催化与渗透汽化双功能膜制备及其反应精馏过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渗透汽化膜是渗透汽化过程的核心,其化学特性和物理结构在很大程度上决定着渗透汽化过程分离效率的高低。催化与渗透汽化耦合双功能膜具有更优的分离性能和良好的催化性能,仅是将制备渗透汽化膜方法的简单重复很难制备出性能良好的催化膜,必须将制备渗透汽化膜和制备催化剂的各种方法或技术有机地结合起来才能有所创新。本文选用全氟磺酸(PFSA)作为催化剂,采用浸涂法制备具有两层结构的催化与渗透汽化双功能中空纤维膜,将优选出的催化与渗透汽化双功能中空纤维膜用作精馏结构填料,并对其作为反应精馏的结构填料和催化剂生产乙酸乙酯的工艺过程进行了研究。论文研究结果如下:
     首先,以聚丙烯腈(PAN)为底膜,采用浸涂法制备了壳聚糖-海藻酸钠/聚丙烯腈(CS-SA/PAN)、壳聚糖-三聚磷酸钠/聚丙烯腈(CS-STPP/PAN)和戊二醛(GA)表面交联聚乙烯醇/聚丙烯腈(GA-PVA/PAN)3种单功能渗透汽化平板复合膜。运用FTIR、SEM、EDX、溶胀度、渗透汽化分离乙酸乙酯/水体系等方法表征了3种单功能渗透汽化平板复合膜的结构和性能。实验结果表明:40℃时,对于分离含97wt.%乙酸乙酯的水溶液,三种单功能膜的渗透通量分别为348 g/(m2-h),340 g/(m2-h)和168g/(m2·h),相对应的分离选择性分别为7245,6268和9182;在97wt.%乙酸乙酯的水溶液中,三种单功能膜的溶胀度最大分别可达51.0%,37.4%和23.7%,说明3种膜的稳定性逐次提高。考虑到膜的稳定性和后续乙酸-乙醇酯化反应实验,本文选用GA-PVA/PAN单功能渗透汽化平板膜作为催化与渗透汽化双功能膜的基膜。
     其次,建立了表面交联反应模型,以CS-STPP/PAN单功能渗透汽化平板复合膜为对象,考察并分析了交联剂浓度和交联反应时间对膜结构和性能的影响。实验结果表明:对于CS-STPP/PAN单功能渗透汽化平板复合膜,表面交联反应15min时,基本达到了表面交联反应的平衡状态,与文献报道相一致;交联率与交联反应时间成指数关系,与交联剂浓度成线性关系;通过控制交联反应时间和交联剂浓度,可以制备出所期望的理想的渗透汽化复合膜。
     再次,将优选出的GA-PVA/PAN单功能渗透汽化平板复合膜制备成单功能渗透汽化中空纤维复合膜并考察其性能。实验结果表明:4wt.% GA表面交联的PVA/PAN单功能中空纤维复合膜具有较好的性能,渗透汽化分离乙酸乙酯塔顶粗酯(乙酸乙酯87.36wt.%,乙醇3.73wt.%,水8.91wt.%)时,其渗透通量为181 g/(m2·h),相对应的水对乙醇的分离选择性为203,水对乙酸乙酯的分离选择性为3953。再以优选出的4wt.%GA表面交联的PVA/PAN单功能渗透汽化中空纤维复合膜作为底膜,在其表面采用浸涂法涂覆催化剂涂膜液,催化剂涂膜液以PFSA为催化剂、以纳米颗粒(SiO2、TiO2或Al2O3)为支撑体、以PVA为粘结剂,制备了3个体系(纳米SiO2、纳米TiO2或纳米Al2O3)、27种催化与渗透汽化双功能中空纤维复合膜。使用水动态接触角、机械强度、FTIR、SEM、EDX、XRD、TGA、渗透汽化分离乙酸乙酯塔顶粗酯、乙酸-乙醇酯化反应等方法表征了这27种催化与渗透汽化双功能中空纤维复合膜的结构和性能。实验结果表明:PFSA催化剂被成功地涂覆到催化与渗透汽化双功能中空纤维复合膜的外表面,且附着良好,纳米颗粒(SiO2、TiO2或Al2O3)为其提供了大的比表面积;双功能膜具有较好的亲水性能和机械性能;当催化剂涂膜液中含有2wt.% PFSA、3wt.% PVA和8wt.%纳米颗粒(SiO2、TiO2或Al2O3)(分别命名为DMS1、DMT1和DMA1)时,双功能中空纤维复合膜具有较好的分离性能和催化性能,分离乙酸乙酯塔顶粗酯时,渗透通量最高可达179 g/(m2·h),相对应的水对乙醇的分离选择性为95,无乙酸乙酯透过:相较于空白实验,加入双功能膜后,乙酸-乙醇酯化反应的时间显著缩短,100min就能达到空白反应400min时的转化率,约为40.0%(平衡转化率为66.7%,全回流);双功能膜具有较好的稳定性,乙酸-乙醇脂化反应24h前后的FTIR和SEM基本没有变化。优选出DMS1、DMT1和DMA1三种双功能中空纤维复合膜作为后续研究。
     随后,以优选的3种催化与渗透汽化双功能中空纤维膜DMS1、DMT1和DMA1作为精馏结构填料,上升蒸汽和下降液体均从双功能中空纤维膜的壳层流动,以异丙醇-水、乙醇-水为分离体系,考察了以双功能膜为结构填料时的精馏性能。实验结果表明:当使用双功能中空纤维膜作为精馏结构填料时,与传统结构填料相比,能在液泛线以上区域操作,传质单元高度显著降低;与文献报道的中空纤维膜作为结构填料相比(上升蒸汽走壳层,下降液体走管层),其有相似的结果;对于异丙醇-水体系,化质单元高度(HTU)可低至9cm,对于乙醇-水体系,HTU可低至3.6cm。证明使用双功能中空纤维膜作为填料是可行的,并为渗透汽化-反应精馏耦合过程提供了实验基础。
     最后,以优选的3种催化与渗透汽化双功能中空纤维膜DMS1、DMT1和DMA1作为反应精馏结构填料和催化剂,上升蒸汽和下降液体均从双功能中空纤维膜的壳层流动,以乙酸-乙醇酯化反应为体系,考察了反应精镏生产乙酸乙酯的工艺条件。实验结果表明:把催化剂涂敷在中空纤维膜的外面,并将其作为结构填料装填在精馏塔中,在确保良好的精馏性能的同时,中空纤维结构填料外表面的催化薄层和反应混合物可以大面积接触,缩短了扩散距离,确保了反应的高效性和选择性;当乙酸与乙醇摩尔比为4:1,油浴温度为145℃,装填双功能中空纤维膜为40根,回流比为2,双功能中空纤维膜为DMT1时,其反应精馏的操作条件最优,此时乙酸乙酯转化率可达97.3%,基产率可达86.8%。
Pervaporation membrane is the core of pervaporation process, the chemical property and physical structure of which determine the pervaporation separation efficiency to a great extent. Difunctional membrane coupling catalysis with pervaporation has good catalytic performance and even better separation performance over pervaporation membrane. Only a simple repetition of the methods of preparation pervaporation membrane is hard to prepare catalytic membrane with good performance. It must combine both preparation methods of membrane and catalyst together to make innovation. In this paper, perfluorosulfonic acid (PFSA) was used as catalyst to prepare difunctional hollow fiber composite membranes with two layers, catalyst layer and separation layer, by dip-coating method. The difunctional hollow fiber composite membranes with remarkable capabilities were chosen and used as packing in distillation, and the operation conditions of reactive distillation produce ethyl acetate were optimized when using difunctional hollow fiber as packing and catalyst. The conclusions were as follows:
