白云岩岩溶砂化形成机理及其工程特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
美姑河坪头水电站厂址区的震旦系灯影组细晶白云岩中风化卸荷、构造及岩溶砂化作用强烈。厂址区勘探过程中,在垂直埋深超过300m、水平深度超过400m范围内,该套细晶白云岩中发育一类特殊的白云岩岩溶现象:溶蚀沿结构面扩展,形成宽度不等的砂化条带,硐室多处呈全强溶蚀,岩体强度较低,残留物为砂夹粒径不均的白云岩块石,手捏即散成砂状,可称之为白云岩岩溶砂化。白云岩岩溶砂化不仅使岩体强度劣化、岩体质量降低,也可作为不利地质边界对边坡、地下硐室稳定性造成影响,但目前关于其成因机理仍不清楚,工程特征研究仍属空白。白云岩岩溶砂化已成为工程建设部门亟需解决的重要工程地质问题,深入开展该现象研究具有重要的理论与现实意义。
     针对白云岩岩溶砂化这一特殊的工程地质问题,本文在消化吸收前人研究成果基础上,采用现场工程地质测绘和勘探等多种手段,查明研究区地质环境背景与工程地质条件;揭示白云岩砂化基本特征及发育分布规律;分析白云岩砂化宏观形成条件与影响因素;采用室内地球化学分析、高压渗透试验、岩石物理力学试验、溶蚀试验、扫描电镜等多种方法,从宏观、微观角度揭示白云岩溶蚀特征与溶蚀过程,揭示白云岩砂化形成演化机理;建立白云岩砂化宏观分级标准,揭示具有不同砂化程度白云岩的力学特性及其对边坡、地下硐室的影响。本文的研究工作和主要结论如下:
     (1)通过对已开挖各地下硐室及钻孔中砂化现象的调查统计,完善了白云岩砂化的概念;揭示白云岩砂化基本特征、发育分布规律、形成条件及影响因素;分析了白云岩砂化物质结构特征;将白云岩砂化发育程度划分为轻微→微弱→中等→强烈→全强等五个等级;并建立了白云岩砂化宏观分级标准。
     (2)通过室内地球化学分析试验揭示了白云岩砂化过程中主量元素的地球化学迁移演化规律。结果表明:白云岩砂化作用发展伴随的地球化学演化过程表现为易溶物质CaO、MgO之溶蚀淋失,难溶物质SiO2的明显富集,后期SiO2主要通过沉淀、交代等作用与Al、Fe等主量元素结合形成次生粘土矿物。主量元素迁移演化特征与白云岩砂化溶蚀过程呈现一定的正相关或负相关性。
     (3)室内溶蚀试验表明:白云岩溶蚀速率受组成岩石颗粒粒径大小与岩石内部孔隙度的控制,颗粒粒径越大,孔隙度越高,渗透系数也随之增长,地下水渗透及运移条件越好,越易于溶蚀。不同岩石结构白云岩溶蚀速率关系为中~细晶白云岩>细~粉晶白云岩>粉~泥晶白云岩;增加比表面积并不能提高单位面积溶蚀速率;稀硫酸溶液溶蚀作用使白云岩溶蚀速率较在稀盐酸中溶蚀快。
     (4)对比观察试验前后试样染色铸体薄片,白云岩溶蚀起始于沿粒间孔隙、晶间孔隙、构造微裂隙及解理面,并进一步扩展使得裂隙结构更为发育且相互连通;扫描电镜下白云岩微观溶蚀特征主要表现为沿白云石晶体表面、晶体解理裂隙以及白云石晶体接触部位、砂屑团斑内部和周边首先溶蚀,使白云岩内部结构逐步劣化,晶体联结力减弱,并伴随着晶体解体及脱落现象,最终形成白云岩溶蚀砂化。
     (5)提出了白云岩宏观演化机理,白云岩砂化作用宏观上主要表现为沿着层面微解理、早期平面X节理、构造次生裂隙等优势结构面发展演化过程。随着岩溶水的运移、渗透,微裂隙在溶蚀作用下不断扩大,溶蚀作用使新生溶蚀次生裂隙的空间加大,而这又在一定程度上加强了地下水的流通和运移能力。在这种循环渗透溶蚀作用下,地下水继续向裂隙两侧岩体渗透,在宏观上表现为砂化条带向两侧岩体扩展,厚度增大
     (6)白云岩砂化导致岩体质量降低,轻微砂化阶段白云岩围岩类别为Ⅱ~Ⅲ类;微弱砂化阶段白云岩围岩类别以Ⅲ类为主;中等砂化阶段白云岩围岩类别为Ⅲ~Ⅳ类;强烈砂化阶段白云岩围岩类别为Ⅳ~Ⅴ类;全强砂化阶段白云岩围岩类别为Ⅴ类。
     (7)Ⅰ~Ⅳ区的斜坡的砂化细晶白云岩中,沿裂隙面的砂化的纹层层理十分清晰,未见扰动或破坏迹象,表明斜坡岩体在砂化现象形成后未发生明显的变形和错动,Ⅰ、Ⅱ区整体处于稳定状态;Ⅲ、Ⅳ区整体处于基本稳定状态。
The stratigraphic of the site area in Pingtou Hydropower Station on Meigu riverwas Dengying Formation limestone and fine grained dolomite. the weatheringunloading, structure and karstification was very strong in the fine grained. in theprocess of site area exploration,the fine grained develop a special karst geologicalphenomenon in the range of vertical depth exceeds300m and depth level exceeds400m:dissolute along the dimensions and dominant plane structure. developedunequal width sandification strips. fine grained dolomite demonstrated by the strongerosion was granular structure with clamping blocks of dolomite stone. it could becalled dolomite karst sandification. dolomite sandification caused the deterioration ofthe rock mass strength and reduced quality of rock mass. as the impact of unfavorablegeological boundaries, it also can impact on the stability of the slope and undergroundchambers. But its genetic mechanism remains unclear and engineering features remainblank. The dolomite sandification has become an important engineering geologicalproblem that should be solved by the engineering construction sector. depth study ofthe phenomenon has important theoretical and practical significance.
