聚丙烯腈多孔材料的热致相分离法制备及其应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯腈多孔材料具有耐惰性溶剂、耐细菌侵蚀、优良的热和化学稳定性等优点,已被广泛应用于水处理、渗透汽化、酶固定化、生物医药、炭材料等领域。然而,目前其制备手段仍局限于浸没沉淀相转化法,极大地限制了此类材料的进一步发展。作为另一种制备多孔材料的常用方法,热致相分离法以其机理明确和易于控制的优点受到研究者的青睐。本文筛选了一种适合于聚丙烯腈的结晶性稀释剂体系,在此基础上研究了其与聚丙烯腈的热致相分离机理,并用于聚丙烯腈多孔材料的制备、调控及其炭化应用,以期拓展聚丙烯腈的应用范围、丰富热致相分离法的适用领域。具体研究工作内容如下:
     基于密度泛函理论计算了聚丙烯腈模型分子与溶剂分子(二甲基砜、二甲基亚砜、碳酸乙烯酯、碳酸丙烯酯、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺)的相互作用。组合浓度、温度相关FTIR和二维红外光谱分析法研究了聚丙烯腈分子链在溶剂中的变化和溶解过程。计算和实验结果表明,二甲基砜与聚丙烯腈的偶极-偶极相互作用最强,二者存在高温溶解、低温分相的热致相分离特点,可选为聚丙烯腈的结晶性稀释剂。
     采用DSC、POM、WAXD、SAXS等测试手段研究了聚丙烯腈/二甲基砜体系的结晶行为,绘制了二元相图。该体系发生固-固热致相分离,改变其聚合物浓度制备了具有蜂窝状和柱状孔结构的聚丙烯腈多孔泡沫,其孔结构复刻了二甲基砜在混合体系中的晶体形态。此外,详细探讨了该体系中大尺寸球晶的形态、结构、形成机理。证实了二甲基砜的结晶性及其与聚丙烯腈的偶极-偶极相互作用是形成大球晶的必要条件。
     借助热台光学显微镜和DSC等方法研究了聚丙烯腈/二甲基砜/添加剂(丙三醇或聚乙二醇)三元体系的液-液热致相分离过程和液滴生长动力学,绘制了相图。采用预混合加料和一步成型路线,制备了结构多样、孔均匀、孔隙率高、机械性能优良的聚丙烯腈多孔膜。研究结果表明,液-液相分离温度、液滴生长速率、膜孔结构、水通量、机械性能受到聚合物浓度、添加剂含量、聚乙二醇分子量、冷却速率等因素的影响。
     采用FTIR、SEM、称重法等方法考察了以聚丙烯腈多孔膜为前体在氧化稳定和炭化过程中聚合物结构、孔形貌、质量损失率等变化。在最佳的升温速率、最高温度、恒温时间等热处理条件下制备了以胞腔孔为主的结构均匀、比表面积大的多孔炭膜。与刚果红、罗丹明B相比,多孔炭膜对甲基橙表现出良好的选择性吸附性和重复使用性能。
Porous polyacrylonitrile (PAN) materials possess excellent resistance to inert solvents and bacterial corrosion, heat and physicochemical stability, so they have been widely used in water treatment, pervaporation, enzyme-immobilization, biological medicine, and carbon materials. However, they are almost made by immersion precipitation phase inversion method, which has limited the further development of PAN. Thermally induced phase separation (TIPS), as another popular way for porous materials, has attracted much attention due to its definite mechanism and ease to control. In this thesis, we selected crystallizable diluent systems for PAN, investigated the specific phase separation mechanism for each PAN/diluent system, and prepared several kinds of porous PAN materials, which were pyrolyzed for porous carbon. This work is expected to expand new applications not only for PAN, but also for TIPS method. Our specific studies are concentrated as follows:
     The interactions between PAN and six solvents (dimethyl sulfone (DMSO2), dimethly sulfoxide, ethylene carbonate, propylene carbonate, N,N-dimethyl formamide, N,N-dimethyl acetamide) were discussed by computational calculation based on density functional theories. Moreover, the molecular change and dissolving process of PAN in the solvents were analyzed by concentration-or temperature-dependent FTIR and two-dimensional infrared correlation analysis. The results show that PAN-DMSO2has the strongest dipole-dipole interaction. Moreover, PAN/DMSO2system becomes homogeneous solution at elevated temperature, and undergoes phase separation upon cooling. It means that DMSO2could be an appropriate crystallizable diluent for PAN.
     We characterized the crystallization behavior and determined the phase diagram of PAN/DMS02system by using DSC, POM, WAXD, and SXAS methods. The binary system undergoes solid-solid thermally induced phase separation, and PAN foams with honecomb-or channel-like pores can be modulated by varying the polymer composition. It is confirmed that these pores are shaped by DMSO2crystals in the mixtures. On the other hand, giant spherulites came out in PAN/DMS02mixtures, whose morphology, structure and formation mechanism were detailedly discussed. Results indicate that the giant spherulites can be contributed to both the DMSO2crystallization and the dipole-dipole interaction between PAN and DMS02.
     Combining optical microscope equipped by hot stage and DSC method, we traced the liquid-liquid phase separation process, studied the droplet growth kinetics, and determined the phase diagrams of PAN/DMS02/additive (glycerol or polyethylene glycol (PEG)) ternary systems. A powder premixing process and one-step molding route were introduced to prepare PAN membranes. The PAN membranes show various structure, uniform pores, high porosity, and excellent mechanical properties. Besides, it exhibits that polymer concentration, additive content, PEG molecular weight, and cooling rate exert influences on the phase separation temperature, the droplet growth rate, pore structure, permeability, and mechanical properties.
     To obtain the optimum condition for pyrolysis, PAN membranes were oxidized and carbonized at different conditions, and then their chemical structure, pore morphology, and weight loss were studied by FTIR, SEM, and weighing, respectively. The resultant carbon membranes possess concentrated cellular pores and large specific surface area. Furthermore, they present selective adsorption to methyl orange and good reusability.
引文
[1]S. S. Kim, D. R. Lloyd, Thermodynamics of polymer/diluent systems for thermally induced phase separation:1. Determination of equation of state parameters, Polymer 1992,33,1026-1035.
    [2]P. J. Flory, Principles of polymer chemistry, Cornell University Press, Ithaca,1953.
    [3]D. M. Li, W. B. Krantz, A. R. Greenberg, R. L. Sani, Membrane formation via thermally induced phase separation (TIPS):Model development and validation, Journal of Membrane Science 2006,279,50-60.
    [4]G Crevecoeur, G Groeninckx, Binary blends of poly(ether ether ketone) and poly(ether imide): Miscibility, crystallization behavior and semicrystalline morphology, Macromolecules 1991,24, 1190-1195.
    [5]D. R. Lloyd, K. E. Kinzer, H. S. Tseng, Microporous membrane formation via thermally induced phase-separation.1. Solid-liquid phase separation. Journal of Membrane Science 1990,52,239-261.
    [6]S. S. Kim, D. R. Lloyd, Microporous membrane formation via thermally-induced phase separation.3. Effect of thermodynamic interactions on the structure of isotactic polypropylene membranes, Journal of Membrane Science 1991,64,13-29.
    [7]G B. A. Lim, S. S. Kim, Q. H. Ye, Y. F. Wang, D. R. Lloyd, Microporous membrane formation via thermally-induced phase separation.4. Effect of isotactic polypropylene crystallization kinetic on membrane-structure, Journal of Membrane Science 1991,64,31-40.
    [8]S. S. Kim, G. B. A. Lim, A. A. Alwattari, Y. F. Wang, D. R. Lloyd, Microporous membrane formation via thermally-induced phase separation.5. Effect of diluent mobility and crystallization on the structure of isotactic polypropylene membranes. Journal of Membrane Science 1991,64,41-53.
    [9]J. Wang, L. Wang, W. Ruan, C. Zhang, J. Ji, Rheology behavior of high-density polyethylene/diluent blends and fabrication of hollow-fiber membranes via thermally induced phase separation, Journal of Applied Polymer Science 2010,118,2186-2194.
    [10]'M. Shang, H. Matsuyama, M. Teramto,J Okuno, D. R. Lloyd, N. Kubota, Effect of diluent on poly(ethylene-co-vinyl alcohol) hollow-fiber membrane formation via thermally induced phase separation, Journal of Applied Polymer Science 2005,95,219-225.
    [11]J. Zhou, H. Zhang, H. Wang, Q. Du, Effect of cooling baths on EVOH microporous membrane structures in thermally induced phase separation, Journal of Membrane Science 2009,343,104-109.
    [12]R. H. Mehta, D. A Madsen, D. S. Kalika, Microporous membranes based on poly(ether ether ketone) via thermally-induced phase separation, Journal of Membrane Science 1995,107,93-106.
    [13]A. M. Jonas, T. P. Russell, D. Y. Yoon, Dielectric spectroscopy and X-ray scattering studies on semi-crystalline blends of poly(ether ether ketone) and poly(ether imide), Abstracts of papers of the American chemical society 1994,207,210-210.
    [14]K. Binder, D. Stauffer, Theory for the slowing down of the relaxation and spinodal decomposition of binary mixtures, Physical Review Letters 1974,33,1006-1009.
    [15]E. D. Siggia, Late stages of spinodal decomposition in binary mixtures, Physical Review A 1979,20, 595-605.
    [16]K. S. McGuire, A. Laxminarayan, D. R. Lloyd, Kinetics of droplet growth in liquid-liquid phase separation of polymer-diluent systems:Experimental results, Polymer 1995,36,4951-4960.
    [17]H. Matsuyama, S. Kudari, H. Kiyofuji, Y. Kitamura, Kinetic studies of thermally induced phase separation in polymer-diluent system, Journal of Applied Polymer Science 2000,76,1028-1036.
    [18]G. T. Caneba, D. S. Soong, Polymer membrane formation through the thermal-inversion process.2. Mathematical modeling of the membrane structure formation, Macromolecules 1985,18,2545-2555.
    [19]S. S. Kim, D. R. Lloyd, Thermodynamics of polymer diluent systems for thermally induced phase-separation.3. Liquid-liquid phase separation systems, Polymer 1992,33,1047-1057.
    [20]B. F. Barton, P. D. Graham, A. J. McHugh, Dynamics of spinodal decomposition in polymer solutions near a glass transition, Macromolecules 1998,31,1672-1679.
    [21]J. M. Jin, K. Parbhakar, L. H. Dao, Thermally induced phase separation of a liquid crystal in a polymer under microgravity:Comparison with simulations, Langmuir 1996,12,2096-2099.
    [22]D. G. Zhou, A. C. Shi, P. W. Zhang, Numerical simulation of phase separation coupled with crystallization, Journal of Chemical Physics 2008,129, (154901) 1-8.
    [23]Y. D. He, Y. H. Tang, X. L. Wang, Dissipative particle dynamics simulation on the membrane formation of polymer-diluent system via thermally induced phase separation, Journal of Membrane Science 2011, 368,78-85.
    [24]S. B. Kukadiya, P. K. Chan, M. Mehrvar, The Ludwig-Soret effect on the thermally induced phase separation process in polymer solutions:A computational study, Macromolecular Theory and Simulations 2009,18,97-107.