     Firstly, three kinds of single-function pervaporation plate composite membranes, chitosan-sodium alginate/polyacrylonitrile (CS-SA/PAN), chitosan-sodium tripolyphosphate/polyacrylonitrile (CS-STPP/PAN) and glutaraldehyde-poly(vinyl alcohol)/polyacrylonitrile (GA-PVA/PAN), were prepared by dip-coating method using PAN ultra filtration membranes as support membranes, and were characterized by FTIR, SEM, EDX, swelling and dehydration ethyl acetate/water solution through pervaporation process. The results showed that the permeation fluxes of them were 348 g/(m2·h),340 g/(m2·h) and 168 g/(m2·h), and the corresponding separation factors were 7245,6268 and 9182, respectively, when dehydrating 97wt.% ethyl acetate aqueous solution at 40℃. The swelling degree, which represented the stabilization of membrane, could reach 51.0%, 37.4% and 23.7% in 97wt.% ethyl acetate aqueous solution, respectively. Considering the stabilization of membrane and the acetic acid-ethanol esterification reaction, GA-PVA/PAN single-function pervaporation plate composite membrane was chosen for further study since CS could dissolve in dilute acetic acid solution.
     Secondly, a surface-crosslinking reaction model was established to predict the impact of crosslinking agent concentration and surface-crosslinking reaction time on the morphology and the structure of membrane, and CS-STPP/PAN single-function pervaporation plate composite membrane was used to verify this model. The results showed that the surface-crosslinking reaction between CS and STPP on CS-STPP/PAN single-function pervaporation plate composite membrane reached the equilibrium state when reacted 15 min, agreeing well with the corresponding report of literature. The crosslinking ratio had an exponential relationship with surface-crosslinking reaction time and a linear relationship with crosslinking agent concentration. The expected ideal pervaporation composite membrane could be prepared through controlling crosslinking agent concentration and surface-crosslinking reaction time.
     Then, GA-PVA/PAN single-function pervaporation plate composite membrane was prepared as single-function pervaporation hollow fiber composite membrane and their capabilities were characterized. The results showed that 4 wt.% GA surface crosslinked PVA/PAN hollow fiber composite membrane had good capabilities with permeation flux 181 g/(m2 h), the corresponding separation factors of water to ethanol 203 and water to ethyl acetate 3953 when dehydrating top coarse ester (ethyl acetate 87.36wt.%, ethanol 3.73wt.% and water 8.91 wt.%) through pervaporation process. And then three series (nano SiO2, nano TiO2 or nano Al2O3),27 kinds of difunctional hollow fiber composite membranes with catalysis and pervaporation capabilities were prepared by dip-coating catalytic solution on 4 wt.% GA surface crosslinked PVA/PAN single-function hollow fiber composite membrane. The catalytic solution consisted of PFSA (used as catalyst), PVA (used as adhesion), and nano SiO2, nano TiO2 or nano Al2O3 (used as support). Their structures and performances were characterized through the water contact angle, mechanical strength, FTIR, SEM, EDX, XRD, TGA, dehydrating top coarse ester by pervaporation process and acetic acid-ethanol esterification reaction. The results showed that PFSA was successfully coated and adhered well by PVA on the outer surface of difunctional hollow fiber composite membrane, and nano SiO2, nano TiO2 or nano Al2O3 supplied a large amount of specific surface area for PFSA. The difunctional hollow fiber composite membranes had good hydrophilic and mechanical properties, and had remarkable separation performance and catalytic activity when the catalytic solution consisted of 2wt.% PFSA, 3wt.% PVA, and 8wt.% nano SiO2, nano TiO2 or nano Al2O3 (named as DMS1, DMT1 and DMA1, respectively). The permeation flux could reach 179 g/(m2 h), the corresponding separation factor of water to ethanol was 95 with no ethyl acetate permeating. Comparing with blank, the acetic acid-ethanol esterificatoin reaction time was shortened greatly when added difunctional hollow fiber composite membrane in the reaction feed solution as catalyst. The conversion at the reaction time 100min could reach that of 400min in blank, as high as 40.0%(the equilibrium conversion is 66.7%, total reflux). The FTIR and SEM had little change when acetic acid-ethanol esterification of 24h, indicating that the difunctional hollow fiber composite membrane had good stabilization. DMS1, DMT1 and DMA1 were chose for further study.
