梯级水库对流域出口水沙的累积影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流域梯级开发与河流生态环境之间的矛盾已成为目前流域治理中迫切需要解决的重大问题,为了实现人水和谐,保持河流健康,对梯级水库的生态环境累积影响进行深入系统的研究具有重要的理论和实践意义。
     我国20世纪下半叶水资源开发的环境影响评价,重点针对单个建设项目进行,研究单个水库对生态环境的影响较多,具有时空局限性,从全流域生态系统完整性的角度分析其叠加产生的累积影响较少,而且理论研究和方法体系也不够完善。
     水文、泥沙是河流生态系统中两大生境要素,要研究梯级水库的生态环境累积影响,就要从其中最基本的要素水沙研究起,进而扩展到生态系统的累积影响。本文就是根据这一思路,从理论上探讨了梯级水库对水沙的累积影响,进而定性的分析了水沙变化后河流生态系统的适应性响应。
    
     文中主要讨论了以下几个方面的内容:
     首先,为了深入研究流域梯级水库对水沙累积影响的过程和机理,定量的寻求梯级水库建立后水沙变化的规律,提出了流域水沙模拟的新思路和研究框架。从流域宏观角度出发,以梯级水库为主体,以水沙运移为主线,通过多方法联合运用以及多模型集成的途径,将降雨径流模型、水库调度模型、河道水沙模型耦合,建立了流域综合模型。
     其次,在分析梯级水库对流域生态环境影响的基础上,对水文流量、造床流量、泥沙的累积影响进行了深入的理论总结与分析。针对梯级水库修建后水文特征的变化,提出了一个表征梯级水库对流量累积影响程度的物理量,即均化系数,并给出了其计算方法;为了计算梯级水库拦蓄泥沙的程度,提出了拦沙系数的概念和计算方法。
     然后,采用金沙江华弹至屏山水文站之间的水文资料验证了流域综合模型,计算结果与实测资料符合较好,利用此模型分析了金沙江下游梯级水库建设后对水沙的累积影响。
     最后,阐明了河流生态系统及其子系统的内涵,并分析了河流生态系统的特点。流量均化、泥沙拦截使河流的水质产生了相应的变化,河流生态系统的结构与功能发生了适应性的响应,破坏了生物原有的生存、繁殖条件,致使外来物种入侵,生物的多样性降低。在分析河流生态系统变化的基础上,探讨了维持河流健康的对策。
The conflict between basin cascade development and river ecological environment has become the biggest problem that should be urgently resolved in watershed harnessing at present. In order to achieve river’s harmonization with humans, and to keep river health, the cumulative effects of cascade reservoirs on ecosystem and environment should be profoundly studied, which will be very important on theory and application.
     The water resources development focused on assessing individual construction project in the second half period of 20th century in China. It is more to research on effects of individual reservoir on ecological environment, which has space time limitation, whereas it is rare to analyze the cumulative effects of cascade reservoirs from perspective of watershed ecosystem integrality. Furthermore, there is something lacking in theoretical research and methods system.
     Hydrology and sediment are two important habitat factors in river ecosystems. It should study from the basic factors: hydrology and sediment, and then extend to ecosystem. Based on this research guideline, the paper preliminary discusses the cumulative effects of cascade reservoirs on hydrology and sediment in theory, and then qualitatively analyzes adaptable response of river ecosystem due to the changes in flow and sediment regimes.
     The key issues discussed in this paper are shown as follows:
     Firstly, new approach and framework modeling watershed flow and sediment are given in order to profoundly study the cumulative effects process and mechanism of cascade reservoirs, and to quantitative seek the change law of flow and sediment. Comprehensive watershed model, including rainfall-runoff model, reservoir operation model and fluvial sediment transportation model has been developed through integrating multi-methods and multi-models from whole catchment’s aspect.
     Secondly, on the basis of analyzing cumulative effects on ecosystem and environment, the cumulative effects on downstream flow, bed forming discharge and sediment are deeply analyzed. As to the change of hydrological behavior, averaging coefficient, which is an important physical measure of cumulative effect degree, is defined and the method for calculation is provided. Sediment trapping coefficient is also defined and the method for calculation is provided to compute tapping efficiency of cascade reservoirs.
     Thirdly, the developed comprehensive watershed model was applied for simulating the runoff distribution and sediment production of the region from gauging station Huatan to Pingshan. The errors between simulated and observed results were acceptable. The developed comprehensive watershed model was also applied to analyze cumulative effects of cascade reservoirs on downstream flow and sediment in lower Jinshajiang.