     For the special engineering geology problems called dolomite sandification,Based on collection of previous studies and identification of tectonic geology andusing of engineering geological mapping and exploration methods,this paper identifythe geological environment background and engineering geological conditions of thestudy area, described the basic feature and spatial distribution characteristics ofdolomite sandification systematically, explained the formation condition of dolomitesandification. Through the using of a variety of methods which include indoorgeochemical analysis, high-pressure permeability test, rock physical and mechanicaltesting, corrosion testing and scanning electron microscopy(SEM). the paperanalyzed the microscopic mechanism and macroscopic evolution model of the dolomite sandification and establish the grading microscopic standards of dolomitesandification. the paper reveal the mechanical properties of the different sandificationdegree dolomite and its effect on the slope and underground chambers. the study andmain conclusions are the following:
     (1)According to statistics about sandification phenomenon in the undergroundexcavation caverns and borehole,the paper put forward the concept of dolomitesandification; described the basic feature and spatial distribution characteristics ofdolomite sandification; explained the formation condition of dolomite sandification;analyzed the physical structure characteristics of dolomite sandification; classifieddolomite sandification macroscopically. it was divided into five grades: the slightsandification→the weak sandification→the middle sandification→the strongsandification→the full sandification.
     (2)Through the indoor geochemical analysis experiments revealed lord measuredelements of the geochemical migration evolution rule in the process of dolomitesandification. The results show that: geochemical evolution process of dolomitesandification developed with the leaching of soluble substances (CaO, MgO) andobvious enrichment of insoluble substance (SiO2). SiO2combined with majorelements (Al,Fe) and formed secondary clay mineral through precipitation andmetasomatic later. the migration evolution features of major element show a certainpositive or negative correlation with the dissolution process of the dolomitesandification.