     Consequently, the optimized DMS1, DMT1 and DMA1 three kinds of difunctional hollow fiber composite membranes were used as structured packings in distillation. Both of vapor and liquid flowed on the shell side of the difunctional hollow fiber composite membranes. The distillation capabilities were characterized by isopropanol-water and ethanol-water systems. The results showed that, comparing with traditional structured packing, difunctional hollow fiber composite membrane structured packing could be operated successfully above the flooding limits and significantly reduced the height of transfer unit (HTU); ant it had the similar performances (despite both of vapor and liquid flowed on the shell side of the membrane) with the hollow fiber distillation reported in literatures (both liquid and vapor had their own channels). The HTU was only 9.0 cm for isopropanol-water system and 3.6 cm for ethanol-water system, representing higher separation efficiency. The results showed that it was feasible to use difunctional hollow fiber composite membrane as packing, and thus provided experiment basis for reactive distillation and pervaporation coupling process.
     Finally, the operation conditions of reactive distillation produce ethyl acetate were optimized using difunctional hollow fiber composite membrane as packing and catalyst as above. The results showed that the difunctional hollow fiber as distillation packing ensured good distillation characteristics, meanwhile, a large contact area between catalytic film and reaction mixture, combined with the short diffusion length, ensured a high overall efficiency and selectivity of the reaction. The optimal operating conditions were mole ratio of acetic acid to ethanol of 4, reboiler oil temperature of 145℃, fiber numbers of 40, reflux ratio of 2 and fiber types of nano TiO2 embedded difunctional hollow fiber membrane (named as DMT1). Meanwhile, the conversion of esterification could reach 97.3%, and the yield of ethyl acetate could reach 86.8%.
引文
[1]Mulder M.膜技术基本原理.北京:清华大学出版社.
    [2]陈翠仙,韩宾兵,Wickramasinghe著.渗透蒸发和蒸气渗透.化学工业出版社,2004
    [3]Jun S, Quan Y,Congjie G. Handbook of Membrane Technology.Beiing:Chemical Industry Press.2001,491-498
    [4]Binning C,James F. Now separate by membrane permeation.Petroleum Refiner.1958, 37:214-215
    [5]Huang R Y M 著. Pervaporation membrane separation processes. Elsevier Science Ltd,1991
    [6]Dutta B K, Ji W,Sikdar S K. Pervaporation:principles and applications.Separation and Purification Methods.1996,25(2):131-224
    [7]韩宾兵,李继定,陈翠仙.渗透汽化膜传递理理论研究的进展.水处理技术.2002,26(5):259-263
    [8]Mi L,Hwang S. Correlation of concentration polarization and hydrodynamic parameters in hollow fiber modules.Journal of Membrane Science.1999,159(1-2):143-165
    [9]Huang R, Shao P, Feng X, et al. Pervaporation separation of water/isopropanol mixture using sulfonated poly (ether ether ketone)(SPEEK) membranes:transport mechanism and separation performance.Journal of Membrane Science.2001,192(1-2):115-127
    [10]姜忠义,李多,彭福兵.渗透蒸发传质理论与模型(Ⅰ)穿膜传质模型.膜科学与技术.2003,23(2):37-41
    [11]Wijmans J,Baker R. The solution-diffusion model:a review.Journal of Membrane Science.1995,107(1-2):1-21
    [12]Heintz A,Stephan W. A generalized solution-diffusion model of the pervaporation process through composite membranes Part Ⅱ. Concentration polarization, coupled diffusion and the influence of the porous support layer.Journal of Membrane Science.1994,89(1-2): 153-169
    [13]Heintz A,Stephan W. A generalized solution-diffusion model of the pervaporation process through composite membranes Part Ⅰ. Prediction of mixture solubilities in the dense active layer using the UNIQUAC model.Journal of Membrane Science.1994,89(1-2): 143-151
    [14]Shi Y, Wang X,Chen G. Pervaporation characteristics and solution-diffusion behaviors through sodium alginate dense membrane.Journal of Applied Polymer Science. 1996,61(8):1387-1394
    [15]Zhao Y, Taylor J S,Chellam S. Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks.Journal of Membrane Science.2005,263(1-2): 38-46
    [16]Wijmans J. The role of permeant molar volume in the solution-diffusion model transport equations.Journal of Membrane Science.2004,237(1-2):39-50
    [17]Schaetzel P, Vauclair C, Nguyen Q, et al. A simplified solution-diffusion theory in pervaporation:the total solvent volume fraction model.Journal of Membrane Science.2004, 244(1-2):117-127
    [18]Mauviel G, Berthiaud J, Vallieres C, et al. Dense membrane permeation:From the limitations of the permeability concept back to the solution-diffusion model.Journal of Membrane Science.2005,266(1-2):62-67
    [19]Connell P,Dickson J. Modeling reverse osmosis separations with strong solute-membrane affinity at different temperatures using the finely porous model.Journal of Applied Polymer Science.1988,35(5):1129-1148