     Finally, the concept and connotation of river ecosystem and its subsystems are depicted, and its features are also analyzed. The regulation of water quality is responded to flow variability and sediment trapping. It has become increasingly clear that flow disturbance has been accompanied by major changes in structure of biotic communities, such as alien species invading, biodiversity shrinking, and area of organisms spawning destroying. The special countermeasures are bought forward to maintain the sustainable development of rive health.
引文
[1] 禹雪中. 大坝与生态:对立还是协调[J]. 百科知识, 2005, (4): 32-34.
    [2] 程根伟, 麻泽龙, 范继辉. 西南江河梯级水电开发对河流水环境的影响及对策[J]. 中国科学院院刊, 2004, 19(6): 433-437.
    [3] 耿福明, 薛联青, 陆桂华. 基于复合生态系统的流域梯级开发累积环境影响识别[J]. 水资源与水工程学报, 2006, 17(1): 30-32.
    [4] Graf William L. Dam nation: A geographic census of American dams and their large-scale hydrologic impacts[J]. Water Resources Research, 1999, 35(4): 1305-1311.
    [5] 中國大百科全書智慧藏[M]. 台灣:中國大百科全書出版社, 2003.
    [6] 刘艳平, 周端庄. 法国罗纳河开发的一些特点和经验[J]. 水利水电快报, 1993, (13): 21-23.
    [7] 田树棠. 奥地利多瑙河梯级电站开发特点[J]. 陕西水力发电, 1994, 10(2): 55-61.
    [8] 潘春国, 王晓波, 孙向红. 流域综合发展及梯级电站经济运行[J]. 东北电力技术, 2002, 23(1): 18-22.
    [9] 龚一. 流域梯级滚动综合开发的实践与探索[J]. 湖北水力发电, 1996, (4): 19-23.
    [10] Canter Larry W., Kamath J. Questionnaire checklist for cumulative impacts[J]. Environmental Impact Assessment Review, 1995, 15(4): 311-339.
    [11] 陆玉书. 环境影响评价[M]. 北京: 高等教育出版社, 2001.
    [12] C. Cocklin S. Parker, Hay J. Notes on cumulative environmental change I: concepts and issues[J]. Journal of Environmental Management, 1992, 35(1): 31-49.
    [13] 毛文锋, 吴仁海. 可持续发展与累积影响评价[J]. 环境导报, 1997, (5): 1-2.
    [14] 毛文锋, 吴仁海. 建议在我国开展累积影响评价的理论与实践研究[J]. 环境科学研究, 1998, 11(5): 8-11.
    [15] Cada GF, Hunsaker CT. Cumulative impacts of hydropower development: Reaching a watershed in impact assessment[J]. ENVIRON. PROFESS., 1990, 12(1): 2-8.
    [16] Cooper T. A., Canter L. W. Documentation of cumulative impacts in environmental impact statements[J]. Environmental Impact Assessment Review, 1997, 17(6): 385-411.
    [17] Reid Leslie M. Cumulative Watershed Effects: Caspar Creek and Beyond[R]. Ukiah California: 1998.
    [18] Cooper Lourdes M., Sheate William R. Cumulative effects assessment: A review of UK environmental impact statements[J]. Environmental Impact Assessment Review, 2002, 22(4): 415-439.
    [19] Brismar Anna. Attention to impact pathways in EISs of large dam projects[J]. Environmental Impact Assessment Review, 2004, 24(1): 59-87.
    [20] Dube Monique G. Cumulative effect assessment in Canada: a regional framework for aquatic ecosystems[J]. 2003, 23(6): 723-745.
    [21] 毛文锋, 吴仁海. 地理信息系统在累积影响评价中的应用[J]. 环境科学进展, 1998, 6(6): 61-66.
    [22] 林逢春, 陆雍森. 累积影响监测系统初步设计[J]. 环境监测管理与技术, 2000, 12(4): 6-9.
    [23] 杨凯, 林健枝. 累积影响评价:中国内地与香港的问题与实践探讨[J]. 环境科学, 2001, 22(1): 120-125.
    [24] 吴贻名, 张礼兵, 万飙. 系统动力学在累积环境影响评价中的应用研究[J]. 武汉水利电力大学学报, 2000, 33(1): 70-73.
    [25] Williams G. P., Wolman M. G. Downstream effects of dams on alluvial rivers[J]. U.S. Geological Survey Professional Paper, 1984: 83.
    [26] Higgs G., Petts G. Hydrological Changes and the River Regulation in the UK[J]. Regulated Rivers Research and Management, 1988, 2(3): 349-368.
    [27] Brandt S. Anders. Classification of Geomorphological Effects Downstream of Dams[J]. Catena, 2000, (40): 375-401.