     (3)The results of indoor dissolution test show that: dolomite dissolution velocitywas controlled by rock particle size and rock internal pore. With the increase of thegrain dolomite, moisture content, porosity and permeability coefficient of thedolomite are also increasing.groundwater infiltration and migration conditions wasthe better, the more easily dolomite dissolute. different rock structure of dolomite thedissolution rate relationship of different rock structure dolomite realized for:crystalline~fine grained dolomite>fine grained~crystal powder dolomite>crystalpowder~micritic dolomite;increasing the specific surface area would not improve thedissolution rate per unit area;compared with dilute hydrochloric acid,dolomitedissolution rate in dilute sulfuric acid is faster compared with dilute hydrochloric aciddissolution.
     (4)Trough the observation of test sample dyeing cast body chip that was beforeand after the observation, the dolomite dissolute along the grain pores, intergranularporosity, construct micro-cracks and cleavage plane and further expansion the fractured structure connected with each other; in the scanning electron microscope,dolomite micro-dissolution characteristics mainly dissolute along the surface of thedolomite crystals, crystal cleavage cracks and dolomite crystal contact area calcarenitegroup spots firstly. it caused the gradual deterioration of the dolomite internalstructure, weakened crystal links,accompanied by crystal disintegration and sheddingphenomenon and formed dolomite dissolution sandification ultimately.
     (5)The paper put forward the dolomite macro evolution mechanism. microscopicdissolution process can be divided into the following three penetration dissolution:mechanical disintegration, grain fall off three phases. In dolomite sandificationprocess, physical disintegration shedding played a leading role, chemical dissolutionpromoted the physical destruction. the interaction and interdependence of the karstwater and rock pore system promote the occurrence and development of karstsandification
     (6)Dolomite sandification lead to lower quality of rock mass. the rock mass ofthe slight sandification was Ⅱ~Ⅲ; the rock mass of the weak sandification wasⅢ;the rock mass of the middle sandification was Ⅲ~Ⅳ;the rock mass of the strongsandification was Ⅳ~Ⅴ;the rock mass of the full sandification was Ⅴ;
     (7)In the sandification fine grained dolomite rock, the fracture surface ofsandification layer was very clear and had not obvious disturbance or destruction. itindicates that the rock did not occur to a significant deformation and dislocation afterthe sandification phenomenon in the slope rock mass formed. the stability situation ofthe Ⅰ and Ⅱ slope was stable in the overall., the Ⅲ and Ⅳ slope was basicstable in the overall.
引文
[1]袁道先.中国岩溶学[M].北京:地质出版社,1994.
    [2]王家骏.岩溶地区坝基岩体质量工程地质分类[J].中国岩溶,1992,11(2):105-117.
    [3]邹成杰.水利水电岩溶工程地质[M].北京:水利电力出版社,1994
    [4]邹成杰.某些岩溶地区地下水位变化规律及压渗系数的研究[J].中国岩溶,1985,3:201-214.
    [5]邹成杰.水库岩溶渗漏地质模型和数学模型的初步研究[J].中国岩溶,1990,9(3):231-240.
    [6]雷金山,苏峰,阳军生等.土硐对地铁隧道开挖的影响性状研究[J].铁道科学与工程学报,2008,5(2):57-63.
    [7]赵明阶,敖建华,刘绪华等.岩溶尺寸对隧道围岩稳定性影响的模型试验研究[J].岩石力学与工程学报,2004,23(2):213-217.
    [8]付兵.四川省武都水库坝基岩溶发育特征及其对工程影响研究[D].成都:西南交通大学,2005.
    [9]孙维兵.黄河羊曲水电站坝址岩溶发育特征及对工程影响研究[D].成都:成都理工大学,2008.
    [10]毛邦燕.现代深部岩溶形成机理及其对越岭隧道工程控制作用评价[D].成都:成都理工大学,2008.
    [11]周德全,王世杰,季宏兵.黔中红粘土的物质来源与成因研究[J].矿物学报,2006,26(3):249-256.
