注浆结石体耐久性试验及评估理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着地下工程的快速发展和注浆材料的大量使用,注浆材料的耐久性及其评估理论的研究已经成为当前该领域的研究热点和核心之一。提高注浆材料的耐久性能,加强注浆帷幕的加固与防渗功能,可以为地下工程结构提供一道抵抗侵蚀的屏障,从根本上保障地下工程结构的安全运营,延长结构的服役期限,这不仅具有重要的社会经济意义,也具有重大的现实工程价值。
     承蒙国家863高科技项目(2007AA11Z134)“地下工程承压地下水防治与控制技术研究”基金的资助,本文以青岛胶州湾海底隧道为工程背景,在广泛收集并分析国内外研究成果的基础上,深入研究了水泥类注浆材料的固结原理和结石体强度的影响因素,分析总结了注浆材料的侵蚀因素和破坏机理,对注浆材料的耐久性进行了试验研究,对其服役寿命进行了预测和评估。本文所做的主要研究工作如下:
     (1)阐述了水泥类注浆材料的水化固结原理,包括纯水泥浆液、水泥水玻璃浆液、水泥粘土浆液、粘土固化浆液等。分析了水泥浆液结石体的组成和结构,得到了影响水泥结石体孔隙大小分布的因素。通过总结水泥基注浆材料孔隙结构与强度关系的理论,得到了改善硬化浆体的微观结构和孔隙结构的途径,从而达到获得高性能注浆浆液的目的。
     (2)分析总结了注浆材料分别在地下水溶蚀、碱集料反应、冻融循环、碳酸侵蚀、一般酸类侵蚀、硫酸盐侵蚀、镁盐侵蚀和海水侵蚀的作用下,注浆材料的侵蚀破坏机理。
     (3)通过对注浆材料的室内试验,采用正交试验理论,运用概率统计的方法,研究各种浆液成分对浆液结石体强度的影响,得出各时期最佳强度的配方方案。并通过试样分别在淡水和海水下的浸泡试验,比较了试样在两种情况下强度的变化过程,得到了海水对试样的腐蚀规律。
     (4)阐述了应用酸碱度测试的方法评估注浆材料使用寿命的基本原理,提出了注浆材料使用寿命预测的模型和预测公式,建立了浆液结石体使用寿命的评估程序和评估标准。利用注浆结石体酸碱度评估预测方法的基本原理,采用低pH值酸溶液来加速水泥基注浆材料的腐蚀,得到了常温状态酸雨环境下注浆材料的力学性质劣化规律,预测了注浆材料的使用寿命。
     (5)以普通水泥、超细水泥、硫铝酸盐水泥等主要的注浆材料为研究对象,进行了抗海水侵蚀的耐久性试验研究。选择注浆材料抗硫酸盐侵蚀、抗海水渗透、抗氯离子侵蚀及体积稳定性作为影响因素,采用层次分析法确定各因素的权重,应用多重因素影响的模糊综合评定理论评价注浆材料的耐久性能。
     (6)使用灰色系统理论分析了注浆材料在海水侵蚀环境下无侧限抗压强度和材料的水胶比、龄期、海水浓度、硅粉含量、粉煤灰含量、矿粉含量等因素的关系,并预测了各种不同注浆材料的使用寿命。
With the rapid development of underground engineering and the wide use of grouting materials, research on the durability of grouting materials and evaluation theory become the hot spot and core research in this area. Improving the durability of grouting materials and strengthening the reinforcement and anti-seepage are of not only important social and economic significance, but also great realistic engineering value. Durable grouting curtain provided for the underground engineering structure will not only ensure the safety of operation, but also extend its service life.