    [28] Nicklow John W., Bringer John A. Optimal Control of Sedimentation in Multi-Reservoir River Systems Using Genetic Algorithms[A]. World Water and Environmental Resources Congress[C]. Florida USA: 2001.
    [29] Grams Paul E., Schmidt John C. Streamflow Regulation and Multi-level Flood Plain Formation: Channel Narrowing on the Aggrading Green River in the Eastern Uinta Mountains, Colorado and Utah[J]. Geomorphology, 2002, 44(3):337-360.
    [30] Grant Gordon E., Schmidt John C., Lewis Sarah L. A Geological Framework for Interpreting Downstream Effects of Dams on Rivers[J]. Water Science and Application, 2003, (7): 209-225.
    [31] Fassnacht Heidi, McClure Ellen M. Downstream Effects of the Pelton-Round Butte Hydroelectric Project on Bedload Transport, Channel Morphology, and Channel-Bed Texture, Lower Deschutes River, Oregon[J]. 2003: 175-207.
    [32] Woo H., Choil S. -U, Yoon B. Downstream Effect of Dam on River Morphology and Sandbar Vegetation- A Case Study in the Hwang River[A]. ICOLD 72nd Annual Meeting: Symposium on Environmental Considerations for Sustainable Dam Projects[C]. Seoul South Korea: 2004.
    [33] John W. Nicklow Larry W. Mays. Multi-reservoi System Management for Sedimentation Control[J]. http://www.iahr.org/membersonly/grazproceedings99/doc/000/000/423.htm.
    [34] 石国钰, 陈显维. 长江上游已建水库群拦沙对三峡水库入库站沙量影响的探讨[J]. 人民长江, 1992, 23(5): 23-28.
    [35] 黄煜龄, 黄悦. 长江上游干支流修建水库三峡淤积影响初步分析[J]. 人民长江, 1992, 23(11): 37-41.
    [36] 李安中. 大型水利枢纽蓄水后不同时期对下游河床变化的影响[J]. 水利学报, 1999, (3): 38-43.
    [37] 张信宝, 文安邦. 长江上游干流和支流河流泥沙近期变化及其原因[J]. 水利学报, 2002, (4): 56-59.
    [38] 谭建, 何贤佩. 溪洛渡水库拦沙及其对下游的影响研究[J]. 水电站设计, 2003, 19(2): 60-63.
    [39] 潘鸿雷, 王倩. 水库修建对黄河水沙问题的负面影响[J]. 水土保持通报, 2003, 23(2): 73-76.
    [40] 任红俊, 许大同. 枯水时段万家寨水库对下游河道的调节作用[J]. 电力学报, 2004, 19(3): 205-207.
    [41] 宁磊, 仲志余. 三峡水库2003年蓄水对长江中下游水情影响分析[J]. 人民长江, 2004, 35(12): 9-9.
    [42] 陈进, 黄薇. 梯级水库对长江水沙过程影响初探[J]. 长江流域资源与环境, 2005, 14(6): 786-791.
    [43] 薛联青. 流域水电梯级开发环境影响成本辨识及其动态评估理论[博士]. 南京: 河海大学, 2002.
    [44] 方子云, 邹家祥, 吴贻名. 环境水利学[M]. 北京: 中国环境科学出版社, 1994.
    [45] 曹永强, 倪广恒, 胡和平. 水利水电工程建设对生态环境的影响分析[J]. 人民黄河, 2005, 27(1): 56-58.
    [46] 刘家宏. 黄河数字流域模型[博士]. 北京: 清华大学, 2005.
    [47] Fedra K., Jamieson D. G. The 'WaterWare' decision-support system for river-basin planning. 2. Planning capability[J]. Journal of Hydrology, 1996, (177): 177-198.
    [48] Jamieson D. G., Fedra K. The 'WaterWare' decision-support system for river-basin planning. 1. Conceptual design[J]. Journal of Hydrology, 1996, (177): 163-175.
    [49] 水利电力部水利水电规划设计院, 长江流域规划办公室. 水利动能设计手册(防洪分册)[M]. 北京: 水利电力出版社, 1988.
    [50] 叶守泽. 水文水利计算[M]. 北京: 水利电力出版社, 1992.
    [51] 陈守煜. 水库调洪计算的数值解法及其程序[J]. 1980, (2): 44-49.
    [52] 吴明官. 水库调洪计算数值解法[J]. 黑龙江水利科技, 1989, (2): 20-28.
    [53] 刘其发. 水库调洪化算流量法中权系数的确定[J]. 人民长江, 1999, 30(3): 34-35.
    [54] 谢鉴衡. 河流模拟[M]. 北京: 水利电力出版社, 1990.