    [12]周德全,王世杰,刘秀明.石灰土(碳酸盐岩风化壳)形成地球化学过程研究[J].地球与环境,2005,33(2):31-38.
    [13]李德文,崔之久,刘耕年.湘桂黔滇藏红色岩溶风化壳的发育模式[J].地理学报,2002,57(3):293-300.
    [14]朱立军,李景阳.碳酸盐岩风化成土作用及其环境效应[M].北京:地质出版社,2004.
    [15] Ahmad N,Jones R L.Genesis,chemical properties and mineralogy of limestone-derivedsoils,Barbados,west Indies.Trop.Agric,1969,46:1-15.
    [16] Ahmad N,Jones R L,and Beavers AH. Genesis,mineralogy of west Indian soils:Bauxiticsoils of Jamaica.Proc.Sqil Sci.Soc.Am,1966,30:719-722.
    [17] Clarke O M.The formation of bauxite on karst topography in Eufaula district.Labama,andJamaica.Econ.Geol.1966,61:903-916.
    [18] Monroe W H.1986.Examples of the replacement of limestone by clay.MissisippiGeology,1986,7(1):1-6.
    [19] Busenberg E, Plummer L N. The Kinetics of dissolution of dolomite in CO2-H2O system at1.5to65℃and0to1atm PCO2[J]. AM. J.Sci,1982,282:45-78.
    [20] Plummer L N,Busenberg E. The solubilities of calcite, aragonite and vaterite in CO2-H2Osolutions between0and90°C, and an evaluation of the aqueous model for the systemCaCO3-CO2-H2O[J]. Geochimica etCosmochimica Acta,1982,46:1011-1040.
    [21] Dreybrod T W, Lauckner J, Liu Z H, etal. The kinetics of the reaction CO2+H+2O-H+HCO3-as one ofthe rate limiting steps for the dissolution of calcite in the systemH2O-CO2-CaCO3[J]. Geochimicaet Cosmochinica Acta,1996,18:3375-3381.
    [22] Maud G, Eric H, Schott J. An experimental study of dolomite dissolution rates as a functionof pH from-0.5to5and temperature from25to80°C[J]. Chemical Geology,1999,157:13-26.
    [23] Arvidson R S, Ertan I V, Amonette J E, etal.Variation in calcite dissolution rates: afundamental problem?[J]. Geochimica et Cosmochimica Acta,2003,67:1623-1634.
    [24]刘再华, W.Dreybrodt.岩溶作用动力学与环境[M].北京:地质出版社,2007.
    [25]宋焕荣,黄尚瑜.碳酸盐岩与岩溶[J].矿物岩石,1988,(1):9-16.
    [26]胡友彪,白海波,赵海峰.徐州新河矿太原组灰岩溶蚀试验研究[J].江苏煤炭,1997,(3):7-10.
    [27]朱真.影响碳酸盐岩比溶蚀度、比溶解度因素探讨[J].广西地质,1999,10(3):37-44.
    [28]何宇彬,金玉璋,李康.碳酸盐岩溶蚀机理研究[J].中国岩溶,1984,2:12-18.
    [29]贺伟,冯文光,贺承祖.碳酸盐岩储层酸蚀反应机理的实验研究[J].天然气勘探与开发,2000,23(2):27-30.
    [30]刘琦,卢耀如,张风娥等.动水压力作用下碳酸盐岩溶蚀作用模拟实验研究[J].岩土力学,2010,31(增刊1):96-100.
    [31]刘再华,W.Dreybrodt,李华举.灰岩和白云岩溶解速率控制机理的比较[J].地球科学,2006,31(3):412-416.
    [32]贾思静,杨俊杰,张文正等.石膏对白云岩溶解影响的实验模拟研究[J].沉积学报,1996,14(1):103-109.
    [33]肖林萍,黄思静.碳酸盐岩溶蚀实验热力学模型及工程地质意义[J].西南交通大学学报,2002,37(3):250-251.
