砂卵石地层交叉重叠隧道盾构施工结构与环境控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成都地区的砂卵石地层,具有以下几个特点:结构松散,自稳性差;卵石含量高、粒径大;均一性差,并随机分布透镜体砂层。成都地质的这些特点,极为特殊,施工技术难点多。地铁2号线在百草路上交叉换边,区间左右线隧道上下重叠,盾构重叠施工相互影响大,盾构施工控制难度大。此外,地铁周围的工程环境复杂,临近的建筑物、地下管线多,环境保护要求高。提高砂卵石地层交叉重叠隧道的盾构施工掘进效率,安全快速地完成施工,可以为今后类似的工程提供借鉴。本文基于以上问题,以成都地铁2号线交叉重叠隧道为背景,主要完成了以下工作:
     1.针对砂卵石地层的特殊性,进行交叉重叠隧道的施工优化控制。分析了砂卵石地层的地层空洞和滞后沉降特性,以及并行隧道、重叠重叠的应力应变,从开挖面土压平衡、地层沉降构成、地层注浆加固措施方面论述了盾构施工的改良和优化,掘进参数控制等。
     2.采用数值模型对交叉重叠隧道的全过程进行施工力学研究,根据不同施工的顺序对比,分析了“先下洞后上洞”施工顺序的合理性;分析了先后修建隧道情况下,隧道结构和地层的应力应变规律,对比分析了不同空间位置中,两隧道施工的相互影响;并结合工程实际,模拟了地层的空洞效应和滞后沉降效果。主要得出以下结论:下洞施工后,主要起到对地层的扰动作用,使上洞所在处土体变松动,自稳定性变差;上洞施工后,松动的地层容易发生失稳破坏,造成盾构超挖,形成空洞,造成过大沉降;上洞施工后,下洞隧道结构有向上洞开挖后形成的空洞内移动的趋势,地层沉降主要发生在上洞上部,下洞所在地层有隆起的趋势,上下洞之间的地层有隆起也有沉降。
     3.根据交叉重叠隧道的地表沉降、隧洞洞内收敛变形以及临近的工程环境等监测数据以及盾构施工记录表等现场原始数据,结合数值模拟进行对比分析,不仅对盾构施工起到了很好的预测指导,还可以针对施工中出现的异常情况进行模拟分析,并提出合理的注浆加固措施,抑制地层变形,保证施工安全。
The character of sandy cobble stratum of Chengdu is, loosen structure and poor stability, rich in cobble content and big size grain, nonuniform in distribution and random in filling of lens sand. This makes the sandy cobble stratum of Chengdu particular and causes lots of construction techniques. The both tunnels of Metro Line2intercross underneath the Baicao Road, overlaps with each other, makes strong influence between each other, and great difficulty in controlling the tunneling construction. In addition, the project environment around the metro line is complicated, with lots of buildings and underground pipelines, and needs very strict environmental protection requirements. Improving the shield tunneling efficiency of the overlapped tunnels of the sandy cobble stratum, finishing the construction safely and rapidly, can offer successful experiences to the similar construction in the future. With these problems, this thesis is based on the construction of Metro Line2of Chengdu, the following researching work is completed:
     1. According to the specificity of the sandy cobble stratum, optimize the construction control of the overlapped tunnels. The hole effect and the lagged ground collapse behavior are analyzed, combined with the strain and stress state of parallel tunnels and overlapped tunnels, discussed the improvement and the optimization of the shield construction, the control of the tunneling parameters from the aspect of the earth pressure balance of the excavation face, the composition of the subsidence of the ground, and the grouting and reinforcement measures.
     2. Study the whole shield tunneling construction mechanics by the numerical simulation, according to the comparison with different tunneling sequences, analysis the rationality of the "down to upper" tunneling sequence, the stress-strain characteristics of the tunnel structure and the ground in the condition of build the tunnel by sequence, the influence of both tunnels during tunneling by comparison of different location, the hole effect and the lagged ground collapse behavior is also simulated. The main conclusions are:the disturbance effect is formed after the down tunnel excavated, which makes the surrounding of the upper tunnel loose, its stability weaken. The loosen surrounding is easy to lose stability and destroyed, which causes over excavation of the shield tunneling, bring about big subsidence. The down tunnel will move toward to the hole after the upper tunnel excavated, the subsidence is mainly happened to the above of the upper tunnel, the surrounding of the down tunnel will heave while the ground between the tunnels some subsides and others heaves.
     3. Make comparative analysis according to the field monitor data of the subsidence of the surface, the deformation and constringency of the tunnel structure, and the nearby project environment, combined with the shield construction records, and the numeral simulation, which can not only predict and guide for the shield construction, but also can make analysis and simulation according to the abnormal situation during tunneling, and give reasonable advice for grouting measures, which can restrain the ground deformation to ensure the tunneling safety.
