用于oxyfuel CO_2捕获的耐CO_2双相透氧陶瓷膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与oxyfuel发电过程集成的透氧膜技术的关键在于开发出一种能够在CO_2气氛化学稳定、渗透通量高、渗透稳定性高的膜材料。本论文通过合理设计双相膜材料,围绕设计的双相膜材料开展相关实验工作。
     首先考察了75wt%Ce0.8Sm0.2O1.9-25wt%Sm1-xCaxCoO3(x=0、0.2、0.4)系列双相膜材料,研究了双相膜中钙钛矿相中钙掺杂量对双相膜材料的电导率、CO_2中的结构稳定性、氧渗透通量、渗透稳定性的影响。通过利用实验研究与理论模型分析的方法,研究了双相膜的氧渗透机理,发现两种钙掺杂的双相膜渗透过程的速控步都是由表面交换和体相扩散联合控制的,而无钙掺杂的双相膜的渗透过程速控步是由体相中电子输运限制。所有双相膜在CO_2气氛中均稳定,渗透实验研究表明钙钛矿相中钙的掺杂量为x=0.4时最优,此时在以CO_2为吹扫气时的透氧量在950oC达到0.19mL cm-2min-1。
     通过对(100-y) wt%Ce0.8Sm0.2O1.9-y wt%Sm0.6Ca0.4CoO3(y=20、25、33)系列双相膜材料的研究,发现双相膜材料的电子电导率、氧渗透通量均随钙钛矿相的含量增加而增大。其中66.7wt%Ce0.8Sm0.2O1.9-33.3wt%Sm0.6Ca0.4CoO3在以CO_2为吹扫气时的透氧量在950oC达到0.55mL cm-2min-1,并表现出高的结构稳定性和渗透稳定性。该渗透通量高于文献中同等条件下的其它所有双相膜在CO_2气氛中的透氧量。其原因在于提高钙钛矿相的含量可以大幅提高双相膜材料的电子电导率,从而提高了膜材料的偶极电导率、透氧量。
     开展了含有钴基(Sm0.6Ca0.4CoO3)和铁基(Sm0.6Ca0.4FeO3)钙钛矿的双相膜的对比研究,发现当钙钛矿相的质量分数为25%时,含铁基钙钛矿相的双相膜的微结构要优于含钴基钙钛矿相的双相膜,其电子电导率、透氧量均大于后者。但增加铁基钙钛矿相的质量分数至33.3%并不有利于双相膜透氧量的提高。其原因在于铁基钙钛矿相的氧离子电导率小于萤石相(SDC)的氧离子电导率。
The key point of the oxygen permeable membrane technology, which can beintergrated with oxyfuel for power generation and CO_2capture, is the development ofa kind oxygen permeable membrane material with high permeation flux andsustaining the poising of CO_2. The dissertation presents a reasonable strategy for thedesign of dual-phase membranes and shows the experimental investigation of thedesigned membrane materials.
     The dual-phase membranes of75wt%Ce0.8Sm0.2O1.9-25wt%Sm1-xCaxCoO3(x=0、0.2、0.4)were investigated through the effects of calcium doping in the perovskitephase of dual-phase materials on the total conductivity, the stability under CO_2atmosphere, permeation fluxes and permeation stability. The oxygen permeation ofthe Ca-doped dual-phase membranes is limited by both bulk diffusion and the surfaceexchange of oxygen molecules, while that of the Ca-free dual-phase membrane islimited by the electronic transport through membrane bulk. All the membranes can bestable in the CO_2atmosphere. The permeation experiments showed that at x=0.4thedual-phase membrane shows the highest permeation flux up to0.19mL cm-2min-1at950oC when CO_2was used as the sweeping gas.
     It was found that for the (100-y) wt%Ce0.8Sm0.2O1.9-y wt%Sm0.6Ca0.4CoO3(y=20、25、33) dual-phase membranes, the electronic conductivity and oxygen permeationflux increase with the content of the perovskite phase. Among the three membranes,66.7wt%Ce0.8Sm0.2O1.9-33.3wt%Sm0.6Ca0.4CoO3shows high stability and thehighest permeation flux up to0.55mL cm-2min-1at950oC when CO_2was used as thesweeping gas. The value is the highest permeation flux reported in the literatures forthe dual-phase membranes employed for the purpose of integrated with oxyfuel process. The key reason is that the increase of perovskite content in the dual-phasesystem can significantly enhance the electronic conductivity and the dipolarconductivity and then increase the permeation flux.
     A comparative investigation of the dual-phase membranes made of Co-basedperovskite (Sm0.6Ca0.4CoO3) and Fe-based perovskite (Sm0.6Ca0.4FeO3) showed thatthe microstructure of the dual-phase membrane containing Fe-based perovskite isbetter than it containing Co-based perovskite when the mass fraction of perovskitephase is25%. As a result the Fe-containing dual-phase membrane has higherelectronic conductivity and oxygen permeation flux than the Co-containingdual-phase membrane. However, increase the Fe-based perovskite content to33.3wt%has no help to enhance the permeation flux of the dual-phase membrane,because the oxygen ionic conductivity of Fe-based perovskite is smaller than that offluorite phase oxide Ce0.8Sm0.2O1.9.
引文
[1] METZ B,DAVIDSON O, CONINCK H DE, LOOS M, MEYER L, Specialreport on carbon dioxide capture and storage [C]. Cambridge: Cambridge UnivPress,2005.
    [2] INTERNATIONAL ENERGY AGENCY. Energy technology perspectives2008[M], Paris,2008.
    [3] STUART HASZELDINE R. Carbon capture and storage: How green can black be[J]. Science,2009,325:1647-1652.
    [4] VAN HASSEL B A, LI J, WILSON J, DEGENSTEIN N, SHAH M, CHRISTIE M,VENKATESWARAN V. Oxygen Transport Membrane Based Oxycombustion forCO2Capture from Coal Power Plants [R]. Praxair Technology Inc, www Praxaircom,2008
    [5] WHITE V, ARMSTRONG P, FOGASH K. Oxygen Supply for oxycoal CO2capture,1stIEA GHG International Oxyfuel Combustion Conference [C].Germany: Cottbus,2009.
    [6] LEO A, LIU S, JO O C, COSTA DA D. Development of mixed conductingmembranes for clean coal energy delivery [J]. Greenhouse Gas Control,2009,3:357-367.
    [7] COLOMBO K E, BOLLAND O, KHARTON V V, STILLER C. Simulation of anoxygen membrane-based combined cycle power plant: part-load with operationaland material constraints [J]. Energy&Environ Science,2009,2:1310-1324.
    [8]李其明,新型混合导体透氧膜的开发及非对称透氧膜的制备[D].大连:中国科学院大连化学物理研究所,2008.
    [9] Gellings P J, Bouwmeester H J M, Eds. CRC Handbook of Solid StateElectrochemistry [M]. Boca Paton FL: CRC Press,1997.
    [10] TERAOKA Y, HONBE Y, ISHII J, FURUKAWA H, MORIGUCHI I. Catalyticeffects in oxygen permeation through mixed-monductive LSCF perovskitemembranes [J]. Solid State Ionics,2002,681:152-153.
    [11] Kharton V V, Kovalevsky A V, Yaremchenko A A, Figueiredo F M, Naumovich EN, Shaulo A L, Marques F M B. Surface modification of La0.3Sr0.7CoO3ceramicmembranes [J]. Journal of Membrane Science,2002,195:277-287.
    [12] LEE K S, LEE S, KIM J W, WOO S K. Enhancement of oxygen permeation byLa0.6Sr0.4CoO3Coating in La0.7Sr0.3Ga0.6Fe0.4O3membrane [J]. Desalination,2002,147:439-443.
    [13] LEE K S, LEE S, WOO S K, KIM J W, ISHIHARA T, KIM D K.Oxygen-permeating property of LaSrBFeO3(B=Co,Ga) perovskite membranesurface-modified by LaSrCoO3[J]. Solid State Ionics,2003,158(3-4):287-296.