    [20]Mehdizadeh H,Dickson J. Theoretical modification of the finely porous model for reverse osmosis transport.Journal of Applied Polymer Science.1991,42(4):1143-1154
    [21]Bhattacharyya D,Williams M. Revere Osmosis:Theory.IN:Membrane Handbook. Van Nostrand Reinhold, New York.1992. p 269-280
    [22]Tremblay A. Finely porous models and radially averaged friction factors.Journal of Applied Polymer Science.1992,45(1):159-166
    [23]Okada T,Matsuura T. A new transport model for pervaporation.Journal of Membrane Science.1991,59(2):133-149
    [24]Kedem O. The role of coupling in pervaporation.Journal of Membrane Science. 1989,47(3):277-284
    [25]Blume I, Wijmans J,Baker R. The separation of dissolved organics from water by pervaporation.Journal of Membrane Science.1990,49(3):253-286
    [26]陈俸荣,陈洪钫.渗透蒸发均质膜在二元醇/水溶液中的溶胀平衡模型.化工学报.1996,47(4):466-473
    [27]Nam S,Lee Y. Pervaporation and properties of chitosan-poly (acrylic acid) complex membranes.Journal of Membrane Science.1997,135(2):161-171
    [28]Shieh J,Huang R. Chitosan/N-methylol nylon 6 blend membranes for the pervaporation separation of ethanol-water mixtures.Journal of Membrane Science.1998, 148(2):243-255
    [29]Kanti P, Srigowri K, Madhuri J, et al. Dehydration of ethanol through blend membranes of chitosan and sodium alginate by pervaporation.Separation and Purification Technology.2004,40(3):259-266
    [30]Lee Y, Nam S,Kim J. Pervaporation of water-ethanol through poly (vinyl alcohol)/chitosan blend membrane.Polymer Bulletin.1992,29(3):423-429
    [31]Luo G, Niang M,Schaetzel P. Pervaporation separation of ethyl tert-butyl ether and ethanol mixtures with a blended membrane.Journal of Membrane Science.1997,125(2): 237-244
    [32]Kurkuri M, Toti U,Aminabhavi T. Syntheses and characterization of blend membranes of sodium alginate and poly (vinyl alcohol) for the pervaporation separation of water+isopropanol mixtures.Journal of Applied Polymer Science.2002,86(14):3642-3651
    [33]Yeom C,Lee K. Characterization of sodium alginate and poly (vinyl alcohol) blend membranes in pervaporation separation.Journal of Applied Polymer Science.1998,67(5): 949-959
    [34]Toti U,Aminabhavi T. Pervaporation separation of water-isopropyl alcohol mixtures with blend membranes of sodium alginate and poly (acrylamide)-grafted guar gum.Journal of Applied Polymer Science.2002,85(9):2014-2024
    [35]Kittur A, Kulkarni S, Aralaguppi M, et al. Preparation and characterization of novel pervaporation membranes for the separation of water-isopropanol mixtures using chitosan and NaY zeolite.Journal of Membrane Science.2005,247(1-2):75-86
    [36]Wang Y, Fan S, Lee K, et al. Polyamide/SDS-clay hybrid nanocomposite membrane application to water-ethanol mixture pervaporation separation.Journal of Membrane Science. 2004,239(2):219-226
    [37]Kim K, Park S, So W, et al. Pervaporation separation of aqueous organic mixtures through sulfated zirconia-poly (vinyl alcohol) membrane.Journal of Applied Polymer Science. 2001,79(8):1450-1455
    [38]Chanachai A, Jiraratananon R, Uttapap D, et al. Pervaporation with chitosan/hydroxyethylcellulose (CS/HEC) blended membranes.Journal of Membrane Science. 2000,166(2):271-280
    [39]Ray S, Sawant S, Joshi J, et al. Methanol selective membranes for separation of methanol-ethylene glycol mixtures by pervaporation.Journal of Membrane Science.1999, 154(1):1-13
    [40]Teng M, Lee K, Liaw D, et al. Plasma deposition of acrylamide onto novel aromatic polyamide membrane for pervaporation.European Polymer Journal.2000,36(4):663-672
    [41]Chen J, Liu Q, Fang J, et al. Composite hybrid membrane of chitosan-silica in pervaporation separation of MeOH/DMC mixtures.Journal of colloid and interface science. 2007,316(2):580-588
    [42]Uragami T, Katayama T, Miyata T, et al. Dehydration of an Ethanol/Water Azeotrope by Novel Organic-Inorganic Hybrid Membranes Based on Quaternized Chitosan and Tetraethoxysilane.Biomacromolecules.2004,5(4):1567-1574
    [43]Liu Y, Hsu C, Su Y, et al. Chitosan-Silica Complex Membranes from Sulfonic Acid Functionalized Silica Nanoparticles for Pervaporation Dehydration of Ethanol-Water Solutions.Biomacromolecules.2005,6(1):368-373
    [44]Ohshima T, Matsumoto M, Miyata T, et al. Organic-Inorganic Hybrid Membranes for Removal of Benzene from an Aqueous Solution by Pervaporation.Macromolecular Chemistry and Physics.2005,206(4):473-483
    [45]Ohshima T, Matsumoto M, Miyata T, et al. Structural Design of P (BMA-co-VTES)/TEOS Hybrid Membranes for Removal of Benzene from Water by Pervaporation.Macromolecular Chemistry and Physics.2005,206(16):1638-1647
    [46]Yaglioglu B, Huang Y J, Yeom H Y, et al. A study of amorphous and crystalline phases in In2O3-10 wt.% ZnO thin films deposited by DC magnetron sputtering.Thin Solid Films.2006,496(1):89-94