引文
[1]中国地铁大扩张跟上城镇化进程[EB/OL]. http://news.xinhuanet.com/world/2013-02/13/c_124344374.htm,2013-02-13.
    [2]28个城市将开建地铁未来五年总投资过万亿[EB/OL]. http://money.163. com/10/ 0329/10/62UEQA4L00252G50.html,2010-03-29.
    [3]梁宁慧,刘新荣,曹学山,等.中国城市地铁建设的现状和发展战略[J].重庆建筑大学学报,2008,30(6):81-85.
    [4]杨书江,孙谋,洪开荣.富水砂卵石地层盾构施工技术[M].人民交通出版社,2011.
    [5]郑俊杰,包德勇,龚彦峰,等.铁路隧道下穿既有高速公路隧道施工控制技术研究[J].铁道工程学报,2006,8:80-84.
    [6]Sweeney P. A study of interaction effects due to bored tunnels in clay[D]. Massachusetts Institute of Technology,2006.
    [7]Brown T. Boston's Central Artery/Tunnel Project:Challenging Problems, Innovative Solutions James C. Doebler and[C]//Construction Congress V:Managing Engineered Construction in Expanding Global Markets:Proceedings of the Congress, Minneapolis, Minnesota, October 4-8,1997. Amer Society of Civil Engineers,1997:251.
    [8]Building response to tunnelling:case studies from construction of the Jubilee Line Extension, London[M]. Thomas Telford,2001.
    [9]扈森,李德才,刘建国,等.地铁重叠隧道设计与施工技术[J].中国城市轨道交通新技术(第二集),2007.
    [10]白廷辉,尤旭东.盾构超近距离穿越地铁运营隧道的保护技术[J].地下工程与隧道,2000(3):2-6.
    [11]徐前卫,尤春安,李大勇.盾构近距离穿越已建隧道的施工影响分析[J].岩土力学,2004,25(1):95-98.
    [12]龚伦,仇文革.既有铁路隧道受下穿引水隧洞近接施工影响预测[J].中国铁道科学,2007,4.
    [13]龚伦,仇文革.引水隧洞下穿铁路隧道近接施工振动影响研究[J].岩土力学,2006.
    [14]仇文革.地下工程近接施工力学原理与对策的研究[J].科技资讯,2003.
    [15]郑余朝,仇文革.重叠隧道结构内力演变的三维弹塑性数值模拟[J].西南交通大学学报,2006,41(3):376-380.
    [16]Liu H Y, Small J C, Carter J P, et al. Effects of tunnelling on existing support systems of perpendicularly crossing tunnels[J]. Computers and Geotechnics,2009,36(5):880-894.
    [17]Thomson S, El-Nahhas F. Field measurements in two tunnels in Edmonton, Alberta[J]. Canadian Geotechnical Journal,1980,17(1):20-33.
    [18]Klar A, Vorster T E B, Soga K, et al. Soil-pipe interaction due to tunnelling: comparison between Winkler and elastic continuum solutions[J]. Geotechnique,2005, 55(6):461-466.
    [19]吕爱钟,张路青地下隧道力学分析的复变函数方法[M].科学出版社,2007.
    [20]曾小清,曹志远.地铁工程双线盾构平行推进的相互作用[J].同济大学学报:自然科学版,1997,25(4):386-389.
    [21]曾晓清.地铁工程双线隧道平行推进的相互作用及施工力学行为的研究[D].上海:同济大学博士学位论文,1995.
    [22]曾小清,孙钧.隧道工程施工过程中的力学分析[J].同济大学学报:自然科学版,1998,26(5):512-515.
    [23]Addenbrooke T I, Potts D M. Twin tunnel interaction:surface and subsurface effects[J]. International Journal of Geomechanics,2001,1(2):249-271.
    [24]陈先国,高波.重叠隧道的施工力学研究[J].岩石力学与工程学报,2003,22(4):606-610.
    [25]李恒一.两孔平行隧道近接施工力学及地表沉降研究[D].西南交通大学,2009.
    [26]孙钧,刘洪洲.交叠隧道盾构法施工土体变形的三维数值模拟[J].同济大学学报(自然科学版),2002,30(4):379-385.
    [27]He C, Feng K, Fang Y, et al. Surface settlement caused by twin-parallel shield tunnelling in sandy cobble strata[J]. Journal of Zhejiang University SCIENCE A,2012, 13(11):858-869.
    [28]郭秀琴.砂卵石地层盾构法隧道施工技术[J].铁道建筑技术,2008,3:009.