    [14] ARASHI H, NAITO H. Oxygen permeability in ZrO2-TiO2-Y2O3[J]. Solid StateIonics,1992,53-56:431-435.
    [15] NIGARA Y, MIZUSAKI J, ISHIGAME M. Measurement of oxygen permeabilityin CeO2doped CSZ [J]. Solid State Ionics,1995,79:208-211.
    [16] NIGARA Y, KOSAKA, KAWAMURA K, MIZUSAKI J, ISHIGAME M.Oxygen permeability in ZrO2-CeO2-MgO at high temperatures [J]. Solid StateIonics,1996,739:86-88.
    [17]刘杏芹,孟广耀, Cao G Z, VRIES K J DE, BURGGRAAF A J.ZrO2-Tb2O3.5-Y2O3氧化物体系的混合导电性和氧渗透性[J].中国科学技术大学学报,1994,3:317-323.
    [18] ARASHI H, NAITO H, NAKATA M. Electrical-properties in theZrO2-CeO2-Y2O3system [J]. Solid State Ionics,1995,76(3-4):315-319.
    [19] NIGARA Y, MIZUSAKI J, ISHIGAME M. Measurement of OxygenPermeability in CeO2Doped Csz [J]. Solid State Ionics,1995,79:208-211.
    [20] TERAOKA Y, ZHANG H M, FURUKA S, YAMAZOE N. Oxygen permeationthrough perovskite-type txides [J]. Chemistry Letters,1985,14(11):1743-1746.
    [21] TERAOKA Y, NOBUNAGA T, YAMAZOE N. Effect of cation substitution onthe oxygen semipermeability of perovskite-type oxides [J]. Chemistry Letters,1988,3:503-506.
    [22] TERAOKA Y, NOBUNAGA T, OKAMOTO K, MIURA N, YAMAZOE N.Influence of constituent metal cations in substituted LaCoO3on mixedconductivity and oxygen permeability [J]. Solid State Ionics,1991,48(3-4):207-212.
    [23] CHEN C S, BOUWMEESTER H J M, VAN DOORN R H E, KRUIDHOF H,BURGGRAAF A J. oxygen permeation of La0.3Sr0.7CoO3[J]. Solid State Ionics,1997,98(1-2):7-13.
    [24] STEVENSON J W, ARMSTRONG T R, CARNEIN R D, PEDERSON L R,WEBER W J. Electrochemical properties of mixed conducting perovskitesLa1-xMxCo1-yFeyO3(M=Ba, Sr, Ca)[J]. Journal of the Electrochemical Society,1996,143(9):2722-2729.
    [25] QIU L, LEE T H, LIU L M, YANG Y L, JACOBSON A J. Oxygen permeationstudies of SrCo0.8Fe0.2O3[J]. Solid State Ionics,1995,76(3-4):321-329.
    [26] VAN DOORN R H E, KRUIDHOF H, BOUWMEESTER H J M,BURGGRAAF A J. Oxygen permeability of strontium-doped LaCoO3perovskites [J]. Mat Res Soc Symp Proc,1995,369:377-382.
    [27] WEBER W J, STEVENSON J W, ARMSTRONG T R, PEDERSON L R,KINGSLEY J J. Processing and electrochemical properties of mixed conductingLa1-xAxCo1-yFeyO3,Ca)[J]. Mat Res Soc Symp Proc,1995,369:395-400.
    [28] Yang Y L, Lee T H, Qiu L, Jacobson A J. Oxygen permeation studies ofSrCo0.8Fe0.2O3[J]. Mat Res Soc Symp Proc,1995,369:383-388.
    [29] TEN ELSHOF J E, BOUWMEESTER H J M, VERWEIJ H. Oxygen transportthrough La1-xSrxFeO3-membranes I Permeation in air/He gradients [J]. SolidState Ionics,1995,81(1-2):97-109.
    [30] TSAI C Y, DIXON A G, MA Y H, MOSER W R, PASCUCCI M R. Denseperovskite La1-xAxCo1-yFeyO3-and characterization [J]. Journal of the American Ceramic Society,1998,81(6):1437-1444.
    [31] ITOH N, KATO T, UCHIDA K, HARAYA K. Preparation of pore-free diskLa1-xSrxCoO3mixed conductor and its oxygen permeability [J]. Journal ofMembrane Science,1994,92(3):239-246.
    [32] KOVALEVSKY A V, KHARTON V V, TIKHONOVICH V N, NAUMOVICH EN, TONOYAN A A, REUT O P, BOGINSKY L S. Oxygen permeation throughSr(Ln)CoO3(Ln=La,Nd,Sm,Gd) ceramic membranes [J]. Materials Science&Engineering,1998,52(2-3):105-116.
    [33] KRUIDHOF H, BOUWMEESTER H J M, DOORN R H E, BURGGRAAF A J.Influence of order-disorder transitions on oxygen permeability through selectednonstoichiometric perovskite-type oxides [J]. Solid State Ionics,1993,63-65:816-822.
    [34] KHARTON V V, TIKHONOVICH V N, LI S B, NAUMOVICH E N,KOVALEVSKY A V, VISKUP A P, BASHMAKOV I A. Ceramic microstructureand oxygen permeability of SrCo(Fe, M)O3(M=Cu or Cr) perovskite membranes[J]. Journal of the Electrochemical Society,1998,145:1363-1373.
    [35] KHARTON V V, NAUMOVICH E N, NIKOLAEV A V. Materials ofhigh-temperature electrochemical oxygen membranes [J]. Journal of MembraneScience,1996,111(2):149-157.
    [36] KHARTON V V, LI S B, KOVALEVSKY A V, VISKUP A P, NAUMOVICH EN. Oxygen permeability and thermal expansion of SrCo(Ti)O3perovskites [J].materials chemistry and physics,1998,53(1):6-12.
    [37] ZHANG K, YANG Y L, PONNUSAMY D, JACOBSON A J, SALAMA. Effectof microstructure on oxygen permeation in SrCo0.8Fe0.2O3[J]. Journal ofMaterials Science,1999,34(6):1367-1372.
    [38] LI S, JIN W, HUANG P, XU N, SHI J, LIN Y S. Comparison of oxygenpermeability and stability of perovskite type La0.2A0.8Co0.2Fe0.8O3(A=Ba, Sr, Ca)membranes [J]. Industrial and Engineering Chemistry Research,1999,38(8):2963-2972.
    [39] LI S, JIN W, HUANG P, XU N, SHI J, LIN Y S. Experimental and modelingstudy on tubular perovskite type membranes for oxygen permeation [J]. AIChE J,1999,45(12):2519-2526.
    [40] ISHIHARA T, YAMADA T, ARIKAWA H, NISHIGUCHI H, TAKITA Y. Mixedelectronic-oxide conductivity and oxygen permeating property of Fe-Co-orNi-doped LaGaO3perovskite oxide [J]. Solid State Ionics,2000,135(1-4):631-636.
    [41] MACKAY R, SCHWARTZ M, SAMMELLS A F. Materials and methods for thepeparation of oxygen from air. US: No6592782,2003.
    [42] YANG L, GU X, TAN L, JIN W, ZHANG L, XU N. Oxygen transport propertiesand stability of mixed-conducting ZrO2-promoted SrCo0.4Fe0.6O3oxides [J].Industrial and Engineering Chemistry Research,2002,41(17):4273-4280.
    [43] SHAO Z P, YANG W S, CONG Y, DONG H, TONG J H, XIONG G X.Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3oxygen membrane [J]. Journal of Membrane Science,2000,172:177-188.
    [44] SHAO Z P, DONG H, XIONG G X, CONG Y, YANG W S. Performance of amixed-conducting ceramic membrane reactor with high oxygen permeability formethane conversion [J]. Journal of Membrane Science,2001,183:181-192.
    [45] SHAO Z P, XIONG G X, TONG J H, DONG H, YANG W S. Ba effect in dopedSr(Co0.8Fe0.2)O3-don the phase structure and oxygen permeation properties of thedense ceramic membrane [J]. Separation and Purification Technology,2001,25:419-429.