    [34]黄尚瑜,宋焕荣,.碳酸盐岩的溶蚀与环境温度[J].中国岩溶,1987,6(4):287-295.
    [35]高进.对深部岩溶机制的形成认识[J].湘潭矿业学院院报,1987,4(2):64-67.
    [36]任美锷,刘振中等.岩溶学概论[M].北京:商务出版社,1983.
    [37]冯启言,韩宝平.任丘油田水文地球化学演化与水-岩作用研究[M].徐州:中国矿业大学出版社,2001.
    [38]杨荣兴,周珣若,张荣华.水-岩反应实验研究现状与进展[J].现代地质,1995,12(4):419-422.
    [39]李茂秋.深部喀斯特形成条件的电模拟研究[C].北京:科学出版社,1985.
    [40]崔政权.系统工程地质导论[M].北京:水利水电出版社,1992.
    [41] Rudolf Liedl,Martinsauter,Dirk Huckinghaus,etal.Simulation of the development of karstaquifers a coupled continuum pipe flow model[J].Water ResourcesResearch,2003,39(3):1057.
    [42] Kaufman G, Dreybrodt W. Calcite dissolution kinetics in the system CaCO3-H2O-CO2athigh undersaturation[J]. Geochimica et Cosmochinica Acta,2007,71:1398-1410.
    [43]杨俊杰,张文正,黄思静等.埋藏成岩作用的温压条件下,白云岩溶解过程的实验模拟研究[J].沉积学报,1995,13(3):83-87.
    [44]崔振昂,鲍征宇,张天付等.埋藏条件下碳酸盐岩溶解动力学实验研究[J].石油天然气学报,2007,29(3):204-207
    [45]马洪岭,陈锋,杨春和等.深部盐岩溶解速率试验研究[J].矿业研究与开发,2010,30(5):11-13
    [46]钱一雄,Conxita Tabeme,邹森林等.碳酸盐岩表生岩溶与埋藏溶蚀比较—以塔北和塔中地区为例[J].海相油气地质,2007,12(2):1-6.
    [47]王家萌.应力矿物概论[M].北京:地质出版社,1979.
    [48]孙岩,徐士进,刘德良等.断裂构造地球化学导论[M].北京:科学出版社,1998.
    [49]刘亮明,吴延之.剪切应力作用下晶质矿物的化学行为及其地质意义[J].地质与勘探,1996,32(4):26-31.
    [50] Petrovich R.Kinetics of dissolution of mechanically comminuted rock-forming oxides andsilicates-I.deformation and dissolution of quartz under laboratory conditions[J].Geochimicaet Cosmochimica Acta,1981,45(10):1665—1674.
    [51] Petrovich R.Kinetics of dissolution of mechanically comminuted rock-forming oxides andsilicates-II.deformation and dissolution of quartz under laboratory conditions[J].Geochimicaet Cosmochimica Acta,1981,45(10):1675—1686.
    [52] Gratier J P_Experimental pressure solution of halite of an indentertechnique[J].Geophys.Res.Lett.1993,20(15):1647—1650.
    [53]王佐成,车立新,李岩等.高压下岩盐矿和单斜结构AgCI的电子行为[J].高压物理学报,2007,21(3):225-230.
    [54]钱海涛,谭朝爽,李守定等.应力对岩盐溶蚀机制的影响分析[J].岩石力学与工程学报,2010,29(4):757-763.
    [55]汤艳春,周辉,冯夏庭等.应力作用下岩盐的溶蚀模型研究[J].岩土力学,2008,29(2):296-302.
    [56]张之淦.白云岩喀斯特发育的某些问题[M].北京:中国工业出版社,1965.
    [57]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1994.
    [58]闫志为,张俊峰,黄苏锦等.江西东乡铜矿层间溶蚀残积堆积物的特征及成因[J].中国岩溶,2007,26(2):126-131.
    [59]翁金桃.方解石和白云石的差异溶蚀作用[J].中国岩溶,1984(1):29-37.
    [60]翁金桃.桂林—阳朔一带峰林石山的形态类型及其岩性控制[J].中国岩溶,1986,5(2):141-146.