    [25]J.-J. Kim, J. R. Hwang, U. Y. Kim, S. S. Kim, Operation parameters of melt spinning of polypropylene hollow fiber membranes, Journal of Membrane Science 1995,108,25-36.
    [26]W. Yave, R. Quijada, D. Serafini, D. R. Lloyd, Effect of the polypropylene type on polymer-diluent phase diagrams and membrane structure in membranes formed via the TIPS process:Part Ⅰ. Metallocene and Ziegler-Natta polypropylenes, Journal of Membrane Science 2005,263,146-153.
    [27]C. F. Zhang, Y. X. Bai, Y. P. Sun, J. Gu, Y. Y. Xu, Preparation of hydrophilic HDPE porous membranes via thermally induced phase separation by blending of amphiphilic PE-b-PEG copolymer, Journal of Membrane Science 2010,365,216-224.
    [28]S. Liu, C. Zhou, W. Yu, Phase separation and structure control in ultra-high molecular weight polyethylene microporous membrane, Journal of Membrane Science 2011,379,268-278.
    [29]G. L. Ji, L. P. Zhu, B. K. Zhu, C. F. Zhang, Y. Y. Xu, Structure formation and characterization of PVDF hollow fiber membrane prepared via TIPS with diluent mixture, Journal of Membrane Science 2008, 319,264-270.
    [30]T. Shibutani, T. Kitaura, Y. Ohmukai, T. Maruyama, S. Nakatsuka, T. Watabe, H. Matsuyama, Membrane fouling properties of hollow fiber membranes prepared from cellulose acetate derivatives, Journal of Membrane Science 2011,376,102-109.
    [31]F. J. Tsai, J. M. Torkelson, Roles of phase separation mechanism and coarsening in the formation of poly(methyl methacrylate) asymmetric membranes, Macromolecules 1990,23,775-784.
    [32]J. Yoon, A. J. Lesser, T. J. McCarthy, Locally anisotropic porous materials from polyethylene and crystallizable diluents, Macromolecules 2009,42,8827-8834.
    [33]P. Smith, A. J. Pennings, Eutectic solidification of the quasi binary system of isotactic polypropylene and pentaerythrityl tetrabromide, Journal of Polymer Science:Polymer Physics Edition 1977,15, 523-540.
    [34]R. J. M. Zwiers, S. Gogolewski, A. J. Pennings, General crystallization behaviour of poly(1-lactic acid) PLLA:2. Eutectic crystallization of PLLA, Polymer 1983,24,167-174.
    [35]M. Narkis, A. Siegmann, M. Puterman, A. T. Dibenedetto, Glassy polymer solutions:Morphology of in situ crystallized additives, Journal of Polymer Science:Polymer Physics Edition 1979,17,225-234.
    [36]C. V. Funk, P. L. Hanks, K. J. Kaczorowski, D. R. Lloyd, Diluent crystal alignment in the formation of membranes via liquid-solid thermally induced phase separation, Journal of Porous Materials 2009,16, 453-458.
    [37]M. H. Rahman, A. K. Nandi, Supramolecular organization of poly(vinylidene fluoride)-camphor sulfonic acid blends:Giant spherulites, Langmuir 2003,19,7056-7060.
    [38]M. H. Gu, J. Zhang, Y. Xia, X. L. Wang, Poly(vinylidene fluoride) crystallization behavior and membrane structure formation via thermally induced phase separation with benzophenone diluent, Journal of Macromolecular Science Part B-Physics 2008,47,180-191.
    [39]R. M. Hikmet, S. Callister, A. Keller, Thermoreversible gelation of atactic polystyrene:Phase transformation and morphology, Polymer 1988,29,1378-1388.
    [40]W. Yave, R. Quijada, D. Serafini, D. R. Lloyd, Effect of the polypropylene type on polymer-diluent phase diagrams and membrane structure in membranes formed via the TIPS process-Part II. Syndiotactic and isotactic polypropylenes produced using metallocene catalysts, Journal of Membrane Science 2005,263,154-159.
    [41]W. Yave, R. Quijada, D. Serafini, D. R. Lloyd, Effect of the polypropylene type on polymer-diluent phase diagrams and membrane structure in membranes formed via the TIPS process-Part I. Metallocene and Ziegler-Natta polypropylenes, Journal of Membrane Science 2005,263,146-153.
    [42]M. C. Yang, J. S. Perng, Microporous polypropylene tubular membranes via thermally induced phase separation using a novel solvent-camphene, Journal of Membrane Science 2001,187,13-22.
    [43]A. A. Alwattari, D. R. Lloyd, Microporous membrane formation via thermally-induced phase separation. 6. Effect of diluent morphology and relative crystallization kinetics on polypropylene membrane-structure, Journal of Membrane Science 1991,64,55-68.
    [44]B. J. Cha, J. M. Yang, Preparation of poly(vinylidene fluoride) hollow fiber membranes for microfiltration using modified TIPS process, Journal of Membrane Science 2007,291,191-198.
    [45]G L. Ji, B. K. Zhu, Z. Y. Cui, C. F. Zhang, Y. Y. Xu, PVDF porous matrix with controlled microstructure prepared by TIPS process as polymer electrolyte for lithium ion battery, Polymer 2007, 48,6415-6425.
    [46]M. H. Gu, J. Zhang, X. L. Wang, H. J. Tao, L. T. Ge, Formation of poly(vinylidene fluoride) (PVDF) membranes via thermally induced phase separation, Desalination 2006,192,160-167.
    [47]H. Matsuyama, H. Okafuji, T. Maki, M. Teramoto, N. Kubota, Preparation of polyethylene hollow fiber membrane via thermally induced phase separation, Journal of Membrane Science 2003,223,119-126.
    [48]M. Y. Jeon, C. K. Kim, Phase behavior of polymer/diluent/diluent mixtures and their application to control microporous membrane structure, Journal of Membrane Science 2007,300,172-181.
    [49]S. H. Yoo, C. K. Kim, Effects of the diluent mixing ratio and conditions of the thermally induced phase-separation process on the pore size of microporous polyethylene membranes, Journal of Applied Polymer Science 2008,108,3154-3162.
    [50]B. J. Cha, K. Char, J. J. Kim, S. S. Kim, C. K. Kim, The effects of diluent molecular weight on the structure of thermally-induced phase separation membrane, Journal of Membrane Science 1995,108, 219-229.
    [51]I. J. Roh, S. Ramaswamy, W. B. Krantz, A. R. Greenberg, Poly(ethylene chlorotrifluoroethylene) membrane formation via thermally induced phase separation (TIPS), Journal of Membrane Science 2010,362,211-220.
    [52]P. D. Graham, A. J. McHugh, Kinetics of thermally induced phase separation in a crystallizable polymer solution, Macromolecules 1998,31,2565-2568.
    [53]T. Tanaka, D. R. Lloyd, Formation of poly(L-lactic acid) microfiltration membranes via thermally induced phase separation, Journal of Membrane Science 2004,238,65-73.
    [54]H. Matsuyama, S. Berghmans, M. T. Batarseh, D. R. Lloyd, Effects of thermal history on anisotropic and asymmetric membranes formed by thermally induced phase separation, Journal of Membrane Science 1998,142,27-42.
    [55]H. Matsuyama, M. Yuasa, Y. Kitamura, M. Teramoto, D. R. Lloyd, Structure control of anisotropic and asymmetric polypropylene membrane prepared by thermally induced phase separation, Journal of Membrane Science 2000,179,91-100.
    [56]H. Zhang, Y. L. Zhao, H. T. Wang, W. Zhong, Q. G Du, X. M. Zhu, Phase behavior of polyetherimide/benzophenone/triethylene glycol ternary system and its application for the preparation of microporous membranes, Journal of Membrane Science 2010,354,101-107.
    [57]L. U. Kim, C. K. Kim, A novel method for the pore size control of the battery separator using the phase instability of the ternary mixtures, Journal of Polymer Science Part B-Polymer Physics 2006,44, 2025-2034.
    [58]B. F. Barton, A. J. McHugh, Kinetics of thermally induced phase separation in ternary polymer solutions. I. Modeling of phase separation dynamics, Journal of Polymer Science Part B-Polymer Physics 1999,37,1449-1460.
    [59]H. Matsuyama, M. Kim, D. R. Lloyd, Effect of extraction and drying on the structure of microporous polyethylene membranes prepared via thermally induced phase separation, Journal of Membrane Science 2002,204,413-419.
    [60]X.-J. Huang, Z.-K. Xu, L.-S. Wan, Z.-G. Wang, J.-L. Wang, Novel acrylonitrile-based copolymers containing phospholipid moieties:synthesis and characterization, Macromolecular Bioscience 2005,5, 322-330.
    [61]F. Q. Nie, Z. K. Xu, L. S. Wan, P. Ye, J. Wu, Acrylonitrile-based copolymers containing reactive groups: synthesis and preparation of ultrafiltration membranes, Journal of Membrane Science 2004,230,1-11.
    [62]Z.-K. Xu, R.-Q. Kou, Z.-M. Liu, F.-Q. Nie, Y.-Y. Xu, Incorporating a-allyl glucoside into polyacrylonitrile by water-phase precipitation copolymerization to reduce protein adsorption and cell adhesion, Macromolecules 2003,36,2441-2447.
    [63]L.-S. Wan, Z.-K. Xu, X.-J. Huang, Z.-G. Wang, J.-L. Wang, Copolymerization of acrylonitrile with N-vinyl-2-pyrrolidone to improve the hemocompatibility of polyacrylonitrile, Polymer 2005,46, 7715-7723.
    [64]J. Ma, H. Chen, D. Liu, N. Ji, G Zong, Synthesis of polyacrylonitrile using AGET-ATRP in emulsion, Materials Science and Engineering:C 2013,33,570-574.
    [65]S. Raynal, Complex bases:Application to anionic polymerization of acrylonitrile and methacrylonitrile, European Polymer Journal 1986,22,559-564.
    [66]K. Matyjaszewski, S. Mu Jo, H.-j. Paik, S. G. Gaynor, Synthesis of well-defined polyacrylonitrile by atom transfer radical polymerization, Macromolecules 1997,30,6398-6400.
    [67]A. Aqil, C. Detrembleur, B. Gilbert, R. Jerome, C. Jerome, Controlled RAFT synthesis of polyacrylonitrile-b-poly(acrylic acid) diblocks as precursors of carbon nanocapsules with assistance of gold nanoparticles, Chemistry of Materials 2007,19,2150-2154.
    [68]C. R. Bohn, W. O. Statton, J. R. Schaefgen, Laterally ordered polymers-polyacrylonitrile and poly(vinyl trifluoroacetate), Journal of Polymer Science 1961,55,531-549.
    [69]X.-P. Hu, The molecular structure of polyacrylonitrile fibers, Journal of Applied Polymer Science 1996, 62,1925-1932.
    [70]X. D. Liu, W. Ruland, X-ray studies on the structure of polyacrylonitrile fibers, Macromolecules 1993, 26,3030-3036.
    [71]T. B. Freedman, E. R. Nixon, Matrix isolation studies of methyl cyanide and methyl isocyanide in solid argon, Spectrochimica Acta Part A:Molecular Spectroscopy 1972,28,1375-1391.
