用户名: 密码: 验证码:
川中~川南过渡带河包场地区须家河组二段、四段有效储层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
川中~川南过渡带河包场地区须家组二段、四段低孔、低渗~特低渗储层发育相对优质的有效储层,大部分油气都储集在这些“甜点”储层中。本文应用地层学、沉积学及储层地质学等理论,以岩心分析、测井资料处理解释为基础,通过对有效储层物性条件的分析及储层的精细对比,开展了有效储层下限研究及有效储层纵横向分布研究。为河包场地区须家河组下一步勘探与开发部署指出了有利的勘探开发区块和层段。
     结合前人研究,在地层对比的基础上,认同四川盆地须家河组按岩性六分方案,并对研究地区须家河组地层进行了再细分,按岩性、电性特征将须二段、须四段各划分为2个亚段,须六段划分为3个亚段;认为研究区的砂体成因为河流携带的物质入湖后经波浪和湖流再改造再分布形成的滩坝砂体:储层物性具低孔、低渗~特低渗的特点,储集空间以残余粒间孔和饮生溶孔为主,孔隙结构属于小孔细喉型;该类储层具有较强的应力敏感和水锁效应。针对该类储层的具体特点,利用最小流动孔喉半径法、压汞分析参数相关法、启动压力梯度法、束缚水膜测定法(气态渗吸法、核磁共振实验法)、测井解释含水饱和度~孔隙度交绘法、含水饱和度与相对渗透率组合法、地层条件下的进汞饱和度法,初步确定了储层的孔隙度下限(须二段为8%、须四段为6%)及渗透率下限0.2×10~(-31)μm~2。
     利用气~水相对渗透率实验分析得到须二段束缚水饱和度为36.5%、须四段束缚水饱和度为40.5%,储层产气饱和度下限为30%,产纯气下限为60%。
     研究区为含水饱和度较高的低渗气藏,含水状态下,通过应力敏感研究,储层的渗透率下限可定为0.3×10~(-3)μm~2。
     通过产能模拟,在不含水状态下,对须二段储层,当生产压差为5MPa、产层累计厚度为10~15米时,孔隙度大于9.6%、渗透率大于0.1×10~(-3)μm~2就能达到工业产气标准;对须四段储层,当生产压差为5MPa、产层累计厚度为10~15米时,孔隙度大于4%、渗透率大于0.02×10~(-3)μm~2就能达到工业产气标准。需指出,产能模拟是一个理想状态下进行的,在一定的生产压差条件下,有效储层物性下限受储层非均质性及有效厚度的影响在一定范围内可变化。
     根据上述储层物性及储层有效条件的研究成果,综合考虑将储层分为四类,研究区须二段以Ⅰ-Ⅱ类好~中等储层为主;须四段以Ⅲ-Ⅱ类差~中等储层为主。纵向上,主要分布在须二~2亚段、须四~1亚段及须四~2亚段下部,须二~1亚段不发育,但是个别井偶见发育。横向上,呈团块状、连续性差,导致研究区气水分布复杂。这些团块状分布的“甜点”区域,应是下一步勘探开发的重点。
The reservoir with high quality could grow in the“the sweet dessert zone”cluster-block alike among the one with low porosity and permeability in horizontal plane in the Xujiahe formation,upper triassic system of Hebaochang area,central Sichuan-South Sichuan transitional belt.Under the guidance of new principles and methods of stratigraphic geology, sedimentology,reservoir geology,based on core anlysis and logging interpreation,through the analysis of propertity and fine comparison of effective reservior,the lower limit of effective reservior was studied and advantageous exploration development sub-area and section was indentified and selected.