    [61]翁金桃.桂林碳酸盐岩与岩溶发育的关系[J].中国科学(B)辑,1985(8):741-748.
    [62]王第连,钱小鄂.柳州白云岩微溶蚀特征[J].贵州科学,1992,10(2):8-16.
    [63]高道德.黔南岩溶[M].贵州人民出版社,1986.
    [64]戎昆方,戎庆,刘志宇.研究岩溶的新观点:以贵州独山南部、织金硐为例[M].北京:地质出版社,2009.
    [65]赵其华.美姑河坪头水电站区白云岩砂化报告[R].成都:成都理工大学环境与土木工程学院,2008.
    [66]何文秀.美姑河坪头水电站厂址区白云岩砂化成因及其对工程影响研究[D].成都:成都理工大学,2008.
    [67]崔杰.美姑河坪头电站岸坡特殊地质现象与地下工程[D].成都:成都理工大学,2009.
    [68]胡相波.美姑河坪头水电站岸坡深部白云岩岩溶砂化特征及机理研究[D].成都:成都理工大学,2009.
    [69]冯卫,赵其华,王兰生.某水电站白云岩溶蚀机理的微观特征分析[J].中国水运,2008,8(11):260-261.
    [70]赵其华,张良喜,胡相波等.某地区白云岩室内溶蚀试验及微观溶蚀机理研究[J].工程地质学报,2012,
    [71]朱显谟.中国南方的红土与红色风化壳[J].第四纪研究,1993,(1):75-84.
    [72]李淑仪,唐进宣,李美玲.广东几种母岩发育的土壤粘粒矿物研究[J].广东土壤,1990,(1):52-57.
    [73]李景阳,王朝富,樊廷章.试论碳酸盐岩风化壳与喀斯特成土作用[J].中国岩溶,1991,10(1):29-37.
    [74]许炯心.我国不同自然带的化学剥蚀过程[J].地理科学,1994,14(4):306-313.
    [75]李吉均.中国西北地区晚更新世以来环境变迁模式[J].第四纪研究,1990,(3):197-203.
    [76]王英华,周书欣,张秀莲.中国湖湘碳酸盐岩[M].北京:中国矿业大学出版社,1993.
    [77]章人俊.关于贵州东南部地貌和第四纪冰川地质问题[M].北京:地质出版社,1984.
    [78]冯增昭.沉积岩石学[M].北京:石油工业出版社,1993.
    [79]李景阳,王朝富,樊廷章.试论碳酸盐岩风化壳与喀斯特成土作用[J].中国岩溶,1991,10(1):29-37.
    [80]张兰生.中国第四纪以来环境演变的主要特征[J].北京师范大学学报,1984,(4):81-86.
    [81]张兰生.我国环境演变研究的进展[J].地理科学,1990,10(3):217-225.
    [82]浦庆余.末次冰期以来中国自然环境变迁及其与全球变化的关系[J].第四纪研究,1991,(3):245-259.
    [83]斯米尔诺夫в и.矿床地质学[M].北京:地质出版社,1981.
    [84]蒋忠诚.广西弄拉白云岩环境元素的岩溶地球化学迁移[J].中国岩溶,1997,16(4):304-312.
    [85]顾新运,许冀泉.黔桂地区石灰岩发育的三种土壤的粘土矿物组成和演变[J].土壤学报,1963,11(4):411-415.
    [86]俞锦标.中国喀斯特发育规律典型研究[M].北京:科学出版社,1990.
    [87]袁道先.桂林岩溶与碳酸盐岩[M].重庆:重庆出版社,1990.
    [88]袁道先.中国岩溶动力系统[M].北京:地质出版社,2002.
    [89]何宇彬.中国喀斯特水研究[M].上海:同济大学出版社,1997.
    [90]袁道先.桂林岩溶与地质构造[M].重庆:重庆出版社,1988.