    [72]L. Paoloni, S. Hauser, CNDO/2 study of polar interactions in acetonitrile, Bulletin des Societes Chimiques Belges 1975,84,219-226.
    [73]M. R. Dagnino, G la Manna, L. Paoloni, Ab initio MO study of dipole-dipole interactions in acetonitrile dimers, Chemical Physics Letters 1976,39,552-556.
    [74]G Henrici-Olive, S. Olive, Molecular interactions and macroscopic properties of polyacrylonitrile and model substances in Chemistry, Springer Berlin, Heidelberg,1979.
    [75]Z. Bashir, S. P. Church, D. M. Price, The formation of polymer-solvent complexes of polyacrylonitrile from organic-solvents containing carbonyl groups, Acta Polymerica 1993,44,211-218.
    [76]H. Umeyama, K. Morokuma, The origin of hydrogen bonding. An energy decomposition study, Journal of the American Chemical Society 1977,99,1316-1332.
    [77]S. B. Warner, D. R. Uhlmann, L. H. Peebles, Jr., Oxidative stabilization of acrylic fibres, Journal of Materials Science 1979,14,1893-1900.
    [78]P. H. Lindenmeyer, R. Hosemann, Application of the theory of paracrystals to the crystal structure analysis of polyacrylonitrile, Journal of Applied Physics 1963,34,42-45.
    [79]Z. Bashir, S. K. Atureliya, S. P. Church, Production of oriented polyacrylonitrile films by flow-induced chain extension and crystallization from solution, Journal of Materials Science 1993,28,2721-2732.
    [80]B. G Colvin, P. Storr, The crystal structure of polyacrylonitrile, European Polymer Journal 1974,10, 337-340.
    [81]B. G Frushour, Water as a melting-point depressant for acrylic polymers, Polymer Bulletin 1982,7,1-8.
    [82]Z. Bashir, Cocrystallization of solvents with polymers-the X-ray-diffraction behavior of solvent-containing and solvent-free polyacrylonitrile, Journal of Polymer Science Part B-Polymer Physics 1994,32,1115-1128.
    [83]Z. Bashir, S. P. Church, D. Waldron, Interaction of water and hydrated crystallization in water-plasticized polyacrylonitrile films Polymer 1994,35,967-976.
    [84]Z. Bashir, Thermoreversible gelation and plasticization of polyacrylonitrile, Polymer 1992,33, 4304-4313.
    [85]M. Naraghi, S. N. Arshad, I. Chasiotis, Molecular orientation and mechanical property size effects in electrospun polyacrylonitrile nanofibers, Polymer 2011,52,1612-1618.
    [86]M. Sokol, J. Grobelny, E. Turska, Investigation of structural changes of polyacrylonitrile on swelling. Wide-angle X-ray scattering study, Polymer 1987,28,843-846.
    [87]A. K. Gupta, N. Chand, Effect of copolymerization on the crystalline structure of polyacrylonitrile, European Polymer Journal 1979,15,899-902.
    [88]H. S. Kim, H. H. Cho, Crystalline structure of polyacrylonitrile-iodine complex, Journal of Applied Polymer Science 1994,53,1403-1413.
    [89]B. Jung, J. K. Yoon, B. Kim, H.-W. Rhee, Effect of crystallization and annealing on polyacrylonitrile membranes for ultrafiltration, Journal of Membrane Science 2005,246,67-76.
    [90]R. M. Gobil, K. C. Patel, R. D. Patel, Crystallization of polyacrylonitrile-growth mechanisms for various growth features, Colloid and Polymer Science 1976,254,859-867.
    [91]A. J. Wan, L. J. Tan, Gelation of polyacrylonitrile solution, Progress in Chemistry 2012,24,370-376.
    [92]L. Tan, S. Liu, K. Song, H. Chen, D. Pan, Gel-spun polyacrylonitrile fiber from pregelled spinning solution, Polymer Engineering & Science 2010,50,1290-1294.
    [93]L. J. Tan, D. Pan, N. Pan, Gelation behavior of polyacrylonitrile solution in relation to aging process and gel concentration, Polymer 2008,49,5676-5682.
    [94]L. Tan, S. Liu, D. Pan, Viscoelastic behavior of polyacrylonitrile/dimethyl sulfoxide concentrated solution during thermal-induced gelation, The Journal of Physical Chemistry B 2009,113,603-609.
    [95]L. J. Tan, S. P. Liu, D. Pan, N. Pan, Gelation of polyacrylonitrile in a mixed solvent:Scaling and fractal analysis, Soft Matter 2009,5,4297-4304.
    [96]L. Tan, H. Chen, D. Pan, N. Pan, Investigation into the gelation and crystallization of polyacrylonitrile, European Polymer Journal 2009,45,1617-1624.
    [97]P. Flodin, Chemically and physically crosslinked porous gels, Makromolekulare Chemie. Macromolecular Symposia 1988,17,213-220.
    [98]J. Bisschops, Gelation of concentrated polyacrylonitrile solutions. II, Journal of Polymer Science 1955, 17,89-98.
    [99]A. Labudzinska, A. Ziabicki, Effect of composition and gelation conditions on structural changes accompanying the gelation of PAN, PVA and gelatin solutions, Kolloid-Zeitschrift und Zeitschrift fur Polymere 1971,243,21-27.
    [100]J. Beckmann, D. Zenke, Thermoreversible gelation of polyacrylonitrile/dimethylformamide-solution, Colloid and Polymer Science 1993,271,436-445.
    [101]V. F. Holland, S. B. Mitchell, W. L. Hunter, P. H. Lindenmeyer, Crystal structure and morphology of polyacrylonitrile in dilute solution, Journal of Polymer Science 1962,62,145-151.
    [102]Z. Bashir, Thermoreversible gels of polyacrylonitrile, Journal of Polymer Science Part B:Polymer Physics 1992,30,1299-1304.
    [103]M. B. Ko, I. H. Kwon, W. H. Jo, T. W. Son, Sol-gel transition of polyacrylonitrile/propylene carbonate solution, Journal of Polymer Science Part B:Polymer Physics 1994,32,945-951.
    [104]F. Kumamaru, T. Kajiyama, M. Takayanagi, Formation of single crystals of poly(acrylonitrile) during the process of solution polymerization, Journal of Crystal Growth 1980,48,202-209.
    [105]P. van de Witte, P. J. Dijkstra, J. W. A. van den Berg, J. Feijen, Phase separation processes in polymer solutions in relation to membrane formation, Journal of Membrane Science 1996,117,1-31.
    [106]S. H. Yoo, J. H. Kim, J. Y. Jho, J. Won, Y. S. Kang, Influence of the addition of PVP on the morphology of asymmetric polyimide phase inversion membranes:Effect of PVP molecular weight, Journal of Membrane Science 2004,236,203-207.
    [107]Z. G Wang, Z. K. Xu, L. S. Wan, Modulation the morphologies and performance of polyacrylonitrile-based asymmetric membranes containing reactive groups:Effect of non-solvents in the dope solution, Journal of Membrane Science 2006,278,447-456.
    [108]N. Schamagl H. Buschatz, Polyacrylonitrile (PAN) membranes for ultra- and microfiltration, Desalination 2001,139,191-198.
    [109]R. Matz, The structure of cellulose acetate membranes 1. The development of porous structures in anisotropic membranes, Desalination 1972,10,1-15.
    [110]H. Strathmann, K. Kock, P. Amar, R. W. Baker, The formation mechanism of asymmetric membranes, Desalination 1975,16,179-203.
    [111]L. Broens, F. W. Altena, C. A. Smolders, D. M. Koenhen, Asymmetric membrane structures as a result of phase separation phenomena, Desalination 1980,32,33-45.
    [112]R. J. Ray, W. B. Krantz, R. L. Sani, Linear stability theory model for finger formation in asymmetric membranes, Journal of Membrane Science 1985,23,155-182.
    [113]F. G Paulsen, S. S. Shojaie, W. B. Krantz, Effect of evaporation step on macrovoid formation in wet-cast polymeric membranes, Journal of Membrane Science 1994,91,265-282.
    [114]C. A. Smolders, A. J. Reuvers, R. M. Boom, I. M. Wienk, Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids, Journal of Membrane Science 1992,73,259-275.
    [115]M. H. Shinde, S. S. Kulkarni, D. A. Musale, S. G Joshi, Improvement of the water purification capability of poly(acrylonitrile) ultrafiltration membranes, Journal of Membrane Science 1999,162, 9-22.
    [116]S. R. Kim, K. H. Lee, M. S. Jhon, The effect of ZnCl2 on the formation of polysulfone membrane, Journal of Membrane Science 1996,119,59-64.
    [117]H. J. Lee, J. Won, H. Lee, Y. S. Kang, Solution properties of poly(amic acid)-NMP containing LiCl and their effects on membrane morphologies, Journal of Membrane Science 2002,196,267-277.
    [118]D.-J. Lin, C.-L. Chang, F.-M. Huang, L.-P. Cheng, Effect of salt additive on the formation of microporous poly(vinylidene fluoride) membranes by phase inversion from LiClO4/Water/DMF/PVDF system. Polymer 2003,44,413-422.
    [119]K.-Y. Lin, D.-M. Wang, J.-Y. Lai, Nonsolvent-induced gelation and its effect on membrane morphology, Macromolecules 2002,35,6697-6706.
    [120]Y. Yang, X. Jian, D. Yang, S. Zhang, L. Zou, Poly(phthalazinone ether sulfone ketone) (PPESK) hollow fiber asymmetric nanofiltration membranes:Preparation, morphologies and properties, Journal of Membrane Science 2006,270,1-12.
    [121]I.-C. Kim K.-H. Lee, Effect of various additives on pore size of polysulfone membrane by phase-inversion process, Journal of Applied Polymer Science 2003,89,2562-2566.
    [122]H. Matsuyama, T. Maki, M. Teramoto, K. Kobayashi, Effect of PVP additive on porous polysulfone membrane formation by immersion precipitation method, Separation Science and Technology 2003,38, 3449-3458.
    [123]D.-M. Wang, F.-C. Lin, T.-T. Wu, J.-Y. Lai, Formation mechanism of the macrovoids induced by surfactant additives, Journal of Membrane Science 1998,142,191-204.
    [124]J.-J. Qin, Y.-M. Cao, Y.-Q. Li, Y. Li, M.-H. Oo, H. Lee, Hollow fiber ultrafiltration membranes made from blends of PAN and PVP, Separation and Purification Technology 2004,36,149-155.
    [125]J.-J. Qin F.-S. Wong, Hypochlorite treatment of hydrophilic hollow fiber ultrafiltration membranes for high fluxes. Desalination 2002,146,307-309.
    [126]B. Jung, J. K. Yoon, B. Kim, H. W. Rhee, Effect of molecular weight of polymeric additives on formation, permeation properties and hypochlorite treatment of asymmetric polyacrylonitrile membranes, Journal of Membrane Science 2004,243,45-57.
    [127]B. Jung, Preparation of hydrophilic polyacrylonitrile blend membranes for ultrafiltration, Journal of Membrane Science 2004,229,129-136.
    [128]I. M. Wienk, E. E. B. Meuleman, Z. Borneman, T. van den Boomgaard, C. A. Smolders, Chemical treatment of membranes of a polymer blend:Mechanism of the reaction of hypochlorite with poly(vinyl pyrrolidone), Journal of Polymer Science Part A:Polymer Chemistry 1995,33,49-54.