     Based on predecessor' previous research results,formation comparison between external and internal stratum in the targer area and the sequnce in the Xujiahe formation of Sichuan basin were seperrated in to six members according to lithology and logging and then it was taken into detailed final sorting.After repeatedly rebuilded and reallocated by wave and lake -rive,the fragmentary material that had been carried to lake through alluvial fans and rivers,formed beach -dam face sandstone along seacoast and alongshore,swamp containing coal developed shallow-shore sub-enviroment.The reservoir space are mainly remainder intergranular and secondary dissolved pore and the type of reservoir space is small pore and thin throat,which is so sensitive to compacting stress and water blocking.By means of method for testing least pore throat radius、correlation method by mercury penetration analysis、activate pressure gradient allocation metod、binding water film mensuration、water saturation and porosity correlation and water saturation phase、permeability combined method and mercury saturation under sequece compacting,porosity lower limit of reservior was determined(T_3X_46%,T_3X_28%)which was applied to assort and appraise reservoir. lower limit of least throat radius using gas imbibition binding water film mensuration is gained(averaged 0.0245μm of T_3X_4,averaged 0.0233μm of T_3X_2)which has very good uniformity with the result(0.0278μm by nuclear magnetic resonance experiment,binding with the relationship of permeability and mean radius,the permeabilty of T_3X_4 and T_3X_2 was 0.15×10~(-3)μm~2and 0.18×10~(-3)μm~2respectively and the porosity of T_3X_4and T_3X_2was 5.62% and 8.13%respectively;the bound water saturation of T_3X_4 and T_3X_2 was 40.5%with experimental analysis of gas-waterreiative permeability and 36.5%respectively;lower limit of gas saturation is 30%and one of gas saturation which can have industrial producing is 60%.With study on stress sensitivity,the damage of permeability is lower than 50%in the process of crocking up development which is to say stress sensitivity weak or medium.The permeability damage relation of dry sample and wet sample showed that when the permeability is lower than 0.3×10~(-3)μm~2,correspondingly loss ratio of stress sensitivity was descending gently,so the lower limit of permeability of reservior with much water contained was identified as 0.3×10~(-3)μm~2.Through the capacity simulating,under the differential producting pressure condition industrial volume of producing reserves could be achieved.Under the producing presurre is 5MPa and accumulative thickness is changing from 10m to 15m,it will be effective and avilable for 2~(nd)member when the porosity is above 9.6%and the permeability above 0.1×10~(-3)μm~2;also effective and avilable for 4~(th)member when the porosity is above 4%and the permeability above 0.02×10~(-3)μm~2.
     Last is not least,the lower limit of effective reservior is restricted and defined by the elements of heterogeneity and available thickness altogether.
     According to the parameter of property and pore structure and analysing results on the effctive reservior,the reservoir were classified into 4 types under the comprehensive consideration.And theⅠ-Ⅱsecondary reservior developed in the 2~(nd)member(T_3X_2)and theⅢ-Ⅱsecondary reservior developed in the 4~(th)member(T_3X_4)where the advantageous bed well growed in the 4th sub member(T_3X_(4~1))comparatively where the advantageous bed well grow in the 2~(nd)sub member(T_3X_(2~2))which is to say the advantageous reservior developed in the middle bottom of the 4~(th)member(T_3X_(4~1))and upper part of the 2~(nd)member(T_3X_2).In a word,the degree of reservior development are different among the secondary structures and well segments in vertical section and it presents sandbody cluster- block alike in horizontal plane,which led to gas-water distribution so complex.And so,the further exploration and development should attach importance to "the sweet dessert zone "cluster- block alike in horizontal plane.
引文
[1]四川省地质矿产局,四川省区域地质志,中华人民共和国地质矿产部地质专报,一、区域地质(M),第23号,北京,地质出版社,1991年
    [2]邓康龄,何鲤,四川盆地西部晚三叠世早期地层及其沉积环境,石油与天然气地质,1982,3(3):204-10
    [3]朱仕军,黄继祥,川中-川南过渡带香溪群地层划分与对比,西南石油学院学报,1996,18(2):1-7
    [4]郭正吾等著,四川盆地形成与演化,北京:地质出版社,1996:5-80
    [5]四川省地质局,中华人民共和国区域地质调查报告-古蔺幅,1976
    [6]四川省地质局,中华人民共和国区域地质调查报告-綦江幅,1976
    [7]四川省地质局,中华人民共和国区域地质调查报告-叙永幅,1976
    [8]张金亮,王宝清,四川盆地中西部上三叠统沉积相,西安石油学院报(自然科学版)2000,15(2):1-6
    [9]唐泽尧主编.气田开发地质,石油工业出版社,1996
    [10]于兴河编著.碎屑岩系油气储层沉积学,石油工业出版社,2002
    [11]方少仙,侯方浩著.石油天然气储层地质学,石油大学出版社,1995
    [12]贾爱林,肖敬修著.油藏评价阶段建立地质模型的技术与方法,2001
    [13]邸世祥,祝总祺等著.碎屑岩储集的孔隙结构及其成因对油气运移的控制作用,西北大学出版社,1990
    [14]罗蜇潭,王允诚著.油气储层的孔隙结构,科学出版社,1986
    [15]王允诚著.油层物理学,石油工业出版社,1993
    [16]孙梦茹,周建林等著.胜坨油田精细地质研究,2004
    [17]胡宗全著.致密裂缝性碎屑岩储层描述、评价与预测,2005
    [18]郝世祥,祝总祺等著.碎屑岩储集层的孔隙结构及其成因与对油气运移的控制作用.