    [46] BUCHER E, SITTE W. Long-term stability of the oxygen exchange properties of(La, Sr)1-z(Co, Fe)O3-in dry and wet atmospheres [J]. Solid State Ionics,2011,192:480-482.
    [47] BUCHER E, SITTE W, KLAUSER F, BERTEL E. Oxygen exchange kinetics ofLa0.58Sr0.4Co0.2Fe0.8O3at600°C in dry and humid atmospheres [J]. Solid StateIonics,2011,191:61-67.
    [48] VARCOVá S, WIIK K, TOLCHARD J, BOUWMEESTER H J M, GRANDET. Structural instability of cubic perovskite BaxSr1xCo1yFeyO3[J]. Solid StateIonics,2008,178:1787-1791.
    [49] ARNOLD M, GESING T M, MARTYNCZUK J, FELDHOFF A. Correlation ofthe formation and the decomposition of the BSCF perovskite at intermediatestemperatures [J]. Chemistry of Materials,2008,20:5851-5858.
    [50] Efimov K, Xu Q, Feldhoff A. Transmission Electron Microscopy Study ofBa0.5Sr0.5Co0.8Fe0.2O3Perovskite Decomposition at IntermediateTemperatures [J]. Chemistry of Materials,2010,22:5866-5875.
    [51] MUELLER D N, DE SOUZA R A, WEIRICH T E, ROEHRENS D, MAYERB J,MARTIN M. A kinetic study of the decomposition of the cubic perovskite-typeoxide BaxSr1xCo0.8Fe0.2O3(BSCF)(x=0.1and0.5)[J]. Phys Chem Chem Phys,2010,12:10320-10328.
    [52] VAN VEEN A C, REBEILLEAU M, FARRUSSENG D, MIRODATOS C.Studies on the performance stability of mixed conducting BSCFO membranes inmedium temperature oxygen permeation [J]. Chemical Communications,2003,1:32-33.
    [53] KRUIDHOF H, BOUWMEESTER H J M, VONDOORN R H E, BURGGRAAFA J. Influence of order-disorder transitions on oxygen permeability throughselected nonstoichiometric perovskite-type oxides [J]. Solid State Ionics,1993,63-65:816-822.
    [54] Wang B, Zydorczak B, Poulidi D, Metcalfe I S, Li K. A further investigation ofthe kinetic demixing/decomposition of La0.6Sr0.4Co0.2Fe0.8O3oxygenseparation membranes [J]. Journal of Membrane Science,2011,369(1-2):526-535.
    [55] Wang H, Tablet C, Caro J. Oxygen production at low temperature using denseperovskite hollow fiber membranes [J]. Journal of Membrane Science,2008,322(1):214-217.
    [56] Chen C S, Boukamp B A, Bouwmeester H J M, Cao G Z, Kruidhof H, WinnubstA J A, Burggraaf A J. Microstructural development, electrical properties andoxygen permeation of zirconia-palladium composites [J]. Solid State Ionics,1995,76(1-2):23-28.
    [57] CHEN C S, KRUIDHOF H, BOUWMEESTER H J M. Thickness dependence ofoxygen permeation through stabilized bismuth oxide-silver composite [J]. SolidState Ionics,1997,99(3-4):209-215.
    [58] CHEN C S, KRUIDHOF H, BOUWMEESTER H J M, BURGGRAAF A J.Oxygen permeation through oxygen ion conducting oxide and noble metalcomposites [J]. Solid State Ionics,1996,569:86-88.
    [59] LEE T H, YANG Y L, JACOBSON A J. Electrical conductivity and oxygenpermeation of Ag/BaBi8O13composites [J]. Solid State Ionics,2000,134:331-339.
    [60] WU K, XIE S, JIANG G S, LIU W, CHEN C S. Oxygen permeation through(Bi2O3)0.74(SrO)0.26-Ag (40%v/v) composite [J]. Journal of Membrane Science,2001,188:189-193.
    [61] NAUMOVICH E N, KHARTON V V, SAMOKHVAL V V, KOVALEVSKY A V.Oxygen separation using Bi2O3-based solid electrolytes [J]. Solid State Ionics,1996,93(1):95-103.
    [62] BURGGRAAF A J, BOUKAMP B A, VINKE I C, DE VRIES K J. Recentdevelopments in oxygen-ion conducting solid electrolyte and electrode materials,Advanced in Solid-State Chemistry [J]. JAI Press Inc,1989,1:259-293.
    [63] KHARTON V V, KOVALEVSKY A V, VISKUP A P, YAREMCHENKO A A,NAUMOVICH E N, MARQUES F M B. Oxygen permeability of Ce0.8Gd0.2O2--La0.7Sr0.3MnO3-composite membranes [J]. Journal of the ElectrochemicalSociety,2000,147,2814-2821.
    [64] KHARTON V V, KOVALEVSKY A V, VISKUP A P, SHAULA A L,FIGUEIREDO F M, NAUMOVICH E N, MARQUES F M B. Oxygen transportin Ce0.8Gd0.2O2based composite membranes [J]. Solid State Ionics,2003,160:247-258.
    [65] SHAULA A L, KHARTON V V, MARQUES F M B. Phase interaction andoxygen transport in La0.8Sr0.2Fe0.8Co0.2O3–(La0.9Sr0.1)0.98Ga0.8Mg0.2O3composites[J]. Journal of the European Ceramic Society,2004,24:2631-2639.
    [66] YI J X, ZUO Y B, LIU W, WINNUBST L, CHEN C S. Oxygen permeationthrough a Ce0.8Sm0.2O2–La0.8Sr0.2CrO3dual-phase composite membrane [J].Journal of Membrane Science,2006,280:849–855.
    [67] ZHU X F, YANG W S. Composite membrane based on ionic conductor andmixed conductor for oxygen permeation [J]. AIChE J,2008,54:665-672.
    [68] ZHU X F, WANG H H, YANG W S. Relationship between homogeneity andoxygen permeability of composite membranes [J]. Journal of Membrane Science,2008,39:120-127.
    [69] ZHU X F, LI Q M, HE Y F, CONG Y, YANG W S. Oxygen permeation andpartial oxidation of methane in dual-phase membrane reactors [J]. Journal ofMembrane Science,2010,360:454-460.
    [70] LI Q M, ZHU X F, HE Y F, CONG Y, YANG W S. Effects of sinteringtemperature on properties of dual-phase oxygen permeation membranes [J].Journal of Membrane Science,2011,367:134-140.
    [71] ZHU X F, LI Q M, CONG Y, YANG W S. Unsteady state permeation of ceriabased dual-phase composite membranes in initial stage [J]. Solid State Ionics,2011,185:27–31.
    [72]王零森.二氧化锆陶瓷(一)[J].陶瓷工程,1997,31(1):40-44.
    [73]王零森.二氧化锆陶瓷(二)[J].陶瓷工程,1997,31(2):43-54.
    [74] SCOTT H G. Phase Relationships in the Zirconia-Yttria System [J]. Journal ofMaterials Science,1975,10:1527-1535.
    [75]梁敬魁.粉末衍射法测定晶体结构[M].北京:科学出版社,2003.
    [76] BADWAL S P S, CIACCHI F T, RAJENDRAN S, DRENNAN J. Aninvestigation of conductivity, microstructure and stability of electrolytecompositions in the system9mol%(Sc2O3-Y2O3)-ZrO2(Al2O3)[J]. Solid StateIonics,1998,109(3-4):167-186.
    [77] NOMURA K, MIZUTANI Y, KAWAI M, NAKAMURA Y, YAMAMOTO O.Aging and Raman scattering study of scandia and yttria doped zirconia [J]. SolidState Ionics,2000,132(3-4):235-239.
    [78] LEE S, YU J H, SEO D W, WOO S K. Thick-film type oxygen transportmembrane: Preparation, oxygen permeation and characterization [J]. Journal ofElectroceramics,2006,17:719-722.
    [79] NAUMOVICH E N, KHARTON V V, SAMOKHVAL V V, KOVALEVSKY A V.Oxygen separation using Bi2O3-based solid electrolytes [J]. Solid State Ionics,1996,93:95-103.
