下穿复杂建筑物盾构法隧道施工技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以深圳地铁5号线翻身~灵芝盾构区间隧道下穿碧海花园小区施工为工程依托,通过采用技术调研、理论分析和数值模拟、施工现场配合和现场管片试验等相结合的方法,对盾构隧道施工引起的地表沉降、建筑物桩基位移、管片衬砌力学特性以及盾构掘进控制技术进行了较深入的研究,以此来减小盾构施工对建筑物的影响,也可为今后的地铁工程提供重要的参考价值,主要研究工作和研究成果为:
     (1)通过对盾构机下穿建筑物开挖过程进行计算机数值模拟,分析了地表的隆沉规律,研究了盾构施工引起的地表沉降以及影响地表沉降的因素。地表隆沉与盾构掘进参数密切相关,适当加大土仓压力和注浆压力能有效控制地表沉降,但其值也不宜过大,否则可能会造成地表隆起。
     (2)通过对监控量测的数据分析,地表横断面的沉降曲线与正态分布曲线相近,沉降最大值发生在隧道轴线上方。地表横断面内沉降影响范围约为两倍隧道直径,纵断面内主要影响范围为盾构前后方各三倍隧道直径的距离,地表沉降监测结果与数值模拟结果基本吻合。盾构机开挖施工时,上方建筑物除了会产生竖向位移,同时由于盾构机对地层的不规则扰动及偏载等缘故,使得建筑物桩基也产生水平位移,但相较竖向位移,水平位移一般只有垂直位移的1/3。
     (3)盾构开挖过后,拱顶沉降,拱底隆起,随着盾构的不断推进,已经拼装上的盾构管片的隆沉变形也越来越明显,在管片脱出盾尾时,地表沉降突然增大,而且沉降速率达到最大,因此,对管片脱出盾尾阶段的变形控制是整个盾构施工中控制地表变形的关键。
     (4)基于施工资料的处理和分析,总结出了一套盾构隧道下穿建筑物的掘进控制技术参数。在穿越建筑物前对盾构机设备检修,制定应急预案,按照“安全、快速、连续”的原则进行施工。合理控制掘进参数,土仓压力应该在计算的基础上预留0.2bar左右的安全量,严格控制出土量,减小超挖量,合理纠偏,以减小盾构掘进引起的土体扰动、地表位移及地层损失;严格控制同步注浆压力和注浆量,注浆量一般为6.0m3/环:加强渣土改良,使渣土具有良好的流塑性,减轻对刀具的摩损,延长刀具的使用寿命。
     (5)当地质条件不佳时,为保证建筑物的安全,要对建(构)筑物的桩基、地基等的持力层进行预加固或是跟踪注浆,盾构机进时要增大监控量测的频率,监测结果及时反馈至施工环节,进而调整施工参数,做到边施工,边预报,有效防止地层沉降过大过快。
     (6)在盾构推进过程中,避免建筑物发生隆沉、倾斜,甚至结构破坏的措施,有主动控制措施和被动控制措施两种。主动控制措施是通过对施工参数的优化,从盾构开挖的源头开始采取有关措施来减少对建筑物的不利影响。被动控制措施是通过诸如隔断、托换、土体加固等工程方法来保护周围建筑物。盾构隧道沿线附近的建筑物保护,应首先把重点放在主动控制措施上。
Based on the shield tunneling underpassing Bihai Garden on Shenzhen Subway Line 5, this study investigated the behavior of ground settlement, displacement of building pile foundation, mechanical characteristics of segment linings, as well as control technology of shield driving due to shield tunneling, by using a combined method of literature review, theoretical analysis, numerical simulation, field construction assort and field segment tests. The achievement obtained from the study can be used to reduce the impact of shield tunneling on buildings, and to provide an important reference to the metro projects in the future. The main research work and achievements are as follows:
     (1) By carrying out numerical modeling of shield tunneling process of underpassing buildings, the study analyzed the pattern of groud settlement and facors affecting the surface settlement. The surface settlement is closely related to tunnling parameters. Appropriately increasing soil storage pressure and grouting pressure can effectively control ground settlement, but the pressure value should not be too large, otherwise it could easily lead to surface uplift.
     (2) The analysis of monitoring data showed that the surface settlement of cross-section is close to the normal distribution, the maximum subsidence occurs on the tunnel axis. Affected area of cross-sectional settlement and vertical section are respectively about twice and triple the tunnel diameter. Ground settlement monitoring results are consistent with the numerical results. The upside building will produce horizontal displacement except for vertical displacement, by the reason of irregular disturbances and partial load when shield excavating, but compared to the vertical displacement, the value of horizontal displacement is just about one third vertical displacement.
     (3) After the shield tunneling started, the tunnel arch subsides while the tunnel bottom upsides. With the continuous advance of shield, the deformation of assembled segments becomes more and more obvious. When the segment coming out of the shield tail, the surface settlment increases suddenly and settlement rate reaches its maximum. So the deformation control when the segment coming out of the shield tail is the key to control ground settlement in shield tunneling. (4) Based on the processing and analysis of construction data, a set of control parameters of shield tunneling beneath the buildings were summarized. Before the tunneling, the shield machine equipment must be checked and repaired carefully, and an emergency plan would be made, the construction would be in accordance with the principle of "safe, fast, continuous". It would reasonably control tunneling parameters, an extra 0.2 Bar of earth chamber pressure would be given based on the calculation, it would strictly control the unearth amount, reduce the amount of over excavation and reasonably make deviation rectification in order to reduce disturbance to soil, surface displacement and ground loss; it would strictly control the amount of synchronized grouting and grouting pressure, grouting volume is generally six cubic per ring; it would enhance sediment improving to has a good plastic and to reduce friction loss of the tool furthermore extending tool life.