    [19]李道品.低渗透油田高效开发决策论,石油工业出版社,2003
    [20]魏小薇,谢继容,唐大海.低孔渗砂岩储层基质物性下限确定方法研究,天然气工业,2005,25(增刊A:18-23)
    [21]张玉金.低渗透率地层渗透率的确定方法.测井技术,1993,17(1),60-64
    [22]刘建军,程林松.低渗储层物性压力敏感性研究,新疆石油科技,2005,2(15):16-18
    [23]王秀娟,赵永胜等.低渗透储层应力敏感性与产能物性下限,石油与天然气地质,2003,24(2):161-165
    [24]张玉涛,高彦楼等.特低渗透扶杨油层技术动用下限研究,大庆石油地质与开发,2003,22(4):21-24
    [25]刘成川.应用产能模拟技术确定储层基质孔、渗下限,天然气工业, 2005,25(10):27-29
    [26]侯雨庭,郭清娅,李高仁.西峰油田有效厚度下限研究,中国石油勘探,2003,28(8):51-54
    [27]于俊波,郭殿军,王新强.基于恒速压汞技术的低渗储层物性特征,大庆石油学院学报,2006,30(2):22-25
    [28]李森明,蔡文新,孙惠萍.台北凹陷侏罗系储集层有效下限探讨,吐哈油气,2005,10(1):10-13
    [29]张伦友,张向阳.天然气储量计算及其参数确定方法,天然气勘探与开发,2004,6
    [30]向丹,向阳.致密砂岩气藏水驱动态采收率及水膜厚度研究,成都理工大学学报,1999,26(4):390-391
    [31]岳文正,陶果,赵克超.用核磁共振及岩石物理实验求地层束缚水饱和度及平均孔隙半径,测井技术成都理工大学学报,1999,26(4):390-391,2002,26(1):22-25
    [32]杨满平,李允,李治平.气藏含束缚水储层岩石应力敏感性实验研究,天然气地球科学,2004,15(3):227-229
    [33]谷建伟,毛振强.启动压力和毛管压力对低渗透油田生产参数影响,大庆石油地质与开发,2002,21(5):30-33
    [34]何雨丹,毛志强等.利用核磁共振T2分布构造毛管压力曲线的新方法,吉林大学学报(地球科学版),2005,35(2):177-180
    [35]张大奎,周克明.封闭气与储层下限的实验研究,天然气工业,1990,10(31):29-32
    [36]聂立新.低渗透油藏压力分析,油气井测试,2001,10(6):6-10
    [37]王允诚.川东石炭系有效储层下限标准的确定,石油与天然气地质,1996,17(4):343-346
    [38]段新国,王洪辉等.储层参数下限确定方法成都理工大学学报(自然科学版),2003,30(2):168-173
    [39]石京平,向阳等.榆树林油田低渗透储层微观孔隙结构特征及渗流特性,沉积与特提斯地质,2003,23(1):91-94
    [40]牟学益,刘永祥.低渗透油田启动压力梯度研究,油气地质与采收率,2001,8(5):58-59
    [41]周克明,李宁,袁小玲.残余水状态低渗透储层气体低速渗流机理,天然气工业,2003,23(6):103-106
    [42]刘成川,应用产能模拟技术确定储层基质孔、渗下限.天然气工业,2005,25(10):27-29
    [43]魏小薇、谢继容、唐大海.低孔渗砂岩储层基质物性下限确定方法研究.天然气工业,2005,25(增刊A):28-31
    [44]牟学益、刘永祥.低渗透油田启动压力梯度研究.油气地质与采收率,2001,8(5):58-59
    [45]吴凡、孙黎娟,乔国安等.气体渗流特征及启动压力规律研究,天然气工业,2001,21(1):82-84
    [46]王昔彬、刘传喜、郑荣臣.大牛地致密低渗透气藏启动压力梯度及应用,石油与天然气地质2005,26(5):699-701
    [47]王渝明、庞颜民、杨树锋.基于启动压力梯度的低渗透砂岩储层分类研究,高校地质学报,2005,11(4):617-621
    [48]罗瑞兰,程林松,彭建春,李春兰.油气储层渗透率应力敏感性与启动压力梯度的关系,西南石油学院学报,2005,27(3):20-22
    [49]Guo Wankui,SPE,Shi Chengfang,SPE,Yang Zhenyu,SPE,Hou Zhaowei,Jin Rui,Wang Ying,Zhang Jiyuan,and Shan Guanghao,Daqing Oilfield Co.Ltd,Microbe-Enhanced Oil Recovery Technology Obtains Huge Success in Low-Permeability Reservoirs in Daqing Oilfield,2006,SPE,104281-MS
    [50]A.Taheri and V.A.Sajjadian,SPE,NIOC,WAG Performance in a Low Porosity and Low-Permeability Reservoir,Sirri-A Field,Iran,2006,SPE,100212- MS
    [51]M.N.Bulova,SPE,A.N.Cheremisin Jr.,SPE,K.E.Nosova,SPE,J.T.Lassek,SPE,and D.Willberg,SPE,Schlumberger,Evaluation of the Proppant-Pack Permeability in Fiber-Assisted Hydraulic Fracturing Treatments for Low-Permeability Formations,2006,SPE,100556-MS
    [52]Morrow,N.R.,Cather,M.E.,Buckley,J.S.,New Mexico Petroleum Recovery Research Center;Dandge,V,Lockhead Engineering and Sciences,Effects of Drying on Absolute and Relative Permeabilities of Low-Permeability Gas Sands,1991,SPE,21880-MS