     Supported by the National High Technology Research and Development Program863and engineering project of the Qingdao Jiaozhou Bay subsea tunnel, the paper widely collects and analyzes research achievements at home and abroad. Moreover, the paper analyzes and summarizes the grouting material erosion factors and failure mechanism by researching on consolidation principle of cement grouting materials and influence factors of grouting stone strength. On the basis of durability test on grouting materials, the paper predicts and evaluates their service life, and then makes a special design for subsea tunnel grouting of the Qingdao Jiaozhou Bay. The main works are as followed:
     (1)Hydrition and consolidation theories of cement grouting materials such as cement slurry, cement water glass grout, cement clay grout and clay solidified slurry are elaborated. Composition and structure of cement grout stone is analysed and factors effecting cement grout stone pore distribution is obtained. Through summarizing the pore structure and strength theory of cement base grouting material, approaches to improve the hardened slurry microcosmic structure and pore structure are obtained. So the purpose of high-performance grout is also obtained.
     (2) Erosion and damage mechanism of grouting materials in all kinds of corrosive environments is summarized, such as ground water dissolution, Alkali aggregate reaction, freeze-thaw cycle, carbonic acid erosion, general acid erosion, sulfate erosion, magnesium salt erosion and seawater erosion.
     (3) Through the laboratory test of grouting material, the influence of various slurry compositions on slurry stone strength is researched and the best strength formulation solution in every periods is obtained by using orthogonal test theory and probability and statistics methods in the paper. Through the specimen soaking test respectively in fresh and sea water, the difference of sample strength development situation in both cases is compared and the corrosion rule of seawater on the sample is obtained.
     (4) The basic principle of service life assessment of grouting materials with pH value test method is clarified and the macro life prediction model is founded. The service life assessment procedures and evaluation standard of slurry calculi body are established in this paper. Grouting material's deteriorating law of mechanics properties on normal acid rain conditions are obtained by accelerating corrosion test on cement base grouting material in low pH value acidic environment. Through using the basic principle of pH value testing, the paper is able to forecast the service life of cement grouting materials.
     (5)Taking ordinary cement, the superfine cement and sulfur aluminum acid salt cement grouting materials as the research object, experimental research on the durability of the anti-seawater erosion is done. Choosing grouting material resistance to erosion and seawater resistance sulphate penetration, anti-chloride ion erosion and volume stability as influencing factors, the paper determines the weights of various factors by using analytic hierarchy process and evaluates the grouting material performance with multiple factors fuzzy comprehensive evaluation theory.
     (6)The relationship between unconfined compressive strength and water-cement ratio of materials, ages, seawater concentration, silicon powder content, fly ash content, slag content under sea erodes environment by using grey system theory is analysed and service life of different grouting materials is predicted.
引文
[1]李治国,孙振川,王小军,等.厦门翔安海底服务隧道F1风化槽注浆堵水技术[J].岩石力学与工程学报,2007,26(增2):3841-3848.
    [2]刘招伟,张顶立,张民庆.圆梁山隧道毛坝向斜高水压富水区注浆施工技术[J].岩石力学与工程学报,2005,24(10):1728-1734.
    [3]宋汉周,施希京.大坝坝体析出物及其对岩体渗透稳定性的影响[J].岩土工程学报,1997,19(5):14-19.
    [4]缪林昌,刘松玉.环境岩土工程学概论[M].北京:中国建材工业出版社,2005.
    [5]程骁,张凤祥.土建注浆施工与效果检测[M].上海:同济大学出版社,1998:18-30.
    [6]王曰国,王星华,杨秀竹.铁路岩溶路基注浆材料试验研究[J].岩土力学,2003,10(24):495-498.
    [7]娄晓波,赵德才.思林水电站大坝防渗灌浆设计[J].贵州水力发电,2008,8(22):23-26.
    [8]陈铁林,滕红军,张顶立.厦门翔安海底隧道富水砂层注浆试验[J].岩石力学与工程学报:2007,26(增2):3711-3717.
    [9]李冠颖,郭俊志,谢其泰,等.二氧化碳储存环境对油井水泥性质影响之研究[J].岩土力学,2011,8(增2):346-350.