    [129]J. Marchese, M. Ponce, N. A. Ochoa, P. Pradanos, L. Palacio, A. Hernandez, Fouling behaviour of polyethersulfone UF membranes made with different PVP, Journal of Membrane Science 2003,211,
    [130]L.-S. Wan, Z.-K. Xu, Z.-G Wang, Leaching of PVP from polyacrylonitrile/PVP blending membranes:A comparative study of asymmetric and dense membranes, Journal of Polymer Science Part B:Polymer Physics 2006,44,1490-1498.
    [131]H.-A. Tsai, Y.-L. Ye, K.-R. Lee, S.-H. Huang, M.-C. Suen, J.-Y. Lai, Characterization and pervaporation dehydration of heat-treatment PAN hollow fiber membranes, Journal of Membrane Science 2011,368, 254-263.
    [132]K. Nouzaki, M. Nagata, J. Arai, Y. Idemoto, N. Koura, H. Yanagishita, H. Negishi, D. Kitamoto, T. Ikegami, K. Haraya, Preparation of polyacrylonitrile ultrafiltration membranes for wastewater treatment, Desalination 2002,144,53-59.
    [133]M. Minagawa, H. Shirai, T. Morita, Y. Fujikura, Y. Kameda, Dynamic nuclear magnetic resonance and Raman spectroscopic measurements of five kinds of N,N-dimethylformamide derivatives in relation to the dissolution mechanism of polyacrylonitrile, Polymer 1996,37,2353-2358.
    [134]F. C. Meldrum, H. Colfen, Controlling mineral morphologies and structures in biological and synthetic systems, Chemical Reviews 2008,108,4332-4432.
    [135]M. Minagawa, W. Yoshida, S. Kurita, S. Takada, F. Yoshii, Solvent casting effect on the infrared characteristic absorption bands (1230/1250 cm-1) of stereoregular isotactic poly(acrylonitrile) film, Macromolecules 1997,30,1782-1786.
    [136]J. Lu, P. Waite, Advances in spinal cord regeneration, Spine 1999,24,926-930.
    [137]N. Zhang, C. Zhang, X. Wen, Fabrication of semipermeable hollow fiber membranes with highly aligned texture for nerve guidance, Journal of Biomedical Materials Research Part A 2005,75A, 941-949.
    [138]Y. Long, N. Zhang, Y. Huang, X. Wen, Formation of highly aligned grooves on inner surface of semipermeable hollow fiber membrane for directional axonal outgrowth, Journal of Manufacturing Science and Engineering 2008,130, (021011) 1-8.
    [139]J. Yin, N. Coutris, Y. Huang, Experimental investigation of aligned groove formation on the inner surface of polyacrylonitrile hollow fiber membrane, Journal of Membrane Science 2012,394-395, 57-68..
    [140]S. Bonyadi, T. S. Chung, W. B. Krantz, Investigation of corrugation phenomenon in the inner contour of hollow fibers during the non-solvent induced phase-separation process, Journal of Membrane Science 2007,299,200-210.
    [141]J. Yin, N. Coutris, Y. Huang, Role of marangoni instability in fabrication of axially and internally grooved hollow fiber membranes, Langmuir 2010,26,16991-16999.
    [142]J. Yin, N. Coutris, Y. Huang, Groove formation modeling in fabricating hollow fiber membrane for nerve regeneration, Journal of Applied Mechanics 2011,78,011017.
    [143]J. Yin, N. Coutris, Y. Huang, Investigation of inner surface groove formation under radially inward pressure during immersion precipitation-based hollow fiber membrane fabrication, ASME J. Manuf. Sci. Eng.2011,133,(031003)1-7.
    [144]A. Desormeaux, M. E. Moreau, Y. Lepage, J. Chanard, A. Adam, The effect of electronegativity and angiotensin-converting enzyme inhibition on the kinin-forming capacity of polyacrylonitrile dialysis membranes, Biomaterials 2008,29,1139-1146.
    [145]K. Yoon, B. S. Hsiao, B. Chu, High flux ultrafiltration nanofibrous membranes based on polyacrylonitrile electrospun scaffolds and crosslinked polyvinyl alcohol coating, Journal of Membrane Science 2009,338,145-152.
    [146]A. Asatekin, E. A. Olivetti, A. M. Mayes, Fouling resistant, high flux nanofiltration membranes from polyacrylonitrile-graft-poly(ethylene oxide), Journal of Membrane Science 2009 332,6-12.
    [147]H. Wang, Q. Zhang, S. Zhang, Positively charged nanofiltration membrane formed by interfacial polymerization of 3,3',5,5'-biphenyl tetraacyl chloride and piperazine on a poly(acrylonitrile) (PAN) support, Journal of Membrane Science 2011,378,243-249.
    [148]J. Ma, M. H. Zhang, H. Wu, X. Yin, J. Chen, Z. Y. Jiang, Mussel-inspired fabrication of structurally stable chitosan/polyacrylonitrile composite membrane for pervaporation dehydration, Journal of Membrane Science 2010,348,150-159.
    [149]B.-B. Li, Z.-L. Xu, F. Alsalhy Qusay, R. Li, Chitosan-poly(vinyl alcohol)/poly(acrylonitrile) (CS-PVA/PAN) composite pervaporation membranes for the separation of ethanol-water solutions, Desalination 2006,193,171-181.
    [150]T. Godjevargova, A. Dimov, N. Vasileva, Immobilization of glucose-oxidase using acrylonitrile copolymer membranes, Journal of Membrane Science 1994,88,279-283.
    [151]邓红涛,吴健,徐志康,徐又一,S. P. rick,酶的膜固定化及其应用的研究进展,膜科学与技术2004,24,47-53.
    [152]D. Shan, Y. He, S. Wang, H. Xue, H. Zheng, A porous poly(acrylonitrile-co-acrylic acid) film-based glucose biosensor constructed by electrochemical entrapment, Anal Biochem 2006,356,215-221.
    [153]周晓云,酶学原理与酶工程,中国轻工业出版社,北京,2005.
    [154]S. F. Li, J. P. Chen, W. T. Wu, Electrospun polyacrylonitrile nanofibrous membranes for lipase immobilization, Journal of Molecular Catalysis B:Enzymatic 2007,47,117-124.
    [155]P. Ye, Z. K. Wu, J., H. T. Deng, P. Seta, Covalent immobilization of lipase on poly(acrylonitrile-co-maleic acid) ultraflltration hollow fiber membrane, Chemical Research in Chinese Universities 2005,21,723-727.
    [156]P. Ye, Z. K. Xu, J. Wu, C. Innocent, P. Seta, Nanofibrous poly(acrylonitrile-co-maleic acid) membranes functionalized with gelatin and chitosan for lipase immobilization, Biomaterials 2006,27,4169-4176.
    [157]P. Ye, Z. K. Xu, J. Wu, C. Innocent, P. Seta, Entrusting poly(acrylonitrile-co-maleic acid) ultraflltration hollow fiber membranes with biomimetic surfaces for lipase immobilization, Journal of Molecular Catalysis B-Enzymatic 2006,40,30-37.
    [158]P. Ye, Z. K. Xu, J. Wu, C. Innocent, P. Seta, Nanofibrous membranes containing reactive groups: Electrospinning from poly(acrylonitrile-co-maleic acid) for lipase immobilization, Macromolecules 2006,39,1041-1045.
    [159]P. Ye, Z. K. Xu, Z. G. Wang, J. Wu, H. T. Deng, P. Seta, Comparison of hydrolytic activities in aqueous and organic media for lipases immobilized on poly(acrylonitrile-co-maleic acid) ultrafiltration hollow fiber membrane, Journal of Molecular Catalysis B-Enzymatic 2005,32,115-121.
    [160]P. Ye, Z. K. Xu, A. F. Che, J. Wu, P. Seta, Chitosan-tethered poly(acrylonitrile-co-maleic acid) hollow fiber membrane for lipase immobilization, Biomaterials 2005,26,6394-6403.
    [161]P. Ye, J. Jiang, Z. K. Xu, Adsorption and activity of lipase from Candida rugosa on the chitosan-modified poly(acrylonitrile-co-maleic acid) membrane surface, Colloids and Surfaces B-Biointerfaces 2007,60,62-67.
    [162]K. Gabrovska, A. Georgieva, T. Godjevargova, O. Stoilova, N. Manolova, Poly(acrylonitrile)/chitosan composite membranes for urease immobilization, Journal of Biotechnology 2007,129,674-680.
    [163]S. F. Li, W. T. Wu, Lipase-immobilized electrospun PAN nanofibrous membranes for soybean oil hydrolysis, Biochemical Engineering Journal 2009,45,48-53.
    [164]T. Godjevargova, V. Konsulov, A. Dimov, Preparation of an ultrafiltration membrane from the copolymer of acrylonitrile-glycidylmethacrylate utilized for immobilization of glucose oxidase, Journal of Membrane Science 1999,152,235-240.
    [165]T. Godjevargova, V. Konsulov, A. Dimov, N. Vasileva, Behavior of glucose oxidase immobilized on ultrafiltration membranes obtained by copolymerizing acrylonitrile and N-vinylimidazol, Journal of Membrane Science 2000,172,279-285.
    [166]X. J. Huang, A. G. Yu, Z. K. Xu, Covalent immobilization of lipase from Candida rugosa onto poly(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potential bioreactor application, Bioresource Technology 2008,99,5459-5465.
    [167]K. Gabrovska, T. Godjevargova, Optimum immobilization of urease on modified acrylonitrile copolymer membranes:Inactivation by heavy metal ions, Journal of Molecular Catalysis B-Enzymatic 2009,60,69-75.
    [168]N. G. Vasileva, T. Ivanova, D. K. Gabrovska, Application of immobilized horseradish peroxidase onto modified acrylonitrile copolymer membrane in removing of phenol from water, International Journal of Biological Macromolecules 2009,44,190-194.
    [169]X. Y. Yuan, N. X. Shen, J. Sheng, X. Wei, Immobilization of cellulase using acrylamide grafted acrylonitrile copolymer membranes, Journal of Membrane Science 1999,155,101-106.
    [170]T. Godjevargova, R. Nenkova, V. Konsulov, Immobilization of glucose oxidase by acrylonitrile copolymer coated silica supports, Journal of Molecular Catalysis B-Enzymatic 2006,38,59-64.
    [171]Z. M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology 2003,63, 2223-2253.
    [172]D. Li, Y. Xia, Electrospinning of nanofibers:Reinventing the wheel?, Advanced Materials 2004,16, 1151-1170.
    [173]J. T. McCann, D. Li, Y. N. Xia, Electrospinning of nanofibers with core-sheath, hollow, or porous structures, Journal of Materials Chemistry 2005,15,735-738.
    [174]H. Fong, I. Chun, D. H. Reneker, Beaded nanofibers formed during electrospinning, Polymer 1999,40, 4585-4592.
    [175]H. Q. Liu, Y. L. Hsieh, Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate, Journal of Polymer Science Part B-Polymer Physics 2002,40,2119-2129.
    [176]M. Bognitzki, T. Frese, M. Steinhart, A. Greiner, J. H. Wendorff, A. Schaper, M. Hellwig, Preparation of fibers with nanoscaled morphologies:Electrospinning of polymer blends, Polymer Engineering and Science 2001,41,982-989.