    [55] 清华大学水力学教研室. 水力学 下册[M]. 北京: 高等教育出版社, 1995.
    [56] 杨国录. 四点时空偏心Preissmann格式的应用问题[J]. 泥沙研究, 1991, (4): 88-98.
    [57] 袁雄燕. 行蓄洪区动床洪水预报模型初步研究[硕士]. 武汉: 武汉大学, 2003.
    [58] 杨国录. 河流数学模型[M]. 北京: 海洋出版社, 1993.
    [59] 李义天, 尚全民. 一维不恒定流泥沙数学模型研究[J]. 泥沙研究, 1998, (1): 81-87.
    [60] 国务院三峡工程建设委员会办公室泥沙课题专家组, 中国长江三峡工程开发总公司工程泥沙专家组. 长江三峡工程“九五”泥沙研究综合分析[M]. 北京:知识产权出版社, 2002.
    [61] 董哲仁. 水利工程对生态系统的胁迫[J]. 水利水电技术, 2003, 34(7): 1-5.
    [62] Ward J. V. The four-dimensional nature of lotic ecosystems[J]. Journal of the North American Benthological Society, 1989, 8(1): 2-8.
    [63] Karr James R. Biological Integrity: A long-neglected Aspect ofWater Resources Management.[J]. Ecological Applications, 1991, 1(1): 66-84.
    [64] 吴保生, 陈红刚, 马吉明. 美国基西米河渠化工程对河流生态环境的影响[J]. 水利水电技术, 2004, (9): 13-16.
    [65] 方子云. 中国水电工程环境与生态问题的研究[M]. 北京:水利电力出版社, 1996.
    [66] 李亚农. 流域梯级开发对环境的影响[J]. 水电站设计, 1997, 13(3): 19-24.
    [67] 赵业安, 潘贤娣. 黄河水沙变化与下游河道发展趋势[J]. 人民黄河, 1994, 17(2): 31-34.
    [68] 洪松, 葛磊. 长江三峡水库兴建后库周地区辐射平衡与地面径流变化之探讨[J]. 地理科学, 1999, 19(5): 428-431.
    [69] Grasser M. M., EI-Gamal F. Aswan High Dam: Lesson learnt and on-going research[J]. Water power & Dam Construction, 1994, 46(1): 35-39.
    [70] 何用. 水沙过程与河流生态环境作用初步研究[博士]. 武汉: 武汉大学, 2005.
    [71] 杨丽虎, 陈进, 常福宣等. 基于WaterWare的梯级水库对生态系统基流的累积影响[J]. 武汉大学学报工学版(已录).
    [72] 吉祖稳, 胡春宏, 阎颐等. 多沙河流造床流量研究[J]. 水科学进展, 1994, 5(3): 229-234.
    [73] Williams G. P. Bank-full discharge of river[J]. Water Resources Research, 1978, 14: 1141-1154.
    [74] 张红武, 张清. 黄河下游河道造床流量的计算方法[J]. 泥沙研究, 1994, (4): 50-55.
    [75] 张清, 江恩惠, 张红武. 黄河下游河道造床流量的研究[J]. 黄科院科技第92002号, 1991.
    [76] 张书农, 华国祥. 河流动力学[M]. 北京:水利电力出版社, 1988.
    [77] 李福田, 高澜. 造床流量计算方法初探[J]. 河海大学学报:自然科学版, 1990, 18(4): 113-116.
    [78] 石伟, 王光谦, 邵学军. 流量变化对黄河下游河道演变影响[J]. 水利学报, 2003, (5): 74-77.
    [79] 陈建国, 胡春宏, 董占地等. 黄河下游河道平滩流量与造床流量的变化过程研究[J]. 泥沙研究, 2006, (5): 10-16.
    [80] Topping David J., Rubin David M., Vierra L. E. Colorado River sediment transport: 1. Natural sediment supply limitation and the influence of Glen Canyon Dam[J]. Water Resources Research, 2000, 36(2): 515-542.
    [81] 韩其为. 水库淤积[M]. 北京:科学出版社, 2003.
    [82] 许炯心. 近40年来长江上游干支流悬移质泥沙粒度的变化及其与人类活动的关系[J]. 泥沙研究, 2005, (3): 8-16.
    [83] 府仁寿, 虞志英, 金缪等. 长江水沙变化发展趋势[J]. 水利学报, 2003, (11): 21-29.
    [84] 钱宁, 王可钦, 阎林德, 黄河中游粗泥沙来源区对黄河下游冲淤的影响. 见 第一次河流泥沙国际学术讨论会论文集, 光华出版社: 北京, 1980.