    [10]郭志勤,赵庆.抗腐蚀水泥浆体系研究[J].石油钻采工艺:2005,6(27):26-29.
    [11]刘红卫.地基加固的复合注浆技术及应用研究[D].硕士学位论文,重庆大学:2003.
    [12]刘红卫,地基加固的复合注浆技术及应用研究[D].硕士学位论文,重庆大学:2003.
    [13]张向东,金银龙,张传军.高压充填注浆控制岩层移动[J].中国矿业,1998,7.
    [14]张成满,殷永法,王慨慷.国内隧道围岩注浆设备的现状及选型[J].铁道建筑技术,1997,5:23-27.
    [15]Stenstad, O., "Execution of injection works" (in Norwegian), Proceedings of Post Graduate Training Course sponsored by the Norwegian Chartered Engineer Association and the Norwegian Rock mechanics Group, Fagernes, Norway,1998.
    [16]Lombardi, G, Deere, D., "Grouting design and control using the GIN principle". Water Power and Dam Construction, Volume 45, No 6.
    [17]Karol, R. H., "Chemical Grouting," Marcel Decker, Inc., New York,1983.
    [18]李河玉.小导管注浆技术及在隧道和地下工程中的应用[D].硕士学位论文, 西南交通大学,2002.
    [19]高艳花.水工隧道富水软弱围岩预注浆施工技术[J].西部探矿工程,2004,8:38-42.
    [20]张民庆,李治国.圆梁山隧道某高压富水区充填型溶洞注浆技术[J].施工技术,2004,10:81-83.
    [21]王星华.粘土固化浆液在地下工程中的应用[M].北京:中国铁道出版社,1998.
    [22]王星华.山岭隧道渗漏水防治新方法[J].地下空间,1997,12:47-52.
    [23]何修仁.注浆加固与堵水[M].沈阳:东北工学院出版社,1990.
    [24]吴理云.注浆理论基础[M].沈阳:东北工学院出版社,1981.
    [25]Glossop.R. The invention and development of injection processes[J]. Geotechnique (London),5(1950):91-101.
    [26]Kutzner,C.Grouting of Rock and Soil.Balkema[M] Rotterdam,1996.
    [27]煤炭科研参考资料组编.国外注浆技术概况[J].1972.
    [28]吴兆兴.欧美注浆近况[J].隧道工程,1953(3).
    [29]G.Lombardi.水泥灌浆浆液是稠好还是稀好?现代灌浆技术译文集[C].北京:水利电力出版社,1991:76-81.
    [30]蒋硕忠.灌浆材料与灌浆工艺研究[J].水利水电技术,2001,9(32).
    [31]水利电力部水利水电建设总局.15届国际大坝会议译文选编(下册).1986.
    [32]吴定安等.国内坝基帷幕防渗能力衰减情况及原因的调查分析[J].人民长江,1990:34-37.
    [33]Houlsby, A. C., "Construction and design of cement grouting, a guide to grouting in rock foundations," John Wiley and Sons, New York,1990.
    [34]坝的老化与补救措施.第十七届国际大坝会议论文译文集.[C].北京:水利电力出版社,1993.
    [35]陈宛平,李玉兰等.高坝岩墓灌浆帷幕防渗能力衰减原因的研究[J].水利水电技术,1989:67-69.
    [36]A.C.Houlsby.The Durability of Cement Grouting. ANCOLD Bulletin, April,1986.
    [37]Kveldsvik, V., Karlsrud, K., "Support methods and ground water control", Norwegian Tunnelling Society, Publication No.10, pp 69-77, Oslo 1995.
    [38]De Paoli, B., Bosco, B., Granata, R., Bruce, D. A., "Fundamental observations on cement based grouts:Microfine cements and cemill process," International Conference Soil and Rock Improvement in Underground Works, Milan,1991.
    [39]基普科等.防渗帷幕耐久性的评价方法[J].国外金属矿采矿,1986,6:70-74.