    [177]Y. Z. Zhang, Y. Feng, Z. M. Huang, S. Ramakrishna, C. T. Lim, Fabrication of porous electrospun nanofibres, Nanotechnology 2006,17,901-908.
    [178]M. Peng, D. S. Li, L. Shen, Y. Chen, Q. Zheng, H. J. Wang, Nanoporous structured submicTometer carbon fibers prepared via solution electrospinning of polymer blends, Langmuir 2006,22,9368-9374.
    [179]L. F. Zhang, Y. L. Hsieh, Nanoporous ultrahigh specific surface polyacrylonitrile fibres, Nanotechnology 2006,17,4416-4423.
    [180]A. Gupta, C. D. Saquing, M. Afshari, A. E. Tonelli, S. A. Khan, R. Kotek, Porous nylon-6 fibers via a novel salt-induced electrospinning method, Macromolecules 2009,42,709-715.
    [181]L. W. Ji, C. Saquing, S. A. Khan, X. W. Zhang, Preparation and characterization of silica nanoparticulate-polyacrylonitrile composite and porous nanofibers, Nanotechnology 2008,19.
    [182]Y. Z. Wang, B. C. Wang, G. X. Wang, T. Y. Yin, Q. S. Yu, A novel method for preparing electrospun fibers with nano-/micro-scale porous structures, Polymer Bulletin 2009,63,259-265.
    [183]M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, J. H. Wendorff, Nanostructured fibers via electrospinning, Advanced Materials 2001,13,70-72.
    [184]C. L. Casper, J. S. Stephens, N. G Tassi, D. B. Chase, J. F. Rabolt, Controlling surface morphology of electrospun polystyrene fibers:Effect of humidity and molecular weight in the electrospinning process, Macromolecules 2004,37,573-578.
    [185]S. Megelski, J. S. Stephens, D. B. Chase, J. F. Rabolt, Micro-and nanostructured surface morphology on electrospun polymer fibers, Macromolecules 2002,35,8456-8466.
    [186]X. L. Yu, H. F. Xiang, Y. H. Long, N. Zhao, X. L. Zhang, J. A. Xu, Preparation of porous polyacrylonitrile fibers by electrospinning a ternary system of PAN/DMF/H2O, Materials Letters 2010, 64,2407-2409.
    [187]J. T. McCann, M. Marquez, Y. N. Xia, Highly porous fibers by electrospinning into a cryogenic liquid, Journal of the American Chemical Society 2006,128,1436-1437.
    [188]S. K. Atureliya, Z. Bashir, Continuous plasticized melt-extrusion of polyacrylonitrile homopolymer. Polymer 1993,34,5116-5122.
    [189]M. D. Wilding, D. G. Baird, Melt processing and rheology of an acrylonitrile copolymer with absorbed carbon dioxide, Polymer Engineering & Science 2009,49,1990-2004.
    [190]A. K. Naskar, R. A. Walker, S. Proulx, D. D. Edie, A. A. Ogale, UV assisted stabilization routes for carbon fiber precursors produced from melt-processible polyacrylonitrile terpolymer, Carbon 2005,43, 1065-1072.
    [191]X. Y. Gao, N. Han, X. X. Zhang, W. Y. Yu, Melt-processable acrylonitrile-methyl acrylate copolymers and melt-spun fibers containing MicroPCMs, Journal of Materials Science 2009,44,5877-5884.
    [192]S. Hutchinson, A. Tonelli, B. Gupta, D. Buchanan, An investigation of the structure-property relationships in melt-processable high-acrylonitrile copolymer filaments, Journal of Materials Science 2008,43,5143-5156.
    [193]V. A. Bhanu, P. Rangarajan, K. Wiles, M. Bortner, M. Sankarpandian, D. Godshall, T. E. Glass, A. K. Banthia, J. Yang, G. Wilkes, D. Baird, J. E. McGrath, Synthesis and characterization of acrylonitrile methyl acrylate statistical copolymers as melt processable carbon fiber precursors, Polymer 2002,43, 4841-4850.
    [194]P. Bajaj, T. V. Sreekumar, K. Sen, Thermal behaviour of acrylonitrile copolymers having methacrylic and itaconic acid comonomers, Polymer 2001,42,1707-171-8.
    [195]P. Rangarajan, V. A. Bhanu, D. Godshall, G. L. Wilkes, J. E. McGrath, D. G. Baird, Dynamic oscillatory shear properties of potentially melt processable high acrylonitrile terpolymers, Polymer 2002,43, 2699-2709.
    [196]W. Deng, A. Lobovsky, S. T. Iacono, T. Wu, N. Tomar, S. M. Budy, T. Long, W. P. Hoffman, D. W. Smith Jr, Poly(acrylonitrile-co-l-vinylimidazole):A new melt processable carbon fiber precursor, Polymer 2011,52,622-628.
    [197]T. Kyotani, N. Sonobe, A. Tomita, Formation of highly orientated graphite from polyacrylonitrile by using a two-dimensional space between montmorillonite lamellae, Nature 1988,331,331-333.
    [198]Z. Wangxi, L. Jie, W. Gang, Evolution of structure and properties of PAN precursors during their conversion to carbon fibers, Carbon 2003,41,2805-2812.
    [199]A. V. Gribanov, Y. N. Sazanov, Polyacrylonitrile:Carbonization problems, Russian Journal of Applied Chemistry 2008,81,919-932.
    [200]M. S. A. Rahaman, A. F. Ismail, A. Mustafa, A review of heat treatment on polyacrylonitrile fiber, Polymer Degradation and Stability 2007,92,1421-1432.
    [201]R. C. Bansal, J. B. Donnet, F. Stoeckli, Active carbon, Marcel Dekker Inc, New York,1988.
    [202]S. Dalton, F. Heatley, P. M. Budd, Thermal stabilization of polyacrylonitrile fibres, Polymer 1999,40, 5531-5543.
    [203]Z. Bashir, A critical-review of the stabilization of polyacrylonitrile, Carbon 1991,29,1081-1090.
    [204]E. Fitzer, D. J. Muller, The influence of oxygen on the chemical reactions during stabilization of pan as carbon fiber precursor, Carbon 1975,13,63-69.
    [205]R. C. Houtz, Orlon acrylic fiber-chemistry and properties, Textile Research Journal 1950,20,786-801.
    [206]N. Grassie, J. N. Hay, Thermal coloration and insolubilization in polyacrylonitrile, Journal of Polymer Science 1962,56,189-202.
    [207]T. Takata, I. Hiroi, M. Taniyama, Coloration in acrylonitrile polymers, Journal of Polymer Science Part a-General Papers 1964,2,1567-1585.
    [208]N. Grassie, R. McGuchan, Pyrolysis of polyacrylonitrile and related polymers.3. thermal analysis of preheated polymers, European Polymer Journal 1971,7,1357-1371.
    [209]L. H. Pebbles, On the chromophore of polyacrylonitrile, Journal of Polymer Science Part A-l:Polymer Chemistry 1967,5,2637-2640.
    [210]T. H. Ko, The influence of pyrolysis on physical-properties and microstructure of modified PAN fibers during carbonization, Journal of Applied Polymer Science 1991,43,589-600.
    [211]E. Fitzer, W. Frohs, M. Heine, Optimization of stabilization and carbonization treatment of PAN fibres and structural characterization of the resulting carbon fibres, Carbon 1986,24,387-395.
    [212]D. Zhu, C. Xu, N. Matsuo, Study of carbon films from PAN/VGCF composites by gelation/crystallization from solution, Carbon 2002,40,363-373.
    [213]L. I. B. David, A. F. Ismail, Influence of the thermastabilization process and soak time during pyrolysis process on the polyacrylonitrile carbon membranes for O2/N2 separation, Journal of Membrane Science 2003,213,285-291.
    [214]S. Y. Gu, J. Ren, Q. L. Wu, Preparation and structures of electrospun PAN nanofibers as a precursor of carbon nanofibers, Synthetic Metals 2005,155,157-161.
    [215]J. T. Chen, K. Shin, J. M. Leiston-Belanger, M. Zhang, T. P. Russell, Amorphous carbon nanotubes with tunable properties via template wetting, Advanced Functional Materials 2006,16,1476-1480.
    [216]Y. Li, K. Li, G. Sun, A facile synthesis method for millimeter polyacrylonitrile-based activated carbon spheres with radiate tunnel-like macropores, Materials Letters 2011,65,1022-1024.
    [217]K. Okada, M. Nandi, J. Maruyama, T. Oka, T. Tsujimoto, K. Kondoh, H. Uyama, Fabrication of mesoporous polymer monolith:a template-free approach, Chemical Communications 2011,47, 7422-7424.
    [218]M. Nandi, K. Okada, A. Dutta, A. Bhaumik, J. Maruyama, D. Derks, H. Uyama, Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation, Chemical Communications 2012,48,10283-10285.
    [219]C. U. Pittman Jr, W. Jiang, Z. R. Yue, C. A. Leon y Leon, Surface area and pore size distribution of microporous carbon fibers prepared by electrochemical oxidation, Carbon 1999,37,85-96.
    [220]J.-M. Thomassin, A. Debuigne, C. Jerome, C. Detrembleur, Design of mesoporous carbon fibers from a poly(acrylonitrile) based block copolymer by a simple templating compression moulding process, Polymer 2010,51,2965-2971.
    [221]Z. Li M. Jaroniec, Silica gel-templated mesoporous carbons prepared from mesophase pitch and polyacrylonitrile, Carbon 2001,39,2080-2082.
    [222]L. Ji, Z. Lin, A. J. Medford, X. Zhang, Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material, Carbon 2009,47,3346-3354.
    [223]G Liu, X. Li, P. Ganesan, B. N. Popov, Development of non-precious metal oxygen-reduction catalysts for PEM fuel cells based on N-doped ordered porous carbon, Applied Catalysis B:Environmental 2009, 93,156-165.
    [224]Q. Shi, H. Liang, D. Feng, J. Wang, G D. Stucky, Porous carbon and carbon/metal oxide microfibers with well-controlled pore structure and interface, Journal of the American Chemical Society 2008,130, 5034-5035.
    [225]X. Yang, D. Wu, X. Chen, R. Fu, Nitrogen-enriched nanocarbons with a 3-D continuous mesopore structure from polyacrylonitrile for supercapacitor application, The Journal of Physical Chemistry C 2010,114,8581-8586.
    [226]R. Ryoo, S. H. Joo, S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation, The Journal of Physical Chemistry B 1999,103,7743-7746.
    [227]J. Lee, S. Yoon, T. Hyeon, S. M. Oh, K. Bum Kim, Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors, Chemical Communications 1999,2177-2178.
    [228]M. Kruk, B. Dufour, E. B. Celer, T. Kowalewski, M. Jaroniec, K. Matyjaszewski, Synthesis of mesoporous carbons using ordered and disordered mesoporous silica templates and polyacrylonitrile as carbon precursor, The Journal of Physical Chemistry B 2005,109,9216-9225.
    [229]R.-M. Ho, T.-C. Wang, C.-C. Lin, T.-L. Yu, Mesoporous carbons from poly(acrylonitrile)-b-poly(ε-caprolactone) block copolymers, Macromolecules 2007,40,2814-2821.