    [80] BURGGRAAF A J, BOUKAMP B A, VINKE I C, DE VRIES K J. Recentdevelopments in oxygen-ion conducting solid electrolyte and electrode materials[J]. Advanced in Solid-State Chemistry,1989,1:259-293.
    [81] CHEN C S, KRUIDHOF H, BOUWMEESTER H J M, VERWEIJ H,BURGGRAAF A J. Oxygen permeation through oxygen ion oxide-noble metaldual phase composites [J]. Solid State Ionics,1996,86(8):569-572.
    [82] YAHIRO H, EGUCHI Y, EGUCHI K, ARAI H. Oxygen ion conductivity of theceria-samarium oxide system with fluorite structure [J]. Journal of AppliedElectrochemistry,1988,18(4):527-531.
    [83] YAHIRO H, EGUCHI K, ARAI H. Electrical properties and reducibilities ofceria-rare earth oxide systems and their application to solid oxide fuel cell [J].Solid State Ionics,1989,36:71-75.
    [84] EGUCHI K, SETOGUCHI T, INOUE T, ARAI H. Electrical-properties ofceria-based oxides and their application to solid oxide fuel-cells [J]. Solid StateIonics,1992,52(1-3):165-172.
    [85] KUDO T, OBAYASHI H. Oxygen ion conduction of the fluorite-typeCe1-xLnxO2-x/2(Ln=lanthanoid element)[J]. Journal of the ElectrochemicalSociety,1975,122(1):142-147.
    [86] WANG F Y, CHEN S Y, CHENG S. Gd3+and Sm3+Co-doped ceria basedelectrolytes for intermediate temperature solid oxide fuel [J]. ElectrochemCommun,2004,6(8):743-746.
    [87]梁广川,刘西文,陈玉如,杜春生. Sm, Gd共同掺杂的CeO2基电解质性能研究[J].硅酸盐学报,2000,28(1):44-46.
    [88] ZHANG T S, HING P, HUANG H T, KILNER J. Ionic conductivity in theCeO2-Gd2O3system (0.05≤Gd/Ce≤0.4) prepared by oxalate coprecipitation [J].Solid State Ionics,2002,148(3-4):567-573.
    [89] PENG R R, XIA C R, FU Q X, MENG G Y, PENG D K. Sintering and electricalproperties of (CeO2)0.8(Sm2O3)0.1powders prepared by glycine-nitrate process [J].Mater Lett,2002,56(6):1043-1047.
    [90] STEELE B C H. Appraisal of Ce1-yGdyO2-y/2electrolytes for IT-SOFC operationat500oC [J]. Solid State Ionics,2000,129(1-4):95-110.
    [91] RAMADASS N. ABO3-type oxide-Their structure and properties-A bird’s eyeview [J]. Mater Sci&Eng,1978,36:231-239.
    [92] ZENER C.[J]. Phys Rev,1952,82:403-405.
    [93] ANDERSON H U. Review of p-type doped perovskite materials for SOFC andother applications [J]. Solid State Ionics,1992,52(1-3):33-41.
    [94] SEHLIN S R, ANDERSON H U, SPARLIN D M. Electrical characterization ofthe (La, Ca)(Cr, Co) O3system [J]. Solid State Ionics,1995,78(3-4):235-243.
    [95] KHARTON V V, VISKUP A P, KOVALEVSKY A V, NAUMOVICH E N,MARQUES F M B. Ionic transport oxygen-hyperstoichiometric phases withK2NiF4-type structure [J]. Solid State Ionics,2001,143:337-353.
    [96] PRADO F, ARMSTRONG T, CANEIRO A, MANTHIRAM A. Structurestability and oxygen permeation properties of Sr3-xLaxFe2-yCoyO7(0≤x≤0.3and0≤y≤1.0)[J]. Journal of the Electrochemical Society,2001,148(4):7-14.
    [97] PRADO F, GURUNATHAN K, MANTHIRAM A. Synthesis, crystal chemistry,and electrical, oxygen permeation, and magnetic properties ofLaSr3GaFe2-xCoxO10-(0≤x≤2and0≤≤2)[J]. J Mater Chem,2002,12:2390-2395.
    [98] MA B, BALACHANDRAN U, PARK J H. Electrical transport properties anddefect structure of SrFeCo0.5Ox[J]. J Electrochem Soc,1996,143(5):1736-1744.
    [99] MA B, BALACHANDRAN U, PARK J H, SEGRE C U. Determination ofchemical diffusion coefficient of SrFeCo0.5Oxby the conductivity relaxationmethod [J]. Solid State Ionics,1996,83(1-2):65-71.
    [100] VISKUP A P, KHARTON V V, MARQUES F M B. Mixed conductivity ofgarnet phases based on gadolinium ferrite [J]. Journal of the European CeramicSociety,2004,24(6):1309-1312.
    [101] BOCHKOV D M, KHARTON V V, KOVALEVSKY A V, VISKUP A P,NAUMOVICH E N. Oxygen permeability of La2Cu(Co)O4+solid solutions [J].Solid State Ionics,1999,120:281-288.
    [102] ISHIHARA T, MIYOSHI S, FURUNO T, SANGUANRUANG O,MATSUMOTO H. Mixed conductivity and oxygen penneability of dopedPr2NiO4-based oxide [J]. Solid State Ionics,2006,177:3087-3091.
    [103] DONG X L, WU Z T, CHANG X F, JIN W Q, XU N P. One-step synthesis andcharacterization of La2NiO4+-conductive oxide for oxygen permeation[J]. Ind Eng Chem Res,2007,46:6910-6915.
    [104] GUGGILA S, MANTHIRAM A. Crystal chemical charaterization of the mixedconductor Sr(Co,Fe)Oyexhibiting unusally high oxygen permeability [J]. Journalof the Electrochemical Society,1997,144:121-122.
    [105] MA B, BALACHANDRAN U, PARK J H, SEGRE C U. Phase stability ofSrCo0.5FeOxin reducing environment [J]. Mater Res Bull,1998,33:223-236.
    [106] ZHU XUEFENG, SUN SHUMIN, CONG YOU, YANG WEISHEN. Operationof perovskite membrane under vacuum and elevated pressures for high-purityoxygen production [J]. Journal of Membrane Science,2009,345:47-52.
    [107] BAUMANN S. Ultrahigh oxygen permeation flux through supportedBa0.5Sr0.5Co0.8Fe0.2O3membranes [J]. Journal of Membrane Science,2011,377:198-205.
    [108] TONG J H, YANG W S, ZHU B C, CAI R. Investigation of idealzirconium-doped perovskite-type ceramic membrane materials for oxygenseparation [J]. Journal of Membrane Science,2002,203,175-189.
    [109] TONG J H, YANG W S, CAI R, ZHU B C, LIN L W. A novel zirconium-basedperovskite-type membrane material for oxygen permeation [J]. Chin Chem Lett,2001,12(9):835-838.
    [110]佟建华.高稳定透氧膜材料及其在甲烷部分氧化制合成气膜反应器中的应用[D].大连:中国科学院大连化学物理研究所,2001.
    [111] ZHU XUEFENG, YANG WEISHEN. Novel cobalt-free oxygen permeablemembrane [J]. Chem Commun,2004,9:1130-1131.
    [112] ZHU XUEFENG, WANG HAIHUI, CONG YOU, YANG WEISHEN. Oxygenpermeability and structural stability of BaCe0.15Fe0.85O3-dmembranes [J]. Journalof Membrane Science,2006,283:38-44.
    [113] ZHU XUEFENG, CONG YOU, YANG WEISHEN. Effects of synthesismethods on the oxygen permeable BaCe0.15Fe0.85O3-dceramic membranes [J].Journal of Membrane Science,2006,283:158-163.
    [114] ZHU XUEFENG, WANG HAIHUI, CONG YOU, YANG WEISHEN. Structureand oxygen permeation of cerium light doped BaFeO3-dceramic membranes [J].Solid State Ionics,2006,117:2917-2921.