    [40]A.C.Houlsby. "Cement Grouting for Dams", Proceeding of the Conference on Grouting in Geotechnical Engineering, New Orleans, Feb.,1982.
    [41]刘斌云,水泥灌浆帷幕的耐久性分析[J].水利水电技术,1998,6(29):34-37.
    [42]郭晓刚,徐年丰,蔡汉生等.丙凝灌浆帷幕耐久性研究现状评述及展望[J].南水北调与水利科技,2006,6(4):57-59.
    [43]刘纪昌.灌浆帷幕防渗能力衰减原因分析[J].水利水电工程设计,1995,2(1):49-52.
    [44]王星华,涂鹏.海底隧道注浆材料耐久性模糊综合评定[J].水文地质工程地质,2010,1(1):68-71.
    [45]Wang Xing-hua,TuPeng. Life prediction of cement-based grouting materials subjected to acid corrosion[J]. The International Conference on Electric Technology and Civil Engineering (ICETCE2011)
    [46]青岛胶州湾湾口海底隧道可行性研究报告.中铁隧道设计研究院.2005.
    [47]汪澜编著.水泥混凝土组成结构性能[M].北京:中国建材工业出版社,2005.
    [48]刘崇熙,汪在芹,李珍,等编著.硬化水泥浆化学物理性质[M].广州:华南理工大学出版社,2003.
    [49]H.F.W.Tayloy, "The chemistry of cement",Academic press,1964.
    [50]8th International Congress on the chemistry of cement,Brasil,1986.
    [51]Osman N. Oktar, Harun Moral and Mehlnet A. Tasdemir. Sensitivity of conerete properties to the pore structure of hardened cement paste.Cement and Conerete Researeh,1996,26(11):1619-1627.
    [52]L'.Bargel,and V Ziviea.Relationship between pore structure and permeability of Hardened cement mortars:on the choice of effective pores parameter. Cement And Concrete Researeh,1997,27(8):1225-1235.
    [53]Frank Collins and J.G. Sanjayan. Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cement and Conerete Research.30(9) (2000)PP:1401-1406.
    [54]A.K. Suryavanshi, J.D. Seantlebury and S.B. Lyon, Pore size distribution of OPC&SRPC mortars in Presenee of ehlorides, Cement and Conerete Research, 1995,25(5):980-988.
    [55]J.N.MayCock, J.Skainy and R.Mainly, Cement and Contrete,1971.
    [56]P.Barnes, "Structure and performance of cement", Applied Science publishes, 1983.
    [57]吴中伟,廉慧珍.高性能混凝土[M].中国铁道出版社,1999:49-50.
    [58]龙世宗,罗吉祥,柳学忠,等.用粉煤灰配制复合高标号水泥试验研究[J],粉煤灰综合利用,2001,4:13-14.
    [59]马保国.高性能海洋混凝土的研究[D].博士学位论文,武汉理工大学,2000.
    [60]于晓中.岩石和混凝土断裂力学[M].长沙:中南工业大学出版社,1991.
    [61]Roy D M, Goudu G R, Brobrowsky A. high strength cement pastes prepared by hot Pressing and other high Pressure techniques [J], Cement and Conerete Research,1972,2:349-353.
    [62]J.D. Birchatt, A.J. Howard and K.Kendall,et al. Eurpean Patent application[P], No.0021682 and 0030408(1981).
    [63]J.DBirehatt, A.J. Howard and K.Kendall[J].Nature,1981:289-293.
    [64]唐明述.混凝土耐久性研究领域应成为最活跃的研究领域[J].混凝土与水泥制品,1989,(5):4-8.
    [65]P.KumarMehta.InflueneeofflyasheharaeteristiesonthestrengthofPortland-fly ash Cement[J]. Cement and Conerete Research,1985,Vol.15:669-674.