    [230]M. Stefik, H. Sai, K. Sauer, S. M. Gruner, F. J. DiSalvo, U. Wiesner, Three-component porous-carbon-titania nanocomposites through self-assembly of ABCBA block terpolymers with titania sols, Macromolecules 2009,42,6682-6687.
    [231]M. Lazzari, D. Scalarone, C. E. Hoppe, C. Vazquez-Vazquez, M. A. Lopez-Quintela, Tunable polyacrylonitrile-based micellar aggregates as a potential tool for the fabrication of carbon nanofibers, Chemistry of Materials 2007,19,5818-5820.
    [232]M. Peng, D. Li, L. Shen, Y. Chen, Q. Zheng, H. Wang, Nanoporous structured submicrometer carbon fibers prepared via solution electrospinning of polymer blends, Langmuir 2006,22,9368-9374.
    [233]C. Kim, Y. I. Jeong, B. T. N. Ngoc, K. S. Yang, M. Kojima, Y. A. Kim, M. Endo, J.-W. Lee, Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolymeric nanofiber webs, Small 2007,3,91-95.
    [234]Z. Zhang, X. Li, C. Wang, S. Fu, Y. Liu, C. Shao, Polyacrylonitrile and carbon nanofibers with controllable nanoporous structures by electrospinning, Macromolecular Materials and Engineering 2009,294,673-678.
    [235]L. Ji, A. J. Medford, X. Zhang, Fabrication of carbon fibers with nanoporous morphologies from electrospun polyacrylonitrile/poly(L-lactide) blends, Journal of Polymer Science Part B:Polymer Physics 2009,47,493-503.
    [236]S. Lee, K. Lee, G. D. Moon, Y. S. Won, Y. J. Yoon, S. S. Park, Y. R. Kim, U. Jeong, Preparation of macroporous carbon nanofibers with macroscopic openings in the surfaces and their applications, Nanotechnology 2009,20,445702-445707.
    [237]S. S. Barton, M. J. B. Evans, J. Holland, J. E. Koresh, Water and cyclohexane vapour adsorption on oxidized porous carbon, Carbon 1984,22,265-272.
    [238]孙俊芬,武利顺,吴光香,王庆瑞,聚丙烯腈基中空炭膜的研究发展,合成技及应用2003,18,20-23.
    [239]D. D. L. Chung, Carbon fiber composites, Butterworth-Heinemann, Newton,1994.
    [240]D. Godshall, P. Rangarajan, D. G Baird, G L. Wilkes, V. A. Bhanu, J. E. McGrath, Incorporation of methyl acrylate in acrylonitrile based copolymers:Effects on melting behavior. Polymer 2003,44, 4221-4228.
    [241]Q.-Y. Wu, L.-S. Wan, Z.-K. Xu, Structure and performance of polyacrylonitrile membranes prepared via thermally induced phase separation, Journal of Membrane Science 2012,409-410,355-364.
    [242]A.-F. Che, X.-J. Huang, Z.-K. Xu, Polyacrylonitrile-based nanofibrous membrane with glycosylated surface for lectin affinity adsorption, Journal of Membrane Science 2011,366,272-277.
    [243]P. P. Chu, Z. P. He, Lithium complex in polyacrylonitrile/EC/PC gel-type electrolyte, Polymer 2001,42, 4743-4749.
    [244]C. Mu, Y. Su, M. Sun, W. Chen, Z. Jiang, Fabrication of microporous membranes by a feasible freeze method, Journal of Membrane Science 2010,361,15-21.
    [245]M. Minagawa, T. Takasu, T. Morita, H. Shirai, Y. Fujikura, Y. Kameda, The steric effect of solvent molecules in the dissolution of polyacrylonitrile from five different N,N-dimethylformamide derivatives as studied using Raman spectroscopy, Polymer 1996,37,463-467.
    [246]Z. Bashir, A. R. Tipping, S. P. Church, Orientation studies in polyacrylonitrile films uniaxially drawn in the solid state, Polymer International 1994,33,9-17.
    [247]D. R. Lide, CRC handbook of chemistry and physics, CRC Press, Taylor & Francis,2010.
    [248]A. M. Saum, Intermolecular association in organic nitriles; the CN dipole-pair bond, Journal of Polymer Science 1960,42,57-66.
    [249]X.-H. Liu, Y.-G. Li, Y. Lin, Y.-S. Li,2-Cyanoprop-2-yl dithiobenzoate mediated reversible addition-fragmentation chain transfer polymerization of acrylonitrile targeting a polymer with a higher molecular weight, Journal of Polymer Science Part A:Polymer Chemistry 2007,45,1272-1281.
    [250]G D. Litovchenko, V. M. Girshgorn, Study of the interaction of polyacrylonitrile with solvents according to IR absorption spectra, Journal of Applied Spectroscopy 1980,32,170-172.
    [251]D. Ostrovskii, A. Brodin, L. M. Torell, G B. Appetecchi, B. Scrosati, Molecular and ionic interactions in poly(acrylonitrile)- and poly(methylmethacrylate)-based gel electrolytes, Journal of Chemical Physics 1998,109,7618-7624.
    [252]D. Jamroz, J. Stangret, J. Lindgren, An infrared spectroscopic study of the preferential solvation in water-acetonitrile mixtures, Journal of the American Chemical Society 1993,115,6165-6168.
    [253]E. M. Tee, A. Awichi, W. Zhao, Probing Microstructure of acetonitrile-water mixtures by using two-dimensional infrared correlation spectroscopy, The Journal of Physical Chemistry A 2002,106, 6714-6719.
    [254]T. Yamada, J. L. Graham, D. K. Minus, Density functional theory investigation of the interaction between nitrile rubber and fuel species, Energy & Fuels 2009,23,443-450.
    [255]I. Noda, Two-dimensional infrared spectroscopy, Journal of the American Chemical Society 1989,111, 8116-8118.
    [256]W. R. Fawcett, A. A. Kloss, Solvent-induced frequency shifts in the infrared spectrum of dimethyl sulfoxide in organic solvents, The Journal of Physical Chemistry 1996,100,2019-2024.
    [257]A F. Ismail, A. Mansourizadeh, A comparative study on the structure and performance of porous polyvinylidene fluoride and polysulfone hollow fiber membranes for CO2 absorption, Journal of Membrane Science 2010,365,319-328.
    [258]D. R. Lloyd, S. S. Kim, K. E. Kinzer, Microporous membrane formation via thermally-induced phase separation. II. Liquid-liquid phase separation, Journal of Membrane Science 1991,64,1-11.
    [259]J. H. Aubert, A. P. Sylwester, Morphological characterization of microcellular carbon foams, Journal of Materials Science 1991,26,5741-5752.
    [260]M. H. Ozkul, J. E. Mark, J. H. Aubert, The elastic and plastic mechanical responses of microcellular foams, Journal of Applied Polymer Science 1993,48,767-774.
    [261]B. J. Olivier, R. R. Lagasse, D. W. Schaefer, J. D. Barnes, G G. Long, A small-angle-scattering study of the pore-orientation periodicity in porous polymer and carbon materials, Macromolecules 1996,29, 8615-8621.
    [262]Z. G Wang, L. S. Wan, Z. K. Xu, Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications:An overview, Journal of Membrane Science 2007,304, 8-23.
    [263]S. Guedidi, Y. Yurekli, A. Deratani, P. Dejardin, C. Innocent, S. A. Altinkaya, S. Roudesli, A. Yemenicioglu, Effect of enzyme location on activity and stability of trypsin and urease immobilized on porous membranes by using layer-by-layer self-assembly of polyelectrolyte, Journal of Membrane Science 2010,365,59-67.
    [264]M.-C. Yang, T.-Y. Liu, The permeation performance of polyacrylonitrile/polyvinylidine fluoride blend membranes, Journal of Membrane Science 2003,226,119-130.
    [265]L.-S. Wan, Z.-K. Xu, X.-J. Huang, A.-F. Che, Z.-G. Wang, A novel process for the post-treatment of polyacrylonitrile-based membranes:Performance improvement and possible mechanism, Journal of Membrane Science 2006,277,157-164.
    [266]P. Smith, A. J. Pennings, Eutectic crystallization of pseudo binary systems of polyethylene and high melting diluents, Polymer 1974,15,413-419.
    [267]J. Brandrup, E. H. Immergut, E. A. Grulke, Polymer handbook, Wiley,1999.
    [268]W. R. Burghardt, Phase diagrams for binary polymer systems exhibiting both crystallization and limited liquid-liquid miscibility, Macromolecules 1989,22,2482-2486.
    [269]M. C. Gutierrez, M. L. Ferrer, F. del Monte, Ice-templated materials:sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly, Chemistry of Materials 2008,20,634-648.
    [270]A. A. Alwattari, D. R. Lloyd, Isothermal crystallization of isotactic polypropylene-hexamethylbenzene blends:crystal morphology, Polymer 1994,35,2710-2715.
    [271]D. Mileva, R. Androsch, E. Zhuravlev, C. Schick, B. Wunderlich, Homogeneous nucleation and mesophase formation in glassy isotactic polypropylene, Polymer 2012,53,277-282.
    [272]H. Tsuji, K. Tashiro, L. Bouapao, M. Hanesaka, Synchronous and separate homo-crystallization of enantiomeric poly(L-lactic acid)/poly(D-lactic acid) blends, Polymer 2012,53,747-754.
    [273]J. G. Yoon, W.-C. Zin, J. H. Kim, Crystal orientations and structures of poly(ethylene-ran-vinyl acetate) films coated onto silicon substrates, Polymer 2012,53,2744-2750.
    [274]A. Ulcinas, M. F. Butler, M. Heppenstall-Butler, S. Singleton, M. J. Miles, Direct observation of spherulitic growth stages of CaCO3 in a poly(acrylic acid)-chitosan system:In situ SPM study, Journal of Crystal Growth 2007,307,378-385.
    [275]S. A. Zawko C. E. Schmidt, Crystal templating dendritic pore networks and fibrillar microstructure into hydrogels, Acta Biomaterialia 2010,6,2415-2421.
    [276]A. G. Shtukenberg, Y. O. Punin, E. Gunn, B. Kahr, Spherulites, Chemical Reviews 2011,112, 1805-1838.
    [277]I. H. Chen, C. C. Wang, C. Y. Chen, Fabrication and characterization of magnetic cobalt ferrite/polyacrylonitrile and cobalt ferrite/carbon nanofibers by electrospinning, Carbon 2010,48, 604-611.
    [278]R. Setnescu, S. Jipa, T. Setnescu, W. Kappel, S. Kobayashi, Z. Osawa, IR and X-ray characterization of the ferromagnetic phase of pyrolysed polyacrylonitrile. Carbon 1999,37,1-6.
    [279]W. H. F. Talbot, Phil. Trans. R. Soc. London 1837,127,25.
    [280]A. Toda, K. Taguchi, H. Kajioka, Instability-driven branching of lamellar crystals in polyethylene spherulites, Macromolecules 2008,41,7505-7512.
    [281]B. Poon, M. Rogunova, A. Hiltner, E. Baer, S. P. Chum, A. Galeski, E. Piorkowska, Structure and properties of homogeneous copolymers of propylene and 1-hexene, Macromolecules 2005,38, 1232-1243.