    [115] ZHU XUEFENG, WANG HAIHUI, CONG YOU, YANG WEISHEN. Partialoxidization of methane to syngas in BaCe0.15Fe0.85O3-dmembrane reactor [J].Catal Lett,2006,111:179-185.
    [116] LI QIMING, ZHU XUEFENG, HE YUFENG, YANG WEISHEN. Oxygenpermeability and stability of BaCe0.1Co0.4Fe0.5O3-deltaoxygen permeablemembrane [J]. Separation and Purification Technology,2010,73:38-43.
    [117] LI QIMING, ZHU XUEFENG, HE YUFENG, YANG WEISHEN. Partialoxidation of methane in BaCe0.1Co0.4Fe0.5O3-deltamembrane reactor [J]. CatalysisToday,2010,149:185-190.
    [118] LI QIMING, ZHU XUEFENG, YANG WEISHEN. Investigation of structureand oxygen permeability of Ba-Ce-Co-Fe-O system [J]. Mater Res Bull,2010,45:1112–1117.
    [119] CHENG H W, LU X G, HU D H, ZHANG Y W, DING W Z, ZHAO H L.Hydrogen production by catalytic partial oxidation of coke oven gas inBaCo0.7Fe0.2Nb0.1O3-delta membranes with surface modification [J]. InternationalJournal of Hydrogen Energy,2011,36(1):528-538.
    [120] ZHAO H L, XU N S, CHENG Y F, WEI W J, CHEN N, DING W Z, LU X G,LI F S. Investigation of Mixed Conductor BaCo0.7Fe0.3-xYxO3-delta with HighOxygen Permeability [J]. Journal of Physical Chemistry,2010,114(41):17975-17981.
    [121] LIU X T, ZHAO H L, YANG J Y, LI Y, CHEN T, LU X G, DING W Z, LI F S.Lattice characteristics structure stability and oxygen permeability ofBaFe1-xYxO3-delta ceramic membranes [J]. Journal of Membrane Science,2011,383(1-2):235-240.
    [122] CHENG Y F, ZHAO H L, TENG D Q, LI F S, LU X G, DING W,Z.Investigation of Ba fully occupied A-site BaCo0.7Fe0.3-xNbxO3-delta perovskitestabilized by low concentration of Nb for oxygen permeation membrane [J].Journal of Membrane Science,2008,322(2):484-490.
    [123] LI Y, ZHAO H L, XU N S, SHEN Y N, LU X G, DING W,Z, LI F S.Systematic investigation on structure stability and oxygen permeability ofSr-doped BaCo0.7Fe0.2Nb0.1O3-delta ceramic membranes [J]. Journal ofMembrane Science,2010,362(1-2):460-470.
    [124] LUO H X, TIAN B B, WEI Y Y, WANG H H, JIANG H Q, CARO J. OxygenPermeability and Structural Stability of a Novel Tantalum-Doped PerovskiteBaCo0.7Fe0.2Ta0.1O3-delta [J]. AIChE Journal,2010,56(3):604-610.
    [125] LUO H X, WEI Y Y, JIANG H Q, YUAN W H, LV Y X, CARO J, WANG H H.Performance of a ceramic membrane reactor with high oxygen fluxTa-containing perovskite for the partial oxidation of methane to syngas [J].Journal of Membrane Science,2010,350(1-2):154-160.
    [126] ZHANG K, RAN R, GE L, SHAO Z P, JIN W Q, XU N P. Systematicinvestigation on new SrCo1-yNbyO3-delta ceramic membranes with high oxygensemi-permeability [J]. Journal of Membrane Science,2008,323(2):436-443.
    [127] ZHANG G R, LIU Z K, ZHU N, JIANG W, DONG X L, JIN W Q. A novelNb2O5-doped SrCo0.8Fe0.2O3-delta oxide with high permeability and stability foroxygen separation [J]. Journal of Membrane Science,2012,405:300-309.
    [128] ZENG P Y, RAN R, CHEN Z H, GU H X, SHAO Z P, LIU S M. Novel mixedconducting SrSc0.05Co0.95O3-delta ceramic membrane for oxygen [J]. AIChEJournal,2007,53(12):3116-3124.
    [129] ZENG P Y, RAN R, SHAO Z P, YU H, LIU S M. Effects of Scandium DopingConcentration on the Properties of Strontium Cobalt Oxide Membranes [J].Brazilian Journal of Chemical Engineering,2009,26(3):563-574.
    [130] ZENG P Y, SHAO Z P, LIU S M, XU Z P. Influence of M Cations on structural,thermal and electrical properties of new oxygen selective membranes based onSrCo0.95M0.05O3-delta perovskite [J]. Separation and Purification Technology,2009,67(3):304-311.
    [131] WATANABE K, TAKAUCHI D, YUASA M, KIDA T, SHIMANOE K,TERAOKA Y, YAMAZOE N. Oxygen Permeation Properties of Co-FreePerovskite-Type Oxide Membranes Based on BaFe1-yZryO3-delta [J]. Journal ofthe Electrochemical Society,2009,156(5):81-85.
    [132] KIDA T, TAKAUCHI D, WATANABE K, YUASA M, SHIMANOE K,TERAOKA Y, YAMAZOE N. Oxygen Permeation Properties of Partially A-SiteSubstituted BaFeO3-delta Perovskites [J]. Journal of the Electrochemical Society,2009,156(12):187-191.
    [133] WANG H H, TABLET C, FELDHOFF A, CARO J. A cobalt-freeoxygen-permeable membrane based on the perovskite-type oxideBa0.5Sr0.5Zn0.2Fe0.8O3[J]. Adv Mater,2005,17(14):1785.
    [134] U S Department of Energy. DOE selects research partner for project to makeliquids from natural gas [R].1997.
    [135] TERAOKA Y, NOBUNAGA T, YAMAZOE N. Effect of cation substitution onthe oxygen semipermeability of perovskite-type oxides [J]. Chem Lett,1998,8:503-506.
    [136] STEVENSON J W, ARMSTRONG T R, CARNEIM R D, PEDERSON L R,WEBER W J. Electrochemical properties of mixed conducting perovskitesLa(1-x)M(x)Co(1-y)Fe(y)O(3-)(M=Sr,Ba,Ca)[J]. Journal of the ElectrochemicalSociety,1996,143(9):2722-2729.
    [137] ISHIHARA T, YAMADA T, ARIKAWA H, NISHIGUCHI H, TAKITA Y.Mixed electronic-oxide ionic conductivity and oxygen permeating property ofFe-, Co-, or Ni-doped LaGaO3perovskite oxide [J]. Solid State Ionics,2000,135(1-4):631-636.
    [138] MACKAY R, SCHWARTZ M, SAMMELLS A F. Materials and methods forthe preparation of oxygen from air [P]. U S:6592782,2003.
    [139] U S Department of Energy. DOE begins research effort to revolutionize oxygenproduction for future energy, industrial processes-Air products–led teamawarded funding for ceramic membrane oxygen separation process [R].1998.U S Department of Energy. Praxair to develop advanced technology for reducingcosts of extracting oxygen from air [R].1999.
    [140] TSAI C Y. Perovskite dense membrane reactors for partial oxidation of methaneto synthesis gas [D]. Worcester: Worcester Polytechnic Institute,1996.
    [141] TAN XIAO YAO, PANG ZHAO BAO, GU ZI, LIU SHAO MIN. Catalyticperovskite hollow fibre membrane reactors for methane oxidative coupling [J].Journal of Membrane Science,2007,302:109–114.
    [142] LI S G, JIN W Q, HUANG P, XU X P, SHI J, HU M Z C, PAYZANT E A,MAY H. Perovskite-related ZrO2-doped SrCo0.4Fe0.6O3-membrane for oxygenpermeation [J]. AIChE Journal,1999,45:276-284.
    [143] WU Z T, JIN W Q, XU N P. Oxygen permeability and stability of Al2O3-dopedSrCo0.8Fe0.2O3-mixed conducting oxides [J]. Journal of Membrane Science,2006,279:320-327.