    [91]梁杏,万军伟.美姑河坪头水电站厂址区岩溶及水文地质条件对工程影响的研究[R].武汉:中国地质大学,2007.
    [92]万志清,秦四清,祁生文.桂林市岩溶塌陷及防治[J].工程地质学报,2001,9(2):199~203.
    [93]包惠明,胡长顺.岩溶地面塌陷神经网络预测[J].工程地质学报,2002,10(2):299~304.
    [94]李桂平,安民,王延涛,等.吴家庄水库库区岩溶渗漏分析[J].工程地质学报,2000,8(3):334~336.
    [95]李苍松,高波,王石春.岩溶围岩分级初步探讨[J].工程地质学报,2006,14(6):808~814.
    [96]白明洲,许兆义,刘浩杰,等.铁路施工期岩溶地质宏观预测专家系统研究[J].工程地质学报,2007,15(6):848~854.
    [97]胡贺松,彭振斌,陈安.平果铝平南赤泥堆场岩溶地质问题与防治技术[J].工程地质学报,2009,17(1):133~137.
    [98]王涛,李强,王增银.碳酸盐岩微生物溶蚀作用特征及意义[J].水文地质工程地质,2007,34(3):6~9.
    [99]简文星,唐辉明,刘佑荣,等.平寨坝址左岸岩溶发育规律及其对建坝条件的影响[J].工程地质学报,2004,12(4):373~379.
    [100] Jamel Touir, Mohamed Soussi, Habib Troudi. Polyphased dolomitization of a shoal-rimmedcarbonate platform:example from the middle Turonian Bireno dolomites of centralTunisia[J]. Cretaceous Research,2009,30(3):785~804.
    [101] James L.Bischoff, Roman Juliar, Wayne C.Shanks, et al.Karstification without carbonic acid:Bedrock dissolution by gypsum-driven dedolomitization[J]. Geology,1994,22(11):995~998.
    [102]任美锷,刘振中,王飞燕等.中国岩溶发育规律的若干问题[J].南京大学学报(自然科学版),1979,15(4):95~108.
    [103]张之淦.岩溶发生学—理论探索[M].桂林:广西师范大学出版社,2006.
    [104]李伟,扫描电子显微镜及其分析技术简介[J],山东电力技术,1996,88(2):37~88.
    [105]韩宝平.任丘油田碳酸盐岩[J].中国岩溶,1998,(2):16~25.
    [106]陈明晓.岩溶覆盖层塌陷的原因分析及其半定量预测[J].岩石力学与工程学报,2002,21(2):285-289.
    [107]朱庆杰,苏幼坡,陈静.基于神经网络模型的地下岩溶分布预测[J].岩石力学与工程学报,2003,22(增1):2378-2381.
    [108]杨燕.观音岩水电站坝基砂、砾岩溶蚀损伤力学特性与工程应用研究[D].成都:成都理工大学,2009.
    [109]中国电力企业联合会.水利发电工程地质勘察规范(GB50287-2006)[S].北京:中国计划出版社.2008.
    [110] Bieniawski Z T著.工程岩体分类[M].吴立新等译.北京:中国矿业大学出版社,1993.
    [111]王家骏.岩溶地区坝基岩体质量工程地质分类[J].中国岩溶,1992,11(2):105-117.
    [112]胡卸文,黄润秋.西南某电站坝区岩体质量与评价[J].水利发电学报,1996,53(2):71-85.
    [113] Danin A, Gerson E, Marton K, etal. Patterns of limestone and dolomite weathering bylichens and blue-green algae and their palaeo-climatic significance[J]. Palaeogeogr,Palaeoclimatol,Palaeo-ecol,1982,37:221-233.
    [114]李天斌.岩质工程高边坡稳定性及其控制的系统研究[D]成都:成都理工大学环境与土木工程学院,2002.
    [115]赵其华,王兰生.边坡工程理论与实践[M].成都:四川大学出版社,2000.
    [116]胡正涛.美姑河坪头水电站尔古沟-万波沟古滑坡稳定性研究[D].成都:成都理工大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700