    [47]Lyons T J, Nersissian A, Huang H, et al. The metal binding properties of the zinc site of yeast copper-zinc superoxide dismutase:implications for amyotrophic lateral sclerosis.Journal of Biological Inorganic Chemistry.2000,5(2):189-203
    [48]王建宇,徐又,朱宝库.高分子催化膜及膜反应器研究进展.内蒙古公路与运输.2010,(6):82-88
    [49]Marcano J G S, Tsotsis T T,Wiley J 著. Catalytic membranes and membrane reactors. Wiley Online Library,2002
    [50]罗士平,陈勇,装兆蓉, et al.新形态全氟碳酸树脂催化剂研究进展.化学研究与应用.2005,17(1):15-18
    [51]陈凯平,张立新.废弃离子交换膜与全氟磺酸树脂固体超强酸催化剂.氯碱工业.2002,(9):20-24
    [52]Smit M A. Ocampo A L, Espinosa-Medina M A, et al. A modified Nafion membrane with in situ polymerized polypyrrole for the direct methanol fuel cell.Journal of Power Sources.2003,124(1):59-64
    [53]胡霞,何小瑜,李志永.全氟磺酸树脂的性能和应用.化工生产与技术.2004,11(4):12-13
    [54]Gelbard G. Organic synthesis by catalysis with ion-exchange resins.Industrial & engineering chemistry research.2005,44(23):8468-8498
    [55]Torok B, Kiricsi I, Molnar A, et al. Acidity and catalytic activity of a nafion-H/silica nanocomposite catalyst compared with a silica-supported Nation sample.Journal of Catalysis. 2000,193(1):132-138
    [56]Harmer M A, Farneth W E,Sun Q. High surface area Nafion resin/silica nanocomposites:A new class of solid acid catalyst. Journal of the American Chemical Society. 1996,118(33):7708-7715
    [57]Lipnizki F, Field R W,Ten P-K. Pervaporation-based hybrid process:a review of process design, applications and economics.Journal of Membrane Science.1999,153(2): 183-210
    [58]Van Hoof V, Van den Abeele L, Buekenhoudt A, et al. Economic comparison between azeotropic distillation and different hybrid systems combining distillation with pervaporation for the dehydration of isopropanol.Separation and Purification Technology. 2004,37(1):33-49
    [59]H mmerich U,Rautenbach R. Design and optimization of combined pervaporation/distillation processes for the production of MTBE.Journal of Membrane Science.1998,146(1):53-64
    [60]Del Pozo Gomez M, Klein A, Repke J, et al. A new energy-integrated pervaporation distillation approach.Desalination.2008,224(1-3):28-33
    [61]Lu Y, Zhang L, Chen H, et al. Hybrid process of distillation side-connected with pervaporation for separation of methanol/MTBE/C4 mixture.Desalination.2002,149(1-3): 81-87
    [62]O'Brien D, Roth L,McAloon A. Ethanol production by continuous fermentation-pervaporation:a preliminary economic analysis.Journal of Membrane Science. 2000,166(1):105-111
    [63]Tusel G,Br"1schke H. Use of pervaporation systems in the chemical industry.Desalination.1985,53(1-3):327-338
    [64]朱长乐,蔡邦肖.基于渗透汽化膜过程的集成过程(Ⅰ).水处理技术.2000,26(4):194-198
    [65]Sanz M,Gmehling J. Study of the dehydration of isopropanol by a pervaporation-based hybrid process.Chemical Engineering & Technology.2006,29(4): 473-480
    [66]Sommer S,Melin T. Design and optimization of hybrid separation processes for the dehydration of 2-propanol and other organics. Industrial and Engineering Chemistry Research. 2004,43(17):5248-5259
    [67]Chen M, Markiewicz G,Venugopal K. Development of membrane pervaporation TRIMTM process for methanol recovery from CH3OH/MTBE/C4 mixtures. AIChE Journal. 1989,85,82-88
    [68]Koczka K, Manczinger J, Mizsey P, et al. Novel hybrid separation processes based on pervaporation for THF recovery.Chemical Engineering and Processing.2007,46(3): 239-246
    [69]Yang M C,Cussler E. Designing hollow-fiber contactors.AIChE Journal.1986, 32(11):1910-1916
    [70]Zhang G,Cussler E. Distillation in hollow fibers.AIChE Journal.2003,49(9): 2344-2351
    [71]Zhang G,Cussler E. Hollow fibers as structured distillation packing.Journal of Membrane Science.2003,215(1-2):185-193
    [72]Chung J, DeRocher J,Cussler E. Distillation with nanoporous or coated hollow fibers.Journal of Membrane Science.2005,257(1-2):3-10
    [73]Yang D, Barbero R, Devlin D, et al. Hollow fibers as structured packing for olefin/paraffin separations.Journal of Membrane Science.2006,279(1-2):61-69
    [74]Zhang G, Lin L, Meng Q, et al. Distillation of methanol-water solution in hollow fibers.Separation and Purification Technology.2007,56(2):143-149
    [75]Koonaphapdeelert S, Tan X, Wu Z, et al. Solvent distillation by ceramic hollow fibre membrane contactors.Journal of Membrane Science.2008,314(1-2):58-66
    [76]张国亮,孙海敏,陈银飞,et al.精镏分离中的新型中空纤维结构填料及其传递现象.高校化学工程学报.2008,22(2):223-228
    [77]杨三八,杨伯伦.反应精馏与渗透蒸发膜分离耦合法合成乙基叔丁基醚.化工学报.2001,52(11):950-956
    [78]Friedl A, Qureshi N,Maddox I. Continuous acetone-butanol-ethanol (ABE) fermentation using immobilized cells of Clostridium acctobutylicum in a packed bed reactor and integration with product removal by pervaporation.Biotechnology and bioengineering. 1991,38(5):518-527
    [79]Waldburger R M,Widmer F. Membrane reactors in chemical production processes and the application to the pervaporation-assisted esterification.Chemical Engineering & Technology.1996,19(2):117-126
    [80]阎建民.渗透汽化脱水技术及其在酯化工业中的应用.现代化工.2001,21(8):12-15