    [144] DENG Z Q, YANG W S, LIU W, CHEN C S. Relationship between transportproperties and phase transformations in mixed-conducting oxides [J]. J SolidState Chem,2006,179:362-369.
    [145] ZHU XUEFENG, LI QIMING, HE YUFENG, CONG YOU, YANG WEISHEN.Oxygen permeation and partial oxidation of methane in dual-phase membranereactors [J]. Journal of Membrane Science,2010,360:454-460.
    [146] Air products and EPRI working together on ITM oxygen technology for use inadvanced [M/OL]. REUTERS,[2009-5-22)], http://cn.reuters.com/article/pressRelease/idUS162011+21-May-2009+PRN20090521? symbol=APD.MW.
    [147] BALACHANDRAN U, DUSEK J T, SWEENEY S M, POEPPEL R B,MIEVILLE R L, MAIYA P S. Methane to syngas via ceramic membranes [J].Am Ceram Soc Bull,1995,74:71-75.
    [148] BALACHANDRAN U, DUSEK J T, MIEVILLE R L, POEPPEL R B,KLEEFISCH M S, PEI S, KOBYLINSKI T P, UDOVICH C A, BOSE A C.Dense ceramic membranes for partial oxidation of methane to syngas [J]. ApplCatal A: Gen,1995,133,19-29.
    [149] BALACHANDRAN U, DUSEK J T, MAIYA P S, MA B, MIEVILLE R L.Ceramic membrane reactor for converting methane to syngas [J]. Catalysis Today,1997,36:265-272.
    [150] BALACHANDRAN U, MA B, MAIYA P S, DUSEK J T, PICCIOLO J J,GUAN J, DORRIS S E, LIU M. Development of mixed-conducting oxides forgas separation [J]. Solid State Ionics,1998,108:363-370.
    [151] PEI S, KLEEFISCH M S, KOBYLINSKI T P, FABER J, UDOVICH C A,ZHANG-MCCOY V, DABROWSKI B, BALACHANDRAN U, MIEVILLE R L,POEPPEL R B. Failure mechanisms of ceramic membrane reactors in partialoxidation of methane to synthesis gas [J]. Catal Lett,1995,30:201-212.
    [152] TSAI C Y, MA Y H, MOSER W R, DIXON A G. Modeling and simulation of anonisothermal catalytic membrane reactor [J]. Chem Eng Comm,1995,134:107-132.
    [153] TSAI C Y, DIXON A G, MOSER W R, MA Y H. Densen perovskite membranereactors for partial oxidation of methane to syngas [J]. AIChE Journal,1997,43:2741-2750.
    [154] JIN W, LI S, HUANG P, XU N, SHI J, LIN Y S. Tubular lanthanum cobaltiteperovskite-type membrane reactors for partial oxidation of methane to syngas [J].Journal of Membrane Science,2000,166:13-22.
    [155] JIN W, GU X, LI S, HUANG P, XU N, SHI J. Experimental and simulationstudy on a catalyst packed tubular dense membrane reactor for partial oxidationof methane to syngas [J]. Chem Eng Sci,2000,55(14):2617-2625.
    [156] SCHWARTZ M, WHITE J H, SAMMELS A F. Solid state oxygen anion andelectron mediating membrane and catalytic membrane reactors containing them
    [P] U S:6033632,2000.
    [157] SAMMELLS A F, SCHWARTZ M, MACKAY R A, BARTON T F,PETERSON D R. Catalytic membrane reactors for spontaneous synthesis gasproduction [J]. Catalysis Today,2000,56:325-328.
    [158] HENDRIKSEN P V, LARSEN P H, MOGENSEN M, POULSEN F W, WIIKK. Prospects and problems of dense oxygen permeable membranes [J]. CatalysisToday,2000,56(1-3):283-295.
    [159] STEPHENS W T, MAZANEC T J, ANDERSON H U. Influence of gas flowrate on oxygen flux measurements for dense oxygen conducting ceramicmembranes [J]. Solid State Ionics,2000,129(1-4):271-284.
    [160] ISHIHARA T, TAKITA Y. Partial oxidation of methane into syngas withoxygen permeating ceramic membrane reactors [J]. Catal Surv Jap,2000,4:125-134.
    [161] DYER P N, RICHARDS R E, RUSSEK S L, TAYLOR D M. Ion transportmembrane technology for oxygen separation and syngas production [J]. SolidState Ionics,2000,134:21-33.
    [162] RITCHIE J T, RICHARDSON J T, LUSS D. Ceramic membrane reactor forsynthesis gas production [J]. AIChE J,2001,47:2092-2101.
    [163] GU X, JIN W, CHEN C, XU N, SHI J. YSZ-SrCo0.4Fe0.6O3-membranes for thepartial oxidation of methane to syngas [J]. AIChE J,2002,48:2051-2060.
    [164] ISHIHARA T, TSURUTA Y, TODAKA T, NISHIGUCHI H, TAKITA Y. Fedoped LaGaO3perovskite oxides as an oxygen separating membrane for CH4partial oxidation [J]. Solid State Ionics,2002,152:709-714.
    [165] CHEN C S, FENG S J, RAN S, ZHU D C, LIU W, BOUWMEESTER H J M.Conversion of methane to syngas by a membrane-based oxidation-reformingprocess [J]. Angew Chem Int Ed,2003,42:5196-5198.
    [166] BOUWMEESTER H J M. Dense ceramic membranes for methane conversion[J]. Catalysis Today,2003,82:141-150.
    [167] SONG S D, ZHANG P, HAN M F, SINGHAL S C. Oxygen permeation andpartial oxidation of methane reaction in Ba0.9Co0.7Fe0.2Nb0.1O3-delta oxygenpermeation membrane [J]. Journal of Membrane Science,2012,415:654-662.
    [168] ARAKI S, YAMAMOTO H, HOSHI Y, LU J F, HAKUTA Y, HAYASHI H,OHASHI T, SATO K, NISHIOKA M, INOUE T, HIKAZUDANI S,HAMAKAWA S. Synthesis of Ca0.8Sr0.2Ti0.7Fe0.3O3-delta thin film membranesand its application to the partial oxidation of methane [J]. Solid State Ionics,2012,221:43-49.
    [169] LOBERA M P, SERRA J M, FOGHMOES S P, SOGAARD M, KAISER A. Onthe use of supported ceria membranes for oxyfuel process/syngas production [J].Journal of Membrane Science,2011,385(1-2):154-161.
    [170] KAWAHARA A, TAKAHASHI Y, HIRANO Y, HIRANO M, ISHIHARA T.Importance of pore structure control in porous substrate for high oxygenpenetration in La0.6Sr0.4Ti0.3Fe0.7O3thin film for CH4partial oxidation [J]. SolidState Ionics,2011,190(1):53-59.
    [171] DELBOS C, LEBAIN G, RICHET N, BERTAIL C. Performances of tubularLa0.8Sr0.2Fe0.7Ga0.3O3-delta mixed conducting membrane reactor for underpressure methane conversion to syngas [J]. Catalysis Today,2010,156(3-4):146-152.
    [172] EVDOU A, ZASPALIS V, NALBANDIAN L. La1-xSrxFeO3-delta perovskitesas redox materials for application in a membrane reactor for simultaneousproduction of pure hydrogen and synthesis gas [J]. Fuel,2010,89(6):1265-1273.
    [173] LUO H X, WEI Y Y, JIANG H Q, YUAN W H, LV Y X, CARO J, WANG H H.Performance of a ceramic membrane reactor with high oxygen fluxTa-containing perovskite for the partial oxidation of methane to syngas [J].Journal of Membrane Science,2009,350(1-2):154-160.
    [174] WANG H H, FELDHOFF A, CARO J, SCHIESTEL T, WERTH S. Oxygenselective ceramic hollow fiber membranes for partial oxidation of methane [J].AIChE Journal,2009,55(10):2657-2664.