    [282]J. J. Zhou, J. G. Liu, S. K. Yan, J. Y. Dong, L. Li, C. M. Chan, J. M. Schultz, Atomic force microscopy study of the lamellar growth of isotactic polypropylene, Polymer 2005,46,4077-4087.
    [283]H. Kajioka, S. Yoshimoto, K. Taguchi, A. Toda, Morphology and crystallization kinetics of it-polystyrene spherulites, Macromolecules 2010,43,3837-3843.
    [284]R. V. Castillo, A. J. Muller, J. M. Raquez, P. Dubois, Crystallization kinetics and morphology of biodegradable double crystalline PLLA-b-PCL diblock copolymers, Macromolecules 2010,43, 4149-4160.
    [285]L. Bouapao, H. Tsuji, K. Tashiro, J. M. Zhang, M. Hanesaka, Crystallization, spherulite growth, and structure of blends of crystalline and amorphous poly(lactide)s, Polymer 2009,50,4007-4017.
    [286]T. T. Wang, Morphology and mechanical properties of crystalline polymers.4. Behavior of spherulites in polyethylene subjected to biaxial tension or pure shear, Macromolecules 1992,25,933-938.
    [287]J. Wang, H. Niu, J. Dong, J. Du, C. C. Han, Morphology and mechanical properties of polypropylene/poly(propylene-l-octene) in-reactor alloys prepared by Metallocene/Ziegler-Natta hybrid catalyst, Polymer 2012,53,1507-1516.
    [288]X. H. Wang, R. G Liu, M. Wu, Z. G Wang, Y. Huang, Effect of chain disentanglement on melt crystallization behavior of isotactic polypropylene, Polymer 2009,50,5824-5827.
    [289]H. D. Keith, F. J. Padden, T. P. Russell, Morphological changes in polyesters and polyamides induced by blending with small concentrations of polymer diluents, Macromolecules 1989,22,666-675.
    [290]S. Z. Wu, B. L. Ma, F. Zeng, R. Chen, J. Q. Zhao, Z. Tong, Y. L. Luo, Spherulite formation of lipophilic surfactant induced by noncrystalline amphiphilic diblock copolymer, Crystal Growth & Design 2008,8, 4589-4595.
    [291]M. M. Degen, N. Costanzino, J. Bechhoefer, On the properties of large banded spherulites in a maleic anhydride-polyacrylonitrile mixture, Journal of Crystal Growth 2000,209,953-962.
    [292]R. R. Lagasse, Exceptionally large banded spherulites, Journal of Crystal Growth 1994,140,370-380.
    [293]J. J. Zhou, L. Li, J. Lu, The influence of stem conformation on the crystallization of isotactic polypropylene, Polymer 2006,47,261-264.
    [294]H. Saito, B. Stuehn, Exclusion of noncrystalline polymer from the interlamellar region in poly(vinylidene fluoride)/poly(methyl methacrylate) blends, Macromolecules 1994,27,216-218.
    [295]K. M. Kit, J. M. Schultz, Simulation of the effect of noncrystalline species on long spacing in crystalline/noncrystalline polymer blends, Macromolecules 2002,35,9819-9824.
    [296]U. Al-Atar, A. A. Bokov, D. Marshall, J. M. H. Teichman, B. D. Gates, Z.-G. Ye, N. R. Branda, Mechanism of calcium oxalate monohydrate kidney stones formation:Layered spherulitic growth, Chemistry of Materials 2010,22,1318-1329.
    [297]R. Zbinden, Infrared spectroscopy of high polymers, Academic Press, New York,1964.
    [298]M. Raimo, "Kinematic" analysis of growth and coalescence of spherulites for predictions on spherulitic morphology and on the crystallization mechanism, Progress in Polymer Science 2007,32,597-622.
    [299]S.-W. Kuo, W.-J. Huang, C.-F. Huang, S.-C. Chan, F.-C. Chang, Miscibility, specific interactions, and spherulite growth rates of binary poly(acetoxystyrene)/poly(ethylene oxide) blends, Macromolecules 2004,37,4164-4173.
    [300]S.-W. Kuo, S.-C. Chan, F.-C. Chang, Effect of hydrogen bonding strength on the microstructure and crystallization behavior of crystalline polymer blends, Macromolecules 2003,36,6653-6661.
    [301]J. M. Schultz, Self-generated fields and polymer crystallization, Macromolecules 2012,45,6299-6323.
    [302]Z. Hong, Y. Cong, Z. Qi, H. Li, W. Zhou, W. Chen, X. Wang, Y. Zhou, L. Li, Studying deformation behavior of a single spherulite with in-situ infrared microspectroscopic imaging, Polymer 2012,53, 640-647.
    [303]B. Sadlik, L. Talon, S. Kawka, R. Woods, J. Bechhoefer, Critical behavior of the banded-unbanded spherulite transition in a mixture of ethylene carbonate with polyacrylonitrile, Physical Review E 2005, 71,(061602)1-7.
    [304]J. M. Schultz, Polymer crystallization:The development of crystalline order in thermoplastic polymers, Oxford University Press,2001.
    [305]J. H. Magill, Review spherulites:A personal perspective, Journal of Materials Science 2001,36, 3143-3164.
    [306]N. V. Rudkovskaya, N. Y. Mikhailenko, Decorative zinc-containing crystalline glazes for ornamental ceramics (a review), Glass and Ceramics 2001,58,387-390.
    [307]Z. Wang, Y. Li, J. Yang, Q. Gou, Y. Wu, X. Wu, P. Liu, Q. Gu, Twisting of lamellar crystals in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) ring-banded spherulites, Macromolecules 2010,43, 4441-4444.
    [308]E. J. W. Crossland, K. Tremel, F. Fischer, K. Rahimi, G. Reiter, U. Steiner, S. Ludwigs, Anisotropic charge transport in spherulitic poly(3-hexylthiophene) films, Advanced Materials 2012,24,839-844.
    [309]S. S. Lee, M. A. Loth, J. E. Anthony, Y.-L. Loo, Orientation-independent charge transport in single spherulites from solution-processed organic semiconductors, Journal of the American Chemical Society 2012,134,5436-5439.
    [310]G Liu, D. Yang, Y. Zhu, J. Ma, M. Nie, Z. Jiang, Titanate nanotubes-embedded chitosan nanocomposite membranes with high isopropanol dehydration performance, Chemical Engineering Science 2011,66, 4221-4228.
    [311]H. Matsuyama, S. Berghmans, D. R. Lloyd, Formation of anisotropic membranes via thermally induced phase separation, Polymer 1999,40,2289-2301.
    [312]H. Matsuyama, T. Maki, M. Teramoto, K. Asano, Effect of polypropylene molecular weight on porous membrane formation by thermally induced phase separation, Journal of Membrane Science 2002,204, 323-328.
    [313]M. Gu, J. Zhang, X. Wang, W. Ma, Crystallization behavior of PVDF in PVDF-DMP system via thermally induced phase separation, Journal of Applied Polymer Science 2006,102,3714-3719.
    [314]Y. Lin, Y. Tang, H. Ma, J. Yang, Y. Tian, W. Ma, X. Wang, Formation of a bicontinuous structure membrane of polyvinylidene fluoride in diphenyl carbonate diluent via thermally induced phase separation, Journal of Applied Polymer Science 2009,114,1523-1528.
    [315]S. Rajabzadeh, T. Maruyama, T. Sotani, H. Matsuyama, Preparation of PVDF hollow fiber membrane from a ternary polymer/solvent/nonsolvent system via thermally induced phase separation (TIPS) method, Separation and Purification Technology 2008,63,415-423.
    [316]S. Rajabzadeh, S. Yoshimoto, M. Teramoto, M. Al-Marzouqi, H. Matsuyama, CO2 absorption by using PVDF hollow fiber membrane contactors with various membrane structures, Separation and Purification Technology 2009,69,210-220.
    [317]H. Matsuyama, T. Iwatani, Y. Kitamura, M. Tearamoto, N. Sugoh, Formation of porous poly(ethylene-co-vinyl alcohol) membrane via thermally induced phase separation, Journal of Applied Polymer Science 2001,79,2449-2455.
    [318]R. Lv, J. Zhou, Q. G. Du, H. T. Wang, W. Zhong, Preparation and characterization of EVOH/PVP membranes via thermally induced phase separation, Journal of Membrane Science 2006,281,700-706.
    [319]M. X. Shang, H. Matsuyama, M. Teramoto, D. R. Lloyd, N. Kubota, Preparation and membrane performance of poly(ethylene-co-vinyl alcohol) hollow fiber membrane via thermally induced phase separation, Polymer 2003,44,7441-7447.
    [320]P. D. Graham, A. J. Pervan, A. J. McHugh, The dynamics of thermal-induced phase separation in PMMA solutions, Macromolecules 1997,30,1651-1655.
    [321]H. Matsuyama, Y. Takida, T. Maki, M. Teramoto, Preparation of porous membrane by combined use of thermally induced phase separation and immersion precipitation, Polymer 2002,43,5243-5248.
    [322]S.-W. Song J. M. Torkelson, Coarsening effects on microstructure formation in isopycnic polymer solutions and membranes produced via thermally induced phase separation, Macromolecules 1994,27, 6389-6397.
    [323]何曼君,张红东,陈维孝,高分子物理,复旦大学出版社,上海,2008.
    [324]F. J. Hua, T. G Park, D. S. Lee, A facile preparation of highly interconnected macroporous poly(D,L-lactic acid-co-glycolic acid) (PLGA) scaffolds by liquid-liquid phase separation of a PLGA-dioxane-water ternary system, Polymer 2003,44,1911-1920.
    [325]Y. R. Qiu, H. Matsuyama, G Y. Gao, Y. W. Ou, C. Miao, Effects of diluent molecular weight on the performance of hydrophilic poly(vinyl butyral)/Pluronic F127 blend hollow fiber membrane via thermally induced phase separation. Journal of Membrane Science 2009,338,128-134.
    [326]W. K. Kim, K. Char, C. K. Kim, Control of droplet size of polymer-diluent blends through thermally induced phase separation, Journal of Polymer Science Part B-Polymer Physics 2000,38,3042-3052.
    [327]D. S. Martula, T. Hasegawa, D. R. Lloyd, R. T. Bonnecaze, Coalescence-induced coalescence of inviscid droplets in a viscous fluid, Journal of Colloid and Interface Science 2000,232,241-253.
    [328]P. L. Hanks, D. R. Lloyd, Deterministic model for matrix solidification in liquid-liquid thermally induced phase separation, Journal of Membrane Science 2007,306,125-133.
    [329]J. H. Aubert, Structural coarsening of demixed polymer solutions, Macromolecules 1990,23, 1446-1452.
    [330]S. Berghmans, H. Berghmans, H. E. H. Meijer, Spinning of hollow porous fibres via the TIPS mechanism, Journal of Membrane Science 1996,116,171-189.
    [331]J. W. Cahn, On spinodal decomposition, Acta Metallurgica 1961,9,795-801.
    [332]J. W. Cahn, Phase separation by spinodal decomposition in isotropic systems, Journal of Chemical Physics 1965,42,93-99.