    [66]蒋永惠,阎春霞.粉煤灰颗粒分布对水泥强度影响的灰色度系统研究[J].硅酸盐学报,1998,26(10):68-73.
    [67]朱洪波.高钙灰胶凝材料的制备与性能研究[D].武汉:武汉理工大学,2005.
    [68]T.C. Powers,"Physical properties of cement paste",World cement technology, Vol.9, No6,1978.
    [69]Ish Shalom, S.Greenbery, "The rheology of fresh Portland cement paste", Proceedings of the international symposion Chemistry cement,1960.
    [70]J.Slalny, I.Jawed, H.F.W. Taylor, "studies on Hydralion of cement recent developments", World cement technology,Vol.9,No6,1978.
    [71]F.H.Wittmann,"The structure of hardened cement paste-a basis for a better understanding of the materials properties".
    [72]张良辉.岩土灌浆渗流机理及渗流力学[D].北京:北方交通大学,2005.
    [73]胡安兵.新型注浆材料及灌注工艺的试验研究[D].吉林:吉林大学,2004.
    [74]王星华.粘土固化浆液流变性及其注浆工艺研究[D].长沙:中南工业大学,1994.
    [75]王星华.粘土固化浆液在地下工程中的应用[M].北京:铁道出版社,1998.
    [76]Noveiller E. Grouting Theory and Practice. The Netherlands:Elsevier Science Publisher,1989.102-123.
    [77]孙永明,华萍.水玻璃化学灌浆材料的发展现状与展望[J].吉林水利,2005,(9):13-22.
    [78]"On a New Magnesium Cement",S.Sorel. Compt Rend 65(1867).
    [79]孙家学,吴理云.影响注浆结石体强度的因素分析[J].金属矿山,1992,12(9):31-34.
    [80]安百刚.酸雨/雨水环境中典型金属材料的腐蚀行为研究[D].硕士学位论文,天津大学,2003.
    [81]林翠,陈三娟,何文等.酸雨对低碳钢腐蚀行为的影响[J].钢铁研究学报,2011(6):15-19.
    [82]陈爱华.污水处理构筑物施工质量的控制[J].市政技术,2001(2):13-15.
    [83]钱晓倩.土木工程材料[M].杭州:浙江大学出版社,2003:40-41.
    [84]Fu, R., Sun, L. J., Wang, C. L., "Catastrophic sater in flow in the new Congress," Milan-Italy,2001, Vol. Ⅲ, pp 143-150.
    [85]葛勇.土木工程材料学[M].武汉:中国建材工业出版社,2007:68.
    [86]孙湘平.我国的海洋[M].北京:商务印书馆,1985:28.
    [87]雷升祥,李淑媛.浅淡海底隧道的地下水[J].现代隧道技术,2004,41(5).
    [88]吴贵生.试验设计与数据处理[M].北京:冶金出版社,1997.
    [89]王梦恕.蓬勃发展的中国水底隧道[R].北京:北京交通大学,2005.
    [90]孙钧.海底隧道工程设计施工若干关键技术的商榷[J].岩石力学与工程学报,2006,25(8):1513-1521.
    [91]ODGARD A, DAVID G, ROSTAM B S.Design of the storebelt railway tunnel [J].Tunneling and Underground Space Technology,1994,19(3):293-307.
    [92]KITAMURA A. Technical development for the Seikan tunnel [J]. Tunneling and Underground Space Technology,1986,11(3/4):341-349.
    [93]赵铁军,金祖权,王命平,等.胶州湾海底隧道衬砌混凝土的环境条件与耐久性[J].岩石力学与工程学报,2007,12(26):3826-3827.
    [94]王凯,马保国,李立玲.复合外加剂对活性煤矸石粉注浆材料耐久性能的影响[J].新型建筑材料,2006(10):6-8.
    [95]胡红梅,马保国,钱月.海底隧道衬砌混凝土抗蚀影响因素分析与模拟[J].武汉理工大学学报,2007(29):46-49.