    [53]Ward,Jill S.,New Mexico Petroleum Recovery Research Center;Morrow,Norman R.,New Mexico Petroleum Recovery Research Center,Ward,Jill S.,New Mexico Petroleum Recovery Research Center;Morrow,Norman R.,New Mexico Petroleum Recovery Research Center,1987,SPE,13882- PA
    [54]Newberg,Mary Aylward,Inst.of Gas Technology;Arastoopour,Hamid,Illinois Inst.of Technology,Analysis of the Flow of Gas Through Low-Permeability Porous Media,1986,SPE,14705- PA
    [55]Farquhar,R.A.,Smart,B.G.D.,Todd,A.C.,Heriot-Watt U.;Tompkins,D.E.,Phillips Petroleum Co.U.K.Ltd.;Tweedie,A.J.,Heriot-Watt,Stress Sensitivity of Low-Permeability Sandstones From the Rotliegendes Sandstone,1993,SPE,26501-MS
    [56]Narahara,G.M.,S.A.Holditch;Moore,K.R.,Texas A and M U.,A New Method for the Measurement of Gas Relative Permeability and Water Saturation Simultaneously in Low-Permeability Cores,1988,SPE,18318- MS
    [57]J.V.Norgaard,Technical U.of Denmark;Dan Olsen,Geological Survey of Denmark and Greenland;Jan Reffstrup,Dansk Olie og Naturgas A/S;Niels Springer,Geological Survey of Denmark and Greenland,Capillary-Pressure Curves for Low-Permeability Chalk Obtained by Nuclear Magnetic Resonance Imaging of Core-Saturation Profiles, 1999, SPE,55985- PA
    [58] Robert R. Berg and Anthony F. Gangi,Primary migration by oil-generation microfracturing in low-permeability source rocks; application to the Austin Chalk, Texas,AAPG Bulletin, May 1999; 83: 727 -756.
    [59] Noel Tyler, J. Crispin Gholston, and W. A. Ambrose,Oil recovery in low-permeability, wave-dominated, Cretaceous, deltaic reservoir, Big Wells (San Miguel) Field, South Texas,AAPG Bulletin, Oct 1987; 71: 1171 -1195
    [60] B. E. Law, V. F. Nuccio, and C. E. Barker,Kinky vitrinite reflectance well profiles; evidence of paleopore pressure in low-permeability, gas-bearing sequences in Rocky Mountain foreland basins,AAPG Bulletin, Aug 1989; 73: 999 - 1010
    [61] Zeng Daqian and Li Shuzhen Types and characteristics of low permeability sandstone reservoirs in China,Shiyou Xuebao = Acta Petrolei Sinica (January 1994), 15(1):38- 46
    [62] Xiao Luchuan, Zhen Li, and Zheng Yan ,Non-Darcy seepage flow characteristics in ultra-low permeability reservoirs,Daqing Shiyou Dizhi yu Kaifa = Petroleum Geology & Oilfield Development in Daqing (2000), 19(5):27-28
    [63] Mao Lihua, Zhao Liangjin, Zhou Yu, Zhang Yuanzhi, Wang Liangping, and Zhang Xing ,Characteristics of 6-10 super-low permeability reservoir in the middle of Es 3 Member in Pucheng Field, Dongpu Depression, China,Jianghan Shiyou Xueyuan Xuebao = Journal of the Jianghan Petroleum Institute (December 2000), 22(4):55—57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700