    [175] LU Y, DIXON A G, MOSER W R, MA Y H, BALACHANDRAN U.Oxygen-permeable dense membrane reactor for the oxidative coupling ofmethane [J]. Journal of Membrane Science,2000,170:27-34.
    [176] RAMIREZ J P, VIGELAND B. Perovskite membrane in ammonia oxidation:towards process intensification in nitric acid manufacture [J]. Angew Chem IntEd,2005,44:1112-1115.
    [177] SHAO Z P, DONG H, XIONG G X, CONG Y, YANG W S. Performance of amixed-conducting ceramic membrane reactor with high oxygen permeability formethame conversion [J]. Journal of Membrane Science,2001,183:181-192.
    [178] WANG H H, CONG Y, YANG W S. Investigation on partial oxidation ofmethane to syngas via a tubular Ba0.5Sr0.5Co0.8Fe0.2O3-membrane reactor [J].Catalysis Today,2003,82:157-166.
    [179] ZHU W L, XIONG G X, HAN W, YANG W S. Catalytic partial oxidation ofgasoline to syngas in a dense membrane reactor [J]. Catalysis Today,2004,257:93-95.
    [180] SHAO Z P, DONG H, XIONG G X, CONG Y, YANG W S. Performance of amixed-conducting ceramic membrane reactor with high oxygen permeability formethame conversion [J]. Journal of Membrane Science,2001,183:181-192.
    [181] WANG H H, CONG Y, YANG W S. Investigation on partial oxidation ofmethane to syngas via a tubular Ba0.5Sr0.5Co0.8Fe0.2O3-membrane reactor [J].Catalysis Today,2003,82:257-268.
    [182] ZHU W L, XIONG G X, HAN W, YANG W S. Catalytic partial oxidation ofgasoline to syngas in a dense membrane reactor [J]. Catalysis Today,2004,257:93-95.
    [183] TONG J H, YANG W S, CAI R, ZHU B C, LIN L W. Novel and idealzirconium-based dense membrane reactors for partial oxidation of methane tosyngas [J]. Catal Lett,2002,78(1-4):129-137.
    [184] KHARTON V V, SHAULA A L, SNIJKERS F M M, COOYMANS J F C,LUYTEN J J, YAREMCHENKO A A, VALENTE A A, TSIPIS E V, FRADE J R,MARQUES F M B, ROCHA J. Processing,stability and oxygen permeability ofSr(Fe,Al)O3-based ceramic membranes [J]. Journal of Membrane Science,2005,252:215-225.
    [185] ZHU X F, LI Q M, CONGY, YANG W S. Syngas generation in a membranereactor with a highly stable ceramic composite membrane [J]. Catal Commun,2008,10:209-312.
    [186] ZHU X F, LI Q M, HE Y F, CONG Y, YANG W S. Oxygen permeation andpartial oxidation of methane in dual-phase membrane reactors [J]. Journal ofMembrane Science,2010,360:454-460.
    [187] ZHU X F, LI Q M, LIU H Y, CONG Y, YANG W S. Design and experimentalinvestigation of oxide ceramic dual-phase membranes [J]. Journal of MembraneScience,2012,394-395:120–130.
    [188] NOZAKI T, YAMAZAKI O, OMATA K. Selective Oxidative Coupling ofMethane with Membrane Reactor [J]. Chem Eng Sci,1992,47:2945-2950.
    [189] OMATA K, YAMAZAKI O, TOMITA K, FUJIMOTO K. Oxidative coupling ofmethane on an ABO3type oxide with mixed conductivity [J]. Journal of theChemical Society-Chemical Communications,1994,14:1647-1648.
    [190] ANDERSEN A G, HAYAKAWA T, SUZUKI K, SHIMIZU M, TAKEHIRA K.Electrochemical Methane Conversion over SrFeO3-Perovskite on an YttriumStabilized Zirconia Membrane [J]. Catal Lett,1994,27(1-2):221-233.
    [191] TENELSHOF J E, BOUWMEESTER H J M, VERWEIJ H. Oxidative Couplingof Methane in a Mixed-Conducting Perovskite Membrane Reactor [J]. ApplCatal A,1995,130:195-212.
    [192] LIN Y S, ZENG Y. Catalytic properties of oxygen semipermeableperovskite-type ceramic membrane materials for oxidative coupling of methane[J]. J Catal,1996,164:220-231.
    [193] AKIN F T, LIN Y S. Controlled oxidative coupling of methane by ionicconducting ceramic membrane [J]. Catal Lett,2002,78(1-4):546-546.
    [194] XU S J, THOMSON W J. Stability of La0.6Sr0.4Co0.2Fe0.8O3-perovskitemembranes in reducing and nonreducing environments [J]. Ind Eng Chem Res,1998,37:1290-1299.
    [195] XU S J, THOMSON W J. Perovskite-type oxide membranes for the oxidativecoupling of methane [J]. AIChE Journal,1997,43:2731-2740.
    [196] TAN X, PANG Z, LIU S. Catalytic perovskite hollow fibre membrane reactorsfor methane oxidative coupling [J]. Journal of Membrane Science,2007,302:109-114.
    [197] CZYPEREK M, ZAPP P, BOUWMEESTER H J M, MODIGELL M,PEINEMANN K V, VOIGT I, MEULENBERG W A, SINGHEISER L,ST VER D. Men-brain gas separation membranes for zero-emission fossilpower plants [J]. Energy Procedia,2009,1:303-310.
    [198] DONG X, ZHANG G, LIU Z, ZHONG Z, JIN W, XU N. CO2-tolerant mixedconducting oxide for catalytic membrane reactor [J]. Journal of MembraneScience,2009,340:141–147.
    [199] WAINDICH A, M BIUS A, MüLLER M. Corrosion of Ba1xSrxCo1yFeyO3dand La0.3Ba0.7Co0.2Fe0.8O3dmaterials for oxygen separating membranes underOxycoal conditions [J]. Journal of Membrane Science,2009,337:182-187.
    [200] ZENG Q, ZUO Y, FAN C, CHEN C. CO2-tolerant oxygen separationmembranes targeting CO2capture application [J]. Journal of Membrane Science,2009,335:140-144.
    [201] DEN EXTER M, VENTE J F, JANSEN D, HAIJE W G. Viability of mixedconducting membranes for oxygen production and oxyfuel processes in powerproduction [J]. Energy Procedia,2009,1:455-459.
    [202] SHAO Z P, XIONG G X, CONG Y, YANG W S. Investigation of thepermeation behavior and stability of Ba0.5Sr0.5Co0.8Fe0.2O3doxygen membrane[J]. Journal of Membrane Science,2000,172:177-188.
    [203] ARNOLD M, WANG H, FELDHOFF A. Influence of CO2on the oxygenpermeation performance and the microstructure of perovskite-typeBa0.5Sr0.5Co0.8Fe0.2O3dmembrane [J]. Journal of Membrane Science,2007,293:44-52.
    [204] DONG X, ZHANG G, LIU Z, ZHONG Z, JIN W, XU N. CO2-tolerant mixedconducting oxide for catalytic membrane reactor [J]. Journal of MembraneScience,2009,340:141-147.
    [205] LUO H, EFIMOV K, JIANG H, FELDHOFF A, WANG H, CARO J.CO2-stable and cobalt-free dual-phase membrane for oxygen separation [J].Angew Chem Int Ed,2011,50:75-763.
    [206] LUO H, JIANG H, EFIMOV K, LIANG F, WANG H, CARO J. CO2-tolerantoxygen permeable Fe2O3-Ce0.9Gd0.1O2-dual phase membranes [J]. Ind EngChem Res,2011,50:13508-13517.
    [207] LUO H, JIANG H, EFIMOV K, CARO J. Influence of the preparation methodson the microstructure and oxygen permeability of a CO2-stable dual phasemembrane [J]. AIChE J,2010,56:604-610.
    [208] LUO H X, JIANG H Q, KLANDE T, LIANG F Y, CAO Z W, WANG H H,CARO J. Rapid glycine-nitrate combustion synthesis of the CO2-stable dualphase membrane40Mn(1.5)Co(1.5)O(4-delta)-60Ce(0.9)Pr(0.1)O(2-delta)for CO2capturevia an oxy-fuel process [J]. Journal of Membrane Science,2012,423:450-458.