    [29]党红章.成都地铁密实砂卵石地层工程地质特性及施工方法浅析[J].现代隧道技术,2007,44(5):7-10.
    [30]白永学,漆泰岳,吴占瑞.砂卵石地层盾构开挖面稳定性分析[J].土木建筑与环境工程ISTIC EI,2012,34(6).
    [31]白永学,漆泰岳,吴占瑞.砂卵石地层盾构施工引发的滞后地面塌陷机理[J].土木建筑与环境工程(1):12-19.
    [32]罗松,张浩然.成都富水砂卵石地层盾构施工滞后沉降防控措施探讨[J].隧道建设,2010,30(003):317-319.
    [33]白永学,漆泰岳,吴占瑞,等.砂卵石层盾构施工地层损失原因分析与施工对策[J].现代隧道技术,2012,49(3):54-61.
    [34]魏建华,丁书福.土压平衡式盾构开挖面稳定机理与压力舱土压的控制[J].工程机械,2005,36(1):18-19.
    [35]马连丛.富水砂卵石地层盾构施工渣土改良研究[J].隧道建设,2010,30(4):411-415.
    [36]刘树山.砂卵石地层盾构隧道刀具更换方案研究[J].隧道建设,2008,28(3):268-270.
    [37]于宁,朱合华.盾构隧道施工地表变形分析与三维有限元模拟[J].岩土力学,2004,25(8):1330-1334.
    [38]周振国,郭磊,郭卫社.盾构施工姿态控制和管片选型[J].西部探矿工程,2002,5(3):124-127.
    [39]张厚美,吴秀国,曾伟华.土压平衡式盾构掘进试验及掘进数学模型研究[J].岩石力学与工程学报,2005,24.
    [40]胡欣雨,张子新.砂卵石地层土压盾构开挖面动态平衡机理研究[J].地下空间与工程学报,2009,5(6).
    [41]Peck R B. Deep excavations and tunnelling in soft ground[C]//Proc.7th.Int.Conf.on SMFE.1969:225-290.
    [42]Cording E J, Hansmire W H. Displacements around soft ground tunnels[M].1975.
    [43]Chapman D N, Ahn S K, Hunt D V L, et al. The use of model tests to investigate the ground displacements associated with multiple tunnel construction in soil[J]. Tunnelling and underground space technology,2006,21(3):413-413.
    [44]Addenbrooke T I, Potts D M. Twin tunnel construction-ground movements and lining behaviour[J]. Geotechnical Aspects of Underground Construction in Soft Ground,1996, 446.
    [45]Chakeri H, Hasanpour R, Hindistan M A, et al. Analysis of interaction between tunnels in soft ground by 3D numerical modeling[J]. Bulletin of Engineering Geology and the Environment,2011,70(3):439-448.
    [46]林刚.地铁重叠隧道施工顺序研究[J].现代隧道技术,2006,43(6):23-28.
    [47]陈先国,高波.重叠隧道的施工力学研究[J].岩石力学与工程学报,2003,22(4):606-610.
    [48]陈育民,徐鼎平FLAC/FLAC3D基础与工程实例[M]. DynoMedia Inc.,2009.
    [49]Lee K M, Rowe R K, Lo K Y. Subsidence owing to tunnelling.I. Estimating the gap para meter[J]. Canadian Geotechnical Journal,1992,29(6):929-940.
    [50]Lee K M, Rowe R K. An analysis of three-dimensional ground movements:the Thunder Bay tunnel[J]. Canadian Geotechnical Journal,1991,28(1):25-41.
    [51]张云,殷宗泽,徐永福.盾构法隧道引起的地表变形分析[J].岩石力学与工程学报,2002,21(3):388-392.
    [52]张庆贺,朱忠隆,杨俊龙,等.盾构推进引起土体扰动理论分析及试验研究[J].岩石力学与工程学报,1999,18(6):699-703.
    [53]王国义.成都砂卵石地层注浆加固技术应用[J].隧道建设,2012,32(5):696-699.
    [54]Lee I M, Nam S W. The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels[J]. Tunnelling and Underground Space Technology,2001,16(1): 31-40.
    [55]Telford T. Tunnel Lining Design Guide[J]. British Tunneling Society and the Institution of Civil Engineers,2004.
    [56]Deere D U. Design of tunnel liners and support systems[J].1968.
    [57]吴波,高波.地铁区间隧道施工对近邻管线影响的三维数值模拟[J].岩石力学与工程学报,2002,21(2):451-2.
    [58]吴为义,孙宇坤,张土乔.盾构隧道施工对邻近地下管线影响分析[J].中国铁道科学,2008,29(3):58-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700