    [81]Dams A,Krug J. Pervaporation-aided esterification "Calternatives in plant extension for an existing chemical process.1991,338-348
    [82]Szitkai Z, Lelkes Z, Rev E, el al. Optimization of hybrid ethanol dehydration systems.Chemical Engineering and Processing.2002,41(7):631-646
    [83]Chen R H, Chen W Y, Wang S T, et al. Changes in the Mark-Houwink hydrodynamic volume of chitosan molecules in solutions of different organic acids, at different temperatures and ionic strengths.Carbohydrate Polymers.2009,78(4):902-907
    [84]Boontha S, Junginger H E, Waranuch N, et al. Formation of particles prepared using ehitosan and their trimethyl chitosan derivatives for oral vaccine delivery:Effect of molecular weight and degree of quaternization.Songklanakarin Journal of Science Technology. 2010,32(4):363-371
    [85]Lee K Y, Park W H,Ha W S. Polyelectrolyte complexes of sodium alginate with chitosan or its derivatives for microcapsules.Journal of Applied Polymer Science.1997,63(4): 425-432
    [86]Gonzalez-Rodri'guez M, Holgado M, Sanchez-Lafuente C, el al. Alginate/chitosan particulate systems for sodium diclofenac release.International journal of pharmaceutics.2002, 232(1-2):225-234
    [87]Wang L, Shelton R, Cooper P, et al. Evaluation of sodium alginate for bone marrow cell tissue engineering.Biomaterials.2003,24(20):3475-3481
    [88]Finch C A著.Polyvinyl alcohol:properties and applications. Wiley New York, 1973
    [89]Liang J, Huang Y, Zhang L, et al. Molecular-Level Dispersion of Graphene into Poly (vinyl alcohol) and Effective Reinforcement of their Nanocomposites.Advanced Functional Materials.2009,19(14):2297-2302
    [90]Yang E, Qin X,Wang S. Electrospun crosslinked polyvinyl alcohol membrane.Materials Letters.2008,62(20):3555-3557
    [91]Svang-Ariyaskul A, Huang R, Douglas P, et al. Blended chitosan and polyvinyl alcohol membranes for the pervaporation dehydration of isopropanol Journal of Membrane Science.2006,280(1-2):815-823
    [92]Won W, Feng X,Lawless D. Separation of dimethyl carbonate/methanol/water mixtures by pervaporation using crosslinked chitosan membranes.Separation and Purification Technology.2003,31(2):129-140
    [93]de Moura M R, Aouada F A, Avena-Bustillos R J, et al. Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles.Journal of Food Engineering.2009,92(4):448-453
    [94]Musale D A,Kumar A. Effects of surface crosslinking on sieving characteristics of chitosan/poly (acrylonitrile) composite nanofiltration membranes.Separation and Purification Technology.2000,21(1-2):27-37
    [95]Hsieh F M, Huang C, Lin T F, et al. Study of sodium tripolyphosphate-crosslinked chitosan beads entrapped with Pseudomonas putida for phenol degradation.Process Biochemistry.2008,43(1):83-92
    [96]Salt Y, Salt I,Keleser S. Pervaporation separation of ethylacetate-water mixtures through a crosslinked poly (vinylalcohol) membrane.Vacuum.2005,79(3-4):215-220
    [97]Zhou J, Ma Y, Ren L, et al. Preparation and characterization of surface crosslinked TPS/PVA blend films.Carbohydrate Polymers.2009,76(4):632-638
    [98]Kusumocahyo S P, Kanamori T, Iwatsubo T, et al. Development of polyion complex membranes based on cellulose acetate modified by oxygen plasma treatment for pervaporation.Journal of Membrane Science.2002,208(1-2):223-231
    [99]Zhao Q, Qian J W, An Q F, et al. A facile route for fabricating novel polyelectrolyte complex membrane with high pervaporation performance in isopropanol dehydration.Journal of Membrane Science.2008,320(1):8-12
    [100]王许云,张林,陈欢林.膜蒸馏技术最新研究现状及进展.化工进展.2007,26(2):168-172
    [101]Andrievski R. Size effects in properties of nanomaterials.Scripta Materialia(USA). 2000,44(8):1621-1624
    [102]彭跃莲,刘燕,钱英.纳米SiO2对聚偏氟乙烯超滤膜的影响研究.膜科学与技术.2006,26(1):31-34
    [103]Clarizia G, Algieri C,Drioli E. Filler-polymer combination:a route to modify gas transport properties of a polymeric membrane.Polymer.2004,45(16):5671-5681
    [104]Chiang P C, Whang W T, Tsai M H, et al. Physical and mechanical properties of polyimide/titania hybrid films.Thin Solid Films.2004,447-448(30):359-364
    [105]Taniguchi A,Cakmak M. The suppression of strain induced crystallization in PET through sub micron TiO2 particle incorporation.Polymer.2004,45(19):6647-6654
    [106]Yang Y, Zhang H, Wang P, et al. The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane.Journal of Membrane Science.2007, 288(1-2):231-238
    [107]Yan L, Li Y S,Xiang C B. Preparation of poly (vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research.Polymer.2005,46(18):7701-7706
    [108]Yu S, Zuo X, Bao R, et al. Effect of SiO2 nanoparticle addition on the characteristics of a new organic-inorganic hybrid membrane.Polymer.2009,50(2):553-559
    [109]Wu C, Xu T, Gong M, et al. Synthesis and characterizations of new negatively charged organic-inorganic hybrid materials:Part Ⅱ. Membrane preparation and characterizations.Journal of Membrane Science.2005,247(1-2):111-118