    [333]H. Zhou, G. L. Wilkes, Orientation-dependent mechanical properties and deformation morphologies for uniaxially melt-extruded high-density polyethylene films having an initial stacked lamellar texture, Journal of Materials Science 1998,33,287-303.
    [334]H. Zhang, Y. Zhao, H. Wang, W. Zhong, Q. Du, X. Zhu, Phase behavior of polyetherimide/benzophenone/triethylene glycol ternary system and its application for the preparation of microporous membranes, Journal of Membrane Science 2010,354,101-107.
    [335]Dimethyl sulfone (DMS02) physical properties, Gaylord Chemical Company,2007.
    [336]J.-H. Kim K.-H. Lee, Effect of PEG additive on membrane formation by phase inversion, Journal of Membrane Science 1998,138,153-163.
    [337]Q.-Z. Zheng, P. Wang, Y.-N. Yang, Rheological and thermodynamic variation in polysulfone solution by PEG introduction and its effect on kinetics of membrane formation via phase-inversion process, Journal of Membrane Science 2006,279,230-237.
    [338]G. Arthanareeswaran, D. Mohan, M. Raajenthiren, Preparation, characterization and performance studies of ultrafiltration membranes with polymeric additive, Journal of Membrane Science 2010,350, 130-138.
    [339]I.-C. Kim, K.-H. Lee, Effect of poly(ethylene glycol) 200 on the formation of a polyetherimide asymmetric membrane and its performance in aqueous solvent mixture permeation, Journal of Membrane Science 2004,230,183-188.
    [340]B. Tang, D. Wu, T. Xu, Effect of PEG additives on properties and morphologies of membranes prepared from poly(2,6-dimethyl-1,4-phenylene oxide) by benzyl bromination and in situ amination, Journal of Applied Polymer Science 2005,98,2414-2421.
    [341]E. Saljoughi, M. Amirilargani, T. Mohammadi, Effect of PEG additive and coagulation bath temperature on the morphology, permeability and thermal/chemical stability of asymmetric CA membranes, Desalination 2010,262,72-78.
    [342]N. Li, C. Xiao, Z. Zhang, Effect of polyethylene glycol on the performance of ultrahigh-molecular-weight polyethylene membranes, Journal of Applied Polymer Science 2010,117, 720-728.
    [343]W. K. Kim, K. Char, C. K. Kim, Control of droplet size of polymer-diluent blends through thermally induced phase separation, Journal of Polymer Science Part B:Polymer Physics 2000,38,3042-3052.
    [344]X. Han, H. Ding, L. Wang, C. Xiao, Effects of nucleating agents on the porous structure of polyphenylene sulfide via thermally induced phase separation, Journal of Applied Polymer Science 2008,107,2475-2479.
    [345]X. Fu, H. Matsuyama, M. Teramoto, H. Nagai, Preparation of hydrophilic poly(vinyl butyral) hollow fiber membrane via thermally induced phase separation, Separation and Purification Technology 2005, 45,200-207.
    [346]S. Wongchitphimon, R. Wang, R. Jiraratananon, L. Shi, C. H. Loh, Effect of polyethylene glycol (PEG) as an additive on the fabrication of polyvinylidene fluoride-co-hexafluropropylene (PVDF-HFP) asymmetric microporous hollow fiber membranes, Journal of Membrane Science 2011,369,329-338.
    [347]J.-F. Li, Z.-L. Xu, H. Yang, C.-P. Feng, J.-H. Shi, Hydrophilic microporous PES membranes prepared by PES/PEG/DMAc casting solutions, Journal of Applied Polymer Science 2008,107,4100-4108.
    [348]H. K. Lee, A. S. Myerson, K. Levon, Nonequilibrium liquid-liquid phase separation in crystallizable polymer solutions, Macromolecules 1992,25,4002-4010.
    [349]M. Yasmin, M. Gupta, J. P. Shukla, Experimental and computational study on viscosity and optical dielectric constant of solutions of poly(ethylene glycol) 200, Journal of Molecular Liquids 2011,160, 22-29.
    [350]C. Kim, B. T. N. Ngoc, K. S. Yang, M. Kojima, Y. A. Kim, Y. J. Kim, M. Endo, S. C. Yang, Self-sustained thin webs consisting of porous carbon nanofibers for supercapacitors via the electrospinning of polyacrylonitrile solutions containing zinc chloride, Advanced Materials 2007,19, 2341-2346.
    [351]B.-H. Kim, K. S. Yang, H.-G. Woo, Thin, bendable electrodes consisting of porous carbon nanofibers via the electrospinning of polyacrylonitrile containing tetraethoxy orthosilicate for supercapacitor, Electrochemistry Communications 2011,13,1042-1046.
    [352]E. J. Ra, E. Raymundo-Pinero, Y. H. Lee, F. B6guin, High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper, Carbon 2009,47,2984-2992.
    [353]E. Rikkinen, A. Santasalo-Aarnio, S. Airaksinen, M. Borghei, V. Viitanen, J. Sainio, E. I. Kauppinen, T. Kallio, A. O. I. Krause, Atomic layer deposition preparation of Pd nanoparticles on a porous carbon support for alcohol oxidation, The Journal of Physical Chemistry C 2011,115,23067-23073.
    [354]L. Wei, Q. Chen, X. Kong, Lithium storage properties of porous carbon formed through the reaction of supercritical carbon dioxide with alkali metals, Journal of the American Ceramic Society 2011,94, 3078-3083.
    [355]E.-S. Kim, B. Deng, Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications, Journal of Membrane Science 2011,375,46-54.
    [356]W. G. Shim, C. Kim, J. W. Lee, J. J. Yun, Y. I. Jeong, H. Moon, K. S. Yang, Adsorption characteristics of benzene on electrospun-derived porous carbon nanofibers, Journal of Applied Polymer Science 2006, 102,2454-2462.
    [357]B. Grzyb, A. Albiniak, E. Broniek, G. Furdin, J. F. Mareche, D. Begin, SO2 adsorptive properties of activated carbons prepared from polyacrylonitrile and its blends with coal-tar pitch, Microporous and Mesoporous Materials 2009,118,163-168.
    [358]O. P. Bahl, L. M. Manocha, Characterization of oxidised PAN fibres, Carbon 1974,12,417-423.
    [359]B. Xiao, K. M. Thomas, Adsorption of aqueous metal ions on oxygen and nitrogen functionalized nanoporous activated carbons, Langmuir 2005,21,3892-3902.
    [360]J. H. Knox, B. Kaur, G. R. Millward, Structure and performance of porous graphitic carbon in liquid chromatography, Journal of Chromatography A 1986,352,3-25.
    [361]N. Cohen, M. S. Silverstein, Synthesis of emulsion-templated porous polyacrylonitrile and its pyrolysis to porous carbon monoliths, Polymer 2011,52,282-287.
    [362]T. Gitli, M. S. Silverstein, Emulsion templated bicontinuous hydrophobic-hydrophilic polymers: Loading and release, Polymer 2011,52,107-115.
    [363]D. David, M. S. Silverstein, Porous polyurethanes synthesized within high internal phase emulsions, Journal of Polymer Science Part A:Polymer Chemistry 2009,47,5806-5814.
    [364]H. N. Friedlander, L. H. Peebles, J. Brandrup, J. R. Kirby, On the chromophore of polyacrylonitrile. VI. Mechanism of color formation in polyacrylonitrile, Macromolecules 1968,1,79-86.
    [365]A. Gupta, I. R. Harrison, New aspects in the oxidative stabilization of PAN-based carbon fibers, Carbon 1996,34,1427-1445.
    [366]J.-S. Tsai, C.-H. Lin, The effect of molecular weight on the cross section and properties of polyacrylonitrile precursor and resulting carbon fiber, Journal of Applied Polymer Science 1991,42, 3045-3050.
    [367]R. K. Mariwala, H. C. Foley, Evolution of ultramicroporous adsorptive structure in poly(furfuryl alcohol)-derived carbogenic molecular sieves, Industrial & Engineering Chemistry Research 1994,33, 607-615.
    [368]A. C. Boccara, D. Fournier, A. Kumar, G. C. Pandey, Nondestructive evaluation of carbon fiber by mirage-FTIR spectroscopy, Journal of Applied Polymer Science 1997,63,1785-1791.
    [369]M. Ji, C. Wang, Y. Bai, M. Yu, Y. Wang, Structural evolution of polyacrylonitrile precursor fibers during preoxidation and carbonization, Polymer Bulletin 2007,59,527-536.
    [370]J. L. Bahr, J. Yang, D. V. Kosynkin, M.-J. Bronikowski, R. E. Smalley, J. M. Tour, Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts:A bucky paper electrode, Journal of the American Chemical Society 2001,123,6536-6542.
    [371]B. K. Price, J. L. Hudson, J. M. Tour, Green chemical functionalization of single-walled carbon nanotubes in ionic liquids, Journal of the American Chemical Society 2005,127,14867-14870.
    [372]K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure and applied chemistry 1985,57,603-619.
    [373]J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. H. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, K. K. Unger, Recommendations for the characterization of porous solids, Pure and applied chemistry 1994,66,1739-1758.
    [374]K. L. Kendrick, W. R. Gilkerson, The state of aggregation of methyl orange in water, Journal of Solution Chemistry 1987,16,257-267.
    [375]H. P. de Oliveira, E. G. L. Oliveira, C. P. de Melo, Aggregation of methyl orange probed by electrical impedance spectroscopy, Journal of Colloid and Interface Science 2006,303,444-449.
    [376]C. Pelekani, V. L. Snoeyink, Competitive adsorption in natural water:role of activated carbon pore size, Water Research 1999,33,1209-1219.
    [377]X. Wang, Y. Liu, Z. Hu, Y. Chen, W. Liu, G. Zhao, Degradation of methyl orange by composite photocatalysts nano-TiO2 immobilized on activated carbons of different porosities, Journal of Hazardous Materials 2009,169,1061-1067.
    [378]U. Costantino, N. Coletti, M. Nocchetti, G. G. Aloisi, F. Elisei, Anion exchange of methyl orange into Zn-Al synthetic hydrotalcite and photophysical characterization of the intercalates obtained, Langmuir 1999,15,4454-4460.
    [379]J. Huang, Molecular sieving effect of a novel hyper-cross-linked resin, Chemical Engineering Journal 2010,165,265-272.
    [380]A. S. Maltsev, A. Grishaev, A. Bax, Monomeric a-synuclein binds Congo red micelles in a disordered manner, Biochemistry 2011,51,631-642.
    [381]R. A. Edwards, R. W. Woody, Spectroscopic studies of Cibacron blue and Congo red bound to dehydrogenases and kinases. Evaluation of dyes as probes of the dinucleotide fold, Biochemistry 1979, 18,5197-5204.
    [382]C. Lendel, C. W. Bertoncini, N. Cremades, C. A. Waudby, M. Vendruscolo, C. M. Dobson, D. Schenk, J. Christodoulou, G Toth, On the mechanism of nonspecific inhibitors of protein aggregation:Dissecting the interactions of a-synuclein with congo red and lacmoid, Biochemistry 2009,48,8322-8334.
    [383]A. V. Deshpande, U. Kumar, Effect of method of preparation on photophysical properties of Rh-B impregnated sol-gel hosts, Journal of Non-Crystalline Solids 2002,306,149-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700