]. European Polymer Journal,2008,44:2516-2522.
    [180] SHEN S, ZHANG X, FAN L. Hyper-cross-linked resins with controllablepore structure [J]. Materials Letters,2008,62:2392-2395.
    [181] MACINTYRE F S, SHERRINGTON D C, TETLEY L. Synthesis ofultrahigh surface area monodisperse porous polymer nanospheres [J]. Macromolecules,2006,39:5381-5384.
    [182] AHN J H, JANG J E, OH C G, et al. Rapid generation and control ofmicroporosity, bimodal pore size distribution, and surface area in Davankov-Typehyper-cross-linked resins [J]. Macromolecules,2006,39:627-632.
    [183] ZHANG X, SHEN S, FAN L. Studies progress of preparation, properties andapplications of hyper-cross-linked polystyrene networks [J]. J Mater Sci,2007,42(18):7621-7629.
    [184] KISHIDA O, IEDA N, YAMAUCHI T, et al. Strong organic acids as efficientcatalysts for the chloromethylation of m-xylene [J]. Ind Eng Chem Res,2009,48:1831-1839.
    [185] GAO B, ZHANG J, GUO J. Synthesis of salicylic acid-polystyrene typechelate resin with a new route [J]. J Polym Res,2010,17:301-308.
    [186] AHN J H, JANG J E, OH C G, IHM S K, CORTEZ J, SHERRINGTON D C.Rapid Generation and Control of Microporosity, Bimodal Pore Size Distribution, andSurface Area in Davankov-Type Hyper-Cross-Linked Resins [J]. Macromolecules,2006,39:627-632.
    [187] DAVANKOV V A, TSYURUPA M P. Structure and properties ofhypercrosslinked polystyrene-the first representative of a new class of polymernetworks [J]. React Polym,1990,13(1-2):27-42.
    [188] KIM Y, KOH K, ROLL M F, et al. Porous Networks Assembled fromOctaphenylsilsesquioxane Building Blocks [J]. Macromolecules,2010,43(17):6995-7000.
    [189] NYHUS A K, HAGEN S, BERGE A. Friedel-Crafts reactions of pendantvinyl groups in macroporous monosized poly(meta-divinylbenzene) andpoly(para-divinylbenzne parties [J]. Journal of Polymer Science: Part A: PolymerChemistry,2000,38:1366-1378.
    [190] ALEKSIEVA K, XU J, WANG L M, et al. Effects of post-crosslinking ofmacroreticular styrene–divinylbenzene copolymers on their morphology [J].Polymer,2006,47(19):6544-6550.
    [191] SOUKUPOVA K, SASSI A, JERABEK K. Reinforcing of expanded polymermorphology using peroxy radical initiator [J]. React Funct Polym,2009,69(6):353-357.
    [192] TSYURUPA M P, DAVANKOV V A. Porous structure of hypercrosslinkedpolystyrene: State-of-the-art mini-review [J]. React Funct Polym,2006,66(7):768-779.
    [193] MACINTYRE F S, SHERRINGTON D C, TETLEY L. Synthesis ofUltrahigh Surface Area Monodisperse Porous Polymer Nanospheres [J].Macromolecules,2006,39(16):5381-5384.
    [194] DAVANKOV V A, LLYIN M M, TSYURUPA M P. From aDissolved Polystyrene Coil to anIntramolecularly-Hyper-Cross-Linked―Nanosponge‖[J]. Macromolecules,1996,29(26):8398-8403.
    [195] PAVANKOV V A, TSYURUPA M P. Hypercrosslinked Polymeric Networksand Adsorbing Materials: Synthesis [J]. Pure Appl Chem,1989,61:1881-1888.
    [196] TSYURUPA M P, DAVAKOV V. The study of macronet isoporous styrenepolymers by gel permeation chromatography [J]. Journal of Polymer Science:Polymer Chemistry Edition,1980,18(4):1399-1406.
    [197] VEVERKA P, JERABEK K. Mechanism of hypercrosslinking ofchloromethylated styrene–divinylbenzene copolymers [J]. React Funct Polym,1999,41(1-3):21-25.
    [198] GALINA H, LECHOWICZ J B. Monte-Carlo modeling of degradation ofpolymer networks:3. Lattice networks [J]. Polymer,2000,41(2):615-619.
    [199] BALDRIAN J, KOLARZ B N, GALINA H. Small angle X-ray scatteringstudy of porosity variation in a styrene-divinylbenzene copolymer [J]. Collection ofCzechoslovak Chemical Communication,1981,46:1675-1684.
    [200] ATTA A M, EL-GHAZAWY R A, FARAG, R K, et al. Crosslinkedcinnamoyloxyethyl methacrylate and isooctyl acrylate copolymers as oil sorbers[J].Polymer International,2005,54(7):1088-1096.
    [201] YU J, DONG C, LIU J, et al. Crosslinked sulfonated poly (bis-A)-sulfones asproton exchange membrane for PEM fuel cell application [J]. J Mater Sci,2010,45(4):1017-1024.
    [202] MATSUI S, PAUL D R. Pervaporation separation of aromatic/aliphatichydrocarbons by crosslinked poly(methyl acrylate-co-acrylic acid) membranes [J]. JMembr Sci,2002,195(2):229-245.
    [203] INUI K, NOGUCHI T, MIYATA T, URAGAMI T. Pervaporationcharacteristics of methyl methacrylate–methacrylic acid copolymer membranesionically crosslinked with metal ions for a benzene/cyclohexane mixture [J]. J ApplPolym Sci,1999,71(2):233-241.
    [204] SUN F, RUKCENSTEIN E. Sorption and pervaporation ofbenzene-cyclohexane mixtures through composite membranes prepared viaconcentrated emulsion polymerization [J]. J Membr Sci,1995,99(3):273-284.
    [205] YAMASAKI A, SHINBO T, MIZOGUCHI K. Pervaporation ofbenzene/cyclohexane and benzene/n-hexane mixtures through PVA membranes [J]. JAppl Polym Sci,1997,64(6):1061-1065.
    [206] FRAHN J, MALSCH G, MATUSCHEWSKI H. Separation ofaromatic/aliphatic hydrocarbons by photo-modified poly(acrylonitrile) membranes [J].J Membr Sci,2004,234(1-2):55-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700