    [96]刘思峰.灰色系统理论及其应用[M].北京:科学出版社,2010.
    [97]任七华.海洋环境下抗腐蚀材料开发与性能研究[D].硕士学位论文,浙江大学,2006.
    [98]赵铁军,李秋义.高强与高性能混凝土及其应用[M].中国建材工业出版社,2004:129-131.
    [99]朱茵,孟志勇,阚叔愚.用层次分析法计算权重[J].北方交通大学学报,1999, 23(5):120-122.
    [100]霍润科,李宁,刘汉东.均质砂岩酸腐蚀的力学性质分析[J].西北农林科技大学学报,2005,8(33):149-152.
    [101]程骁.关于地铁工程耐久性的思考[J].地下工程与隧道,2006,4(6):25-28.
    [102]王琪.化学动力学导论[M].吉林:吉林人民出版社,1982.
    [103]郑智能,凌天清,董强.土工合成材料长期强度保持率的化学动力学预测[J].重庆交通学院学报,2005,8(30):31-35.
    [104]伊列敏著,陈天明译.化学动力学基础[M].福州:福建科技出版社,1985.
    [105]Sluyters-Rehbach M, Sluyters J H. AC Techniques. In:Yeager E, Bockris JOM, Conway BE, et al eds. Comprehensive Treatise of Electrochemistry, Vol 9. New York:Plenum publishing Corporation,1984:177.
    [106]史美伦.复变函数论在混凝土性能研究中的应用[J].建筑材料学报,1999,2(2):105.
    [107]史美伦,李通化,周国定.交流阻抗谱中的Kramers-Kronig关系及其应用[J].同济大学学报,1994,22(3):346.
    [108]Liu S H.Fractal model for the AC response of a rough interface.Phys Rev Letter, 1985,55(5):529.
    [109]Shih H, Mansfeld F. On the validity of Kramers-Kronig transforms in corrosion systems.Corros Sci,1988,28:933935.
    [110]Levie R. On electrochemical instability. J Electroanal Chem,1970,25:257-259.
    [111]史美伦,陈志源.硬化水泥浆体孔结构的交流阻抗研究[J].建筑材料学报,1998,1(1):30.
    [112]史美伦,陈志源.混凝土阻抗谱的低频特性[J].硅酸盐学报,1996,12(26):703-706.
    [113]贺鸿珠,陈志源,史美伦.海水侵蚀下钢筋混凝土耐久性的交流阻抗谱[J].建筑材料学报,2000,6(3):187-190.
    [114]贺鸿珠,刘军,杨胜杰,等.掺粉煤灰混凝土耐海水侵蚀性能的试验研究[J].混凝土与水泥制品,2000(3):7-11.
    [115]吕明,GROVE, NILSON B等.挪威海底隧道经验[J].岩石力学与工程学报,2005,24(23):4219-4225.
    [116]孙钧.海底隧道工程设计施工若干关键技术的商榷[J].岩石力学与工程学报,2006,25(8):1513-1521.
    [117]王梦恕,皇甫明.海底隧道修建中的关键问题[J].建筑科学与工程学报,2005,22(4):1-4.
    [118]姜福香,赵铁军,苏卿等.海底隧道衬砌混凝土耐久性研究[J].混凝土,2007(12):19-22.
    [119]张玉敏,黄博生,高蕊.海水侵蚀环境下混凝土耐久性的研究[J].四川建筑科学研究,2004,12(4):90-92.
    [120]刘思峰,党耀国,方志耕等.灰色系统理论及其应用[M].北京:科学出版社,2004,11.
    [121]邓聚龙.灰色理论基础[M].武汉:华中科技大学出版社,2002.
    [122]袁勇.我国隧道防水技术的现状[J].世界隧道,1999,4.
    [123]崔玖江.水下隧道注浆堵水[M].北京:人民铁道出版社,1978.