    [110]Zuo X, Yu S, Xu X, et al. Preparation of organic-inorganic hybrid cation-exchange membranes via blending method and their electrochemical characterization.Journal of Membrane Science.2009,328(1-2):23-30
    [111]Cong Y, Zhang J, Chen F, et al. Preparation, photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and iron (Ⅲ).The Journal of Physical Chemistry C.2007,111(28):10618-10623
    [112]Khataee A, Vatanpour V,Amani Ghadim A. Decolorization of CI Acid Blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes:A comparative study.Journal of hazardous materials.2009,161(2-3):1225-1233
    [113]Yan L, Li Y S, Xiang C B, et al. Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance.Journal of Membrane Science.2006,276(1-2): 162-167
    [114]Skog P, Soroka I, Johansson A, et al. Guiding of highly charged ions through Al2O3 nano-capillaries.Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms.2007,258(1):145-149
    [115]Rao M, Liu J, Li W, el al. Polyethylene-supported poly (acrylonitrile-co-methyl methacrylate)nano-Al2O3 microporous composite polymer electrolyte for lithium ion battery.Journal of Solid State Electrochemistry.2010,14(2):255-261
    [116]Yuan H-K, Xu Z-L, Shi J-H, et al. Perfluorosulfonic acid-Tetraethoxysilane/polyacrylonitrile (PFSA-TEOS/PAN) hollow fiber composite membranes prepared for pervaporation dehydration of ethyl acetate-water solutions.Journal of Applied Polymer Science.2008,109(6):4025-4035
    [117]Yeom C K,Lee K H. Pervaporation separation of water-acetic acid mixtures through poly (vinyl alcohol) membranes crosslinked with glutaraldehyde.Journal of Membrane Science.1996,109(2):257-265
    [118]Hongyun L. Study on the Actalation of Polyvinyl Alcohol in Aqueous Ethanol Solution.China Adhesives.1994,2:5
    [119]Dezheng L. Preparation of water resistant polyvinyl acetate emulsion adhesive.Technology On Adhesion & Sealing.2001,4:4
    [120]Mansur H S, Sadahira C M, Souza A N, et al. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde.Materials Science and Engineering:C.2008,28(4):539-548
    [121]Tsai H, Li L, Lee K, et al. Effect of surfactant addition on the morphology and pervaporation performance of asymmetric polysulfone membranes.Journal of Membrane Science.2000,176(1):97-103
    [122]Zhang X H, Liu Q L, Xiong Y, et al. Pervaporation dehydration of ethyl acetate/ethanol/water azeotrope using chitosan/poly (vinyl pyrrolidone) blend membranes.Journal of Membrane Science.2009,327(1-2):274-280
    [123]Han B, Li J, Chen C, et al. Effects of degree of formaldehyde acetal treatment and maleic acid crosslinking on solubility and diffusivity of water in PVA membranes.Chemical Engineering Research and Design.2003,81(10):1385-1392
    [124]Tian X, Zhu B,Xu Y. P (VDF-co-HFP) membrane for recovery of aroma compounds from aqueous solutions by pervaporation::I. Ethyl acetate/water system.Journal of Membrane Science.2005,248(1-2):109-117
    [125]Lang W Z, Xu Z L, Yang H, et al. Preparation and characterization of PVDF-PFSA blend hollow fiber UF membrane.Journal of Membrane Science.2007,288(1-2):123-131
    [126]Heitner-Wirguin C. Recent advances in perfluorinated ionomer membranes: structure, properties and applications.Journal of Membrane Science.1996,120(1):1-33
    [127]Gruger A, Regis A, Schmatko T, et al. Nanostructure of Nafion(?) membranes at different states of hydration:An IR and Raman study.Vibrational Spectroscopy.2001,26(2): 215-225
    [128]Choi B G, Park H, Im H S, et al. Influence of oxidation state of polyaniline on physicochemical and transport properties of Nafion/polyaniline composite membrane for DMFC.Journal of Membrane Science.2008,324(1-2):102-110
    [129]Li J F, Xu Z L, Yang H, et al. Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane.Applied Surface Science.2009, 255(9):4725-4732
    [130]Zhu Y, Zhang L, Yao W, et al. The chemical states and properties of doped TiO2 film photocatalyst prepared using the Sol-Gel method with TiCl4 as a precursor.Applied Surface Science.2000,158(1-2):32-37
    [131]Chang F W, Yu H Y, Selva Roselin L, et al. Production of hydrogen via partial oxidation of methanol over Au/TiO2 catalysts.Applied catalysis A:general.2005,290(1-2): 138-147
    [132]Peng T, Zhao D, Song H, et al. Preparation of lanthana-doped titania nanoparticles with anatase mesoporous walls and high photocatalytic activity. Journal of Molecular Catalysis A:Chemical.2005,238(1-2):119-126
    [133]Liu G, Zhang X, Xu Y, et al. The preparation of Zn2+-doped TiO2 nanoparticles by sol-gel and solid phase reaction methods respectively and their photocatalytic activities.Chemosphere.2005,59(9):1367-1371
    [134]Mohajeri N. TEM-XRD analysis of PdO particles on TiO2 support for chemochromic detection of hydrogen.Sensors and Actuators B:Chemical.2010,144(1): 208-214