    [85] 杨意诚. 三峡水库来水来沙条件的分析研究综述[J]. 水文, 1995, (1): 11-16.
    [86] 杨丽虎, 陈进, 黄薇等. 长江上游梯级水电开发情况及对生态环境的影响初探[J]. 中国农村水利水电, 2007, (3): 79-81.
    [87] 朱鉴远. 长江上游床沙变化和卵砾石推移质输移研究[J]. 水力发电学报, 1999, (3): 86-102.
    [88] 陈吉泉. 河岸植被特征及其在生态系统和景观中的作用[J]. 应用生态学报, 1996, 7(4): 439-448.
    [89] 邓红兵, 王青春, 王庆礼等. 河岸植被缓冲带与河岸带管理[J]. 应用生态学报, 2001, 12(6): 951-954.
    [90] 安树青. 湿地生态工程-湿地资源利用与保护的优化模式[M]. 北京: 化学工业出版社, 2002.
    [91] 蔡晓明. 生态系统生态学[M]. 北京: 科学出版社, 2000.
    [92] 董哲仁. 河流形态多样性与生物群落多样性[J]. 水利学报, 2003, (11): 1-6.
    [93] 李江华, 王欢, 韩霜等. 水电开发下的河流生态系统管理[J]. 中国农村水利水电, 2006, (11): 51-54.
    [94] 杨延聪, 孙东坡. 水利工程与河流水环境[J]. 河南科学, 1998, 16(2): 233-238.
    [95] Englund G., Jonsson BG, Malmqvist B. Effects of flow regulation on bryophytes in north Swedish rivers[J]. Biological Conservation, 1997, 79(1): 79-86.
    [96] BIGGS B. J. F. Hydraulic habitat of plants in streams[J]. Regulated Rivers: Research & Management, 1996, 12(1): 131-144.
    [97] STUART E. BUNN, ANGELA H. ARTHINGTON. Basic Principles and Ecological Consequences of Altered Flow Regimes for Aquatic Biodiversity[J]. Environmental Management, 2002, 30(4): 492-507.
    [98] Mumba M., Thompson J. R. Hydrological and ecological impacts of dams on the Kafue Flats floodplain system, southern Zambia[J]. Physics and Chemistry of the Earth, 2005, 30(6-7): 442-447.
    [99] Kingsford R. T. Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia[J]. Austral Ecology, 2000, 25(2): 109-127.
    [100] Fenner P., Brady WW, Dr. Patton. Effects of regulated water flows on regeneration of Fremont cottonwood[J]. Journal of Range Management, 1985, 38(3): 135-138.
    [101] Chien N. Changes in river regime after the construction of upstream reservoirs[J]. Earth Surface Processes and Landforms, 1985, 10(2): 143-159.
    [102] Moyle Peter B., Light Theo. Fish invasions in California:do abiotic factors determine success?[J]. Ecology, 1996, 77(6): 1666-1670.
    [103] 吴果团, 梁云贞. 关于大坝对流域生态系统的影响及对漓江水资源管理的思考[J]. 南宁师范高等专科学校学报, 2003, 20(4): 76-80.
    [104] 郭长城, 王国祥, 喻国华. 天然泥沙对富营养化水体中磷的吸附特性研究[J]. 中国给水排水, 2006, 22(9): 10-13.
    [105] 郭玲, 武海顺, 金志浩. 泥沙对天然水体中有机污染物净化的模拟研究[J]. 山西师范大学学报:自然科学版, 2002, 16(4): 38-40.
    [106] 李绪谦, 张建伟, 王奇杰等. 江水浊度在污染河段水质净化中的作用分析及建议[J]. 地理科学, 2004, 24(2): 245-249.
    [107] Steiger J., James M., Gazelle F. Channelization and consequences on floodplain system functioning on the Garonne River, SW France[J]. Regulated Rivers: Research & Management, 1998, 14(1): 13-23.
    [108] 张德骅. 国外拦河筑坝对鱼类的影响及对策[J]. 水力发电, 1989, (3): 61-64.
    [109] 吕新华. 大型水利工程的生态调度[J]. 科技进步与对策, 2006, 23(7): 129-131.
    [110] Johnson Brett M., Saito Laurel, Anderson Mark A. et al. Effects of Climate and Dam Operations on Reservoir Thermal Structure[J]. Journal of Water Resources Planning & Management, 2004, 130(2): 112-122.
    [111] 钟春欣, 张玮. 基于河道治理的河流生态修复[J]. 水利水电科技进展, 2004, 24(3): 12-14.
    [112] 董哲仁. 筑坝河流的生态补偿[J]. 中国工程科学, 2006, 8(1): 5-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700