    [124]王永明,周建仁.法国隧道工程协会对地下工程注浆的建议.隧道译丛,1994,11.
    [125]Arid Palmstrom, The Challenge of Subsea Tunneling, Tunnelling and Underground Space Technology,1994.2.
    [126]李明祥,我国隧道及地下工程的新进展[J].探矿工程,1998,2.
    [127]Maurice Jones, Success Stories Under Pressure, Tunnels & Tunnelling International,1998.12.
    [128]王梦恕.地下工程浅埋暗挖技术通论[M].合肥:安徽教育出版社,2004.
    [129]关宝树.隧道工程施工要点集[M].北京:人民交通出版社,2003.
    [130]夏明耀,曾进伦.地下工程设计施工手册[M].北京:中国建筑工业出版社,1999.
    [131]张向东,刘清文,张兴文.新型充填注浆材料的试验研究[J].中国矿业大学学报,1998.
    [132]管学茂.超细高性能灌浆水泥研究[D].博士学位论文,武汉理工大学,2000.
    [133]张莹,张玉敏,李萍.海水侵蚀环境下混凝土强度的研究[J].山东建筑工程学院学报,2002,17(2):24-28.
    [134]尚月.海水对水泥和混凝土材料的腐蚀及改善措施[J].建材科技:24-25.
    [135]葛安亮,周丽芹,迟培云.海水中混凝土防护方法的研究[J].烟台教育学院学报,2005,11(1):39-43.
    [136]何修仁.注浆加固与堵水[M].沈阳:东北工业学院出版社,1990.
    [137]王晓峰.水下隧道施工中的注浆堵水设计探讨[J].天然气与石油,2004,3.
    [138]夏春.稳定灌浆新型浆液与复合掺合料水工混凝土[D].硕士学位论文,四川大学,2002.
    [139]王燕谋,苏慕珍.第三系列水泥-硫(铁)铝酸盐水泥系列介绍.
    [140]吴宝琨,卢璋,廉慧珍.建筑材料化学[M].北京:中国建筑工业出版社, 1984.
    [141]王静.浅谈水泥混凝土外加剂的种类及其应用[J].山西建筑,2005,31(5):107-108.
    [142]Norwegian Tunnelling Society, Handbook No.1, "Injection in rock, practical guidelines for injection strategy and methodology" (in Norwegian).
    [143]Berge, K. O., "Water control-reasonable sharing of risk", Norwegian Tunnelling Society, Publication No.12, Oslo 2002.
    [144]DahloΦ, T. S., Nilsen, B., "Sub-sea tunneling-stability and rock cover" (in Norwegian with English summary), Proceedings Norwegian Tunnelling Society yearly conference, Oslo 1991.
    [145]Karlsrud, K., "Control of water leakage when tunneling under ruban areas in the Oslo region," Norwegian Tunnelling Society, Publication No.12, Sslo 2002.
    [146]Davik, K, I., Andersson, H., "Urban road tunnels-a subsurface solution to a surface problem," Norwegian Tunnelling Society, Publication No.12, Oslo 2002.
    [147]Blindheim, O. T., Oevestedal, E., "Design principles and construction methods for water control in subsea road tunnels in rock," Norwegian Tunnelling Society, Publication No.12, Oslo 2002.
    [148]Melby, K., "Daily life of subsea rock tunnels-construction, operation and maintenance", Proceedings of Workshop Strait Crossings-Subsea Tunnels, Oslo, 1999.
    [149]Karlsrud, K., "Leakage requirements in connection with the new road tunnel "Fjellinjen" through Oslo", Proceedings Norwegian Tunnelling Society yearly conference, Oslo 1987.
    [150]刘云程,何凤桐,刘涛.双液灌浆技术在输水隧洞中的应用[J].东北水利水电,1999,(9):17-18.
    [151]张保俭,冯卫星.隧道软弱围岩超前预支护技术分析[J].西部探矿技术,2002,(1):85-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700