    [135]Dubey S,Yadav A. XRD, ESCA and CV investigations of A12O3 SiO2 composite thin films synthesized by high dose oxygen ion implantation.Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms.1998, 143(4):493-498
    [136]Samms S, Wasmus S,Savinell R. Thermal stability of Nafion(?) in simulated fuel cell environments. Journal of the Electrochemical Society.1996,143(5):1498-1504
    [137]Su L, Pei S, Li L, et al. Preparation of polysiloxane/perfluorosulfonic acid nanocomposite membranes in supercritical carbon dioxide system for direct methanol fuel cell.International Journal of Hydrogen Energy.2009,34(16):6892-6901
    [138]Brunjes A S,Bogart M J P. Vapor-Liquid Equilibria for Commercially Important Systems of Organic Solvents:The Binary Systems Ethanol-n-Butanol, Acetone-Water and Isopropanol-Water.Industrial & Engineering Chemistry.1943,35(2):255-260
    [139]Arce A, Martinez-Ageitos J,Soto A. VLE for water+ethanol+1-octanol mixtures. Experimental measurements and correlations.Fluid phase equilibria.1996,122(1-2):117-129
    [140]Kister H Z著. Distillation design. McGraw-Hill New York,1992
    [141]Cussler E L著.Diffusion:Mass transfer in fluid systems. Cambridge Univ Pr, 1997
    [142]Ma X H, Xu Z L, Liu Y, et al. Preparation and characterization of PFSA-PVA-SiO2/PVA/PAN difunctional hollow fiber composite membranes.Journal of Membrane Science.2010,360(1-2):315-322
    [143]时钧.化学工程手岫.1996,
    [144]Stankiewicz A,Moulijn J A. Process intensification.Industrial & engineering chemistry research.2002,41(8):1920-1924
    [145]Smith R 著. Chemical process design and integration. Wiley New York,2005
    [146]Gogate P R. Cavitational reactors for process intensification of chemical processing applications:a critical review.Chemical Engineering and Processing:Process Intensification.2008,47(4):515-527
    [147]Dirk-Faitakis C B, An W, Lin T B, et al. Catalytic distillation for simultaneous hydrolysis of methyl acetate and etherification of methanol.Chemical Engineering and Processing:Process Intensification.2009,48(5):1080-1087
    [148]Lei Z, Yang Y, Li Q, et al. Catalytic distillation for the synthesis of tert-butyl alcohol with structured catalytic packing.Catalysis Today.2009,147, Supplement(0): S352-S356
    [149]He J, Xu B, Zhang W, et al. Experimental study and process simulation of n-butyl acetate produced by transesterification in a catalytic distillation column.Chemical Engineering and Processing:Process Intensification.2010,49(1):132-137
    [150]Bhatia S, Mohamed A R, Ahmad A L, et al. Production of isopropyl palmitate in a catalytic distillation column:Comparison between experimental and simulation studies.Computers & Chemical Engineering.2007,31(10):1187-1198
    [151]Rosales-Quintero A, Vargas-Villamil F D,Arcc-Medina E. Sensitivity analysis of a light gas oil deep hydrodesulfurization process via catalytic distillation.Catalysis Today.2008, 130(2-4):509-518
    [152]Xu Y, Zheng Y, Ng F T T, et al. A three-phase nonequilibrium dynamic model for catalytic distillation.Chemical Engineering Science.2005,60(20):5637-5647
    [153]Oudshoorn O L, Janissen M, van Kooten W E J, et al. A novel structured catalyst packing for catalytic distillation of ETBE.Chemical Engineering Science.1999,54(10): 1413-1418
    [154]Forbes D C,Weaver K J. Br(?)nsted acidic ionic liquids:The dependence on water of the Fischer esterification of acetic acid and ethanol.Journal of Molecular Catalysis A: Chemical.2004,214(1):129-132
    [155]Zhang Z, Wu W, Han B, et al. Phase separation of the reaction system induced by CO2 and conversion enhancement for the esterification of acetic acid with ethanol in ionic liquid.The Journal of Physical Chemistry B.2005,109(33):16176-16179
    [156]Tang Y T, Chen Y W, Huang H P, et al. Design of reactive distillations for acetic acid esterification.AIChE Journal.2005,51(6):1683-1699
    [157]de la Iglesia O, Mallada R, Menendez M, et al. Continuous zeolite membrane reactor for esterification of ethanol and acetic acid.Chemical Engineering Journal.2007, 131(1-3):35-39
    [158]Gonzalez J C,James R. Preparation of tertiary amyl alcohol in a reactive distillation column.1. Reaction kinetics, chemical equilibrium, and mass-transfer issues.Industrial & engineering chemistry research.1997,36(9):3833-3844
    [159]Kolodziej A, Jaroszynski M, Hoffmann A, et al. Determination of catalytic packing characteristics for reactive distillation.Catalysis Today.2001,69(1-4):75-85
    [160]Noeres C, Kenig E,Gorak A. Modelling of reactive separation processes:reactive absorption and reactive distillation.Chemical Engineering and Processing.2003,42(3): 157-178
    [161]Tuchlenski A, Beckmann A, Reusch D, et al. Reactive distillation-industrial applications, process design & scale-up.Chemical Engineering Science.2001,56(2):387-394

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700