    [209] FANG S, CHEN C, WINNUBST L. Effect of microstructure and catalystcoating on the oxygen permeability of a novel CO2-resistant membrane [J]. SolidState Ionics,2011,190:46-52.
    [210] ZHU X F, LIU H Y, CONG Y, YANG W S, Novel dual-phase membranes forCO2capture via an oxyfuel route [J].2012,48:251-253.
    [211] LUO H X, JIANG H Q, KLANDE T, CAO, Z W, LIANG F Y, WANG H H,CARO J. Novel Cobalt-Free, Noble Metal-Free Oxygen-Permeable40Pr(0.6)Sr(0.4)FeO(3-delta)-60Ce(0.9)Pr(0.1)O(2-delta),Dual-Phase Membrane [J].Chemistry of Materials,2012,24(11):2148-2154.
    [212] LI W, LIU J, CHEN C. Hollow fiber membrane of yttrium-stabilized zirconiaand strontium-doped lanthanum manganite dual-phase composite for oxygenseparation [J]. Journal of Membrane Science,2009,340:266-271.
    [213] LI W, TIAN T, SHI F, WANG Y, CHEN C. Ce0.8Sm0.2O1.9–La0.8Sr0.2MnOdual-phase composite hollow fiber membrane for oxygen separation [J]. Ind EngChem Res,2009,48:5789–5793.
    [214] EFIMOV K, KLANDE,T, JUDITZKI N, FELDHOFF A. Ca-containingCO2-tolerant perovskite materials for oxygen separation [J]. Journal ofMembrane Science,2012,389:205-215.
    [215] WEI Y Y, TANG J, ZHOU LY, XUE J, LI Z, WANG H H. Oxygen Separationthrough U-Shaped Hollow Fiber Membrane Using Pure CO2as Sweep Gas [J].AIChE Journal,2012,58(9):2856-2864.
    [216] KLANDE T, EFIMOV K, CUSENZA S, BECKER K D, FELDHOFF A. Effectof doping microstructure and CO2on La2NiO4+delta-based oxygen-transportingmaterials [J]. Journal of Solid State Chemistry,2011,184(12):3310-3318.
    [217]邵宗平.混合导体透氧膜及其在甲烷部分氧化制合成气反应中的应用[D].大连:中国科学院大连化学物理研究所,2000.
    [218]朱雪峰.新型高稳定性透氧陶瓷膜的研究[D].大连:中国科学院大连化学物理研究所,2006.
    [219] BOUWMEESTER H J M, KRUIDHOF H, BURGGRAAF A J. Importance ofthe surface exchange kinetics as rate limiting step in oxygen permeation throughmixed-conducting oxides [J]. Solid State Ionics,1994,72:185-194.
    [220] N. Itoh, T. Kato, K. Uchida, K. Haraya, Preparation of pore-free diskLa1-xSrxCoO3, J.Membr. Sci,1998,150,87
    [221] TAN L, GU X, YANG L, JIN W, XIONG L, XU N. Influence of powdersynthesis methods on microstructure and oxygen permeation performance ofBa0.5Sr0.5Co0.8Fe0.2O3-perovskite-type membranes [J]. J Membr Sci,2003,212:157-165.
    [222] LIU S,.GAVALAS G R. Preparation of oxygen ion conducting ceramichollow-fiber membranes [J]. Ind Eng Chem Res,2005,44(20):7633-7637.
    [223] SHAO Z P, HAILE S M. A high-performance cathode for the next generation ofsolid-oxide fuel cells [J]. Nature,2004,431:170-173.
    [224] PRADO F, GRUNBAUM N, CANEIRO A, MANTHIRAM A. Effect of La3+doping on the perovskite-to-brownmillerite transformation inSr1-xLaxCo0.8Fe0.2O3-(0≤x≤0.4)[J]. Solid State Ionics,2004,167:147-154.
    [225] SHAULA A L, YAREMCHENKO A A, KHARTON V V, LOGVINOVICH D I,NAUMOVICH E N, KOVALEVSKY A V, FRADE J R, MARQUES F M B.Oxygen permeabilitybof LaGaO3-based ceramic membranes [J]. J Membr Sci,2003,221:69-77.
    [226] MACKAY R, SCHWARTZ M, SAMMELS A F. Methods for separating oxygenfrom oxygen-containing gases [P]. U S,6165431,2000.
    [227] TONG J H,. YANG W S, CAI R, ZHU B C, XIONG G X,. LIN L W.Investigation on the structure stability and oxygen permeability oftitanium-doped perovskite-type oxides of BaTi0.2-xCoxFe0.8O3-(x=0.2-0.6)[J].Sep Purif Technol,2003,32,289-299.
    [228] YANG L,. TAN L,. GU X H,. JIN W Q,. ZHANG L X, XU N P. A new series ofSr(Co,Fe,Zr)O3-Perovskite-type membrane materials for oxygen permeation [J].Ind Eng Chem Res,2003,42:2299-2305.
    [229] Chen C H, Kruidhof H, Bouwmeester H J M, Burggraaf A J. Ionic conductivityof perovskite LaCoO3measured by oxygen permeation technique [J]. J ApplElectrochem,1997,27:71-75.
    [230] SIRMAN J D, CHEN J C. Ceramic membrane structure and oxygen separationmethod [P]. U S,6514314,2003.
    [231] YAREMCHENKO A A, KHARTON V V, VISKUP A P, NAUMOVICH E N,TIKHONOVICH V N,. LAPCHUK N M. Mixed electronic and ionicconductivity of LaCo (M) O3(M=Ga, Cr, Fe or Ni) V Oxygen permeability ofMg-doped La(Ga,Co)O3-perovskites [J] Solid State Ionics,1999,120:65-74.
    [232] WATENABE K, YUASA M, KIDA T, TERAOKA Y, YAMAZOE N,SHIMANOE K. High-performance oxygen-permeable membranes with anasymmetric structure using Ba0.95La0.05FeO3-deltaperovskite type oxide [J]. AdvMater,2010,22:2367-2370.
    [233] BOUWMEESTER H J M, KRUIDHOF H, BURGGRAAF A J. Importance ofthe surface exchange kinetics as rate limiting step in oxygen permeation throughmixed-conducting oxides [J]. Solid State Ionics,1994,72:185-194.
    [234] KHARTON V V, TIKHONOVICH V N, SHUANGBAO L, NAUMOVICH E N,KOVALEVSKY A V, VISKUP A P, BASHMAKOV I A, YAREMCHENKO A A.Ceramic microstructure and oxygen permeability of SrCo(Fe,M)O3-(M=Cu or Cr)perovskite membranes [J]. J Electrochem Soc,1998,145:1363-1367.
    [235] KHARTON V V, MARQUES F M B. Mixed ionic-electronic conductors effectsof ceramic microstructure on transport properties [J]. Curr Opin Solid State&Mater Sci,2002,6:261-269.
    [236] TAN L, GU X, YANG L, JIN W, XIONG L, XU N. Influence of powdersynthesis methods on microstructure and oxygen permeation performance ofBa0.5Sr0.5Co0.8Fe0.2O3--type membranes [J]. J Membr Sci,2003,212:157-165.
    [237] KIM S, YANG Y L, CHRISTOFFERSEN R, JACOBSON A J. Determinationof oxygen permeation kinetics in a ceramic membrane based on the compositionSrFeCo0.5O3.25-[J]. Solid State Ionics,1998,109:187-196.
    [238] DENG Z Q, LIU W, PENG D K, CHEN C S, YANG W S. Combustionsynthesis annealing and oxygen permeation properties of SrFeCo0.5Oymembranes [J]. Mater Res Bull,2004,39:963-969.
    [239] DEES D W,CLAAR T D,EASLER T E. Conductivity of porous Ni/ZrO2-Y2O3cermets, J Electrochem Soc [J].1987,134(9):2141-2146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700