     (5) When the geological condition is poor, to ensure the safety of the building, the support layer of pile and foundation must be prereinforced or reinforced. While shield machine is excavating beneath the building, the frequency of monitoring must be increased, the monitoring results must be timely feedbacked to the construction and used to adjust the construction parameters, which can prevent ground from too large or too fast settlement.
     (6) In the process of shield tunneling, there are two type of measures to avoid occurrence of settlment, tilt, even structural damage, including active control and passive control. The active control is optimizing construction parameters to reduce the adverse effect on buildings through the construction source. The passive control is, however, protecting the surrounding buildings by adopting partition, underpinning, soil stabilization and other methods. The active control should be focused on in the protection of nearby buildings along the tunnel.
引文
[1]余志江.盾构施工引起的地层变形及对邻近桩基的影响研究[D].长沙理工大学硕士论文,2009,5.
    [2]钱源.广州地铁客村联络线岔口段隧道工程地面沉降原因分析及控制[J].石家庄铁道学院学报,2003,16(增).
    [3]竺维彬,鞠世健,张弥等.广州地铁二号线旧盾构穿越珠江的工程难题及对策[J].土木工程学报,2004,37(1).
    [4]崔玖江.隧道与地下工程施工技术现状及问题对策[J].施工技术,2001,30(1):3-6.
    [5]李希元,闰静雅,孙艳萍.盾构隧道施工工程事故的原因与对策[J].地下空间与工程学报,2005,6(1).
    [6]Morton J D, King K H. Effects of Tunneling on the bearing Capacity and Settlement of Piled Foundations.in:Proc., Tuneling'79, IMM, London:57-68.
    [7]李永盛,黄海鹰.盾构推进对相邻桩体力学影响的实用计算方法[J].同济大学学报,1997,25(3):274-280.
    [8]Chen L T, Poulos H G, Loganathan N.Pile Responses Caused by Tunneling.Journal of Geotechnical and Geoenvironmental Engineering,1999,125(3):207-215.
    [9]Loganathan N, Poulos H G, Xu K J.Ground deformationand pile-group responses due to tunneling.in:Proceedings of the III National Conference of the Geo-Institute of ASCE.1999,21: 241-250.
    [10]Mroueh H, Shahrour I.Three-Dimensional Finite Element Analysis of the Interaction Between Tunneling and Pile Foundations.International Journal for Numerical and Analytical Methods in Geomechanics,2002,26:217-230.
    [11]张志强,何川.地铁盾构隧道近接桩基的施工力学行为研究[J].铁道学报,2003,25(1):92-96.
    [12]芮勇勤,岳中琦,唐春安.隧道开挖方式对建筑物桩基影响的数值分析[J].岩石力学与工程学报,2003,22(5):735-741.
    [13]李宁,王柱.地铁开挖对上部桩基变形的影响研究[J].土木工程学报,2006,39(10):107-111.
    [14]李强,王明年.地铁车站暗挖隧道施工对既有桩基的影响[J].岩石力学与工程学报,2006,25(1):184-190.
    [15]何海健,项彦勇.地铁车站隧道群施工对邻近桥桩影响的数值分析[J].北京交通大学学报,2006,30(4):54-59.
    [16]张宏博,黄茂松.浅埋隧道穿越建筑物桩基的三维有限元分析[J].同济大学学报(自然科学版),2006,34(12):1587-1591.
    [17]张海波,刘国楠,高俊合.盾构近距离掘进对桥梁桩基的影响分析[J].铁道建筑,2007(8): 37-40.
    [18]柳厚祥,方风华,李宁,吴从师.地铁隧道施工诱发桩基变形的数值仿真分析[J].中南大学学报(自然科学版),2007,38(4),772-777.
    [19]夏元友,张亮亮,王克金.地铁盾构穿越建筑物施工位移的数值分析[J].岩土力学,2008,29(5):1411-1415.
    [20]刘波,叶圣国,陶龙光,唐孟雄.地铁盾构施工引起邻近基础沉降的FLAC元数值模拟[J].煤炭科学技术,2002,30(10):9-11.
    [21]张海波,殷宗泽,朱俊高.地铁隧道盾构法施工过程中地层变位的三维有限元模拟[J].岩石力学与工程学报,2005,24(5):755-760.
    [22]姚燕明,曹伟飚,沈张勇.盾构穿越高架对其桩基变形和内力影响分析[J].地下空间与工程学报,2005,1(6):972-976.
    [23]李德胜,李大勇.盾构机下穿桩基施工对单桩承载力影响的数值研究[J]工程地质学报,2009,17(2):284-288.
    [24]魏新江,魏纲,丁智.盾构施工与邻近不同位置建筑物相互影响分析[J].岩土力学,2007,28(增刊):8-53.
    [25]贺美德,刘军,乐贵平,王梦恕,张顶立.盾构隧道近距离侧穿高层建筑的影响研究[J].岩石力学与工程学报,2010,29(3):603-608.
    [26]姜忻良,崔奕,赵保建.盾构隧道施工对邻近建筑物的影响[J]天津大学学报,2008,41(6):725-730.
    [27]李文举,武亚军,常莹.隧道盾构施工对临近桩基影响的数值模拟[J]上海大学学报,2010,16(2):210-215.
    [28]李坤.隧道工程引起的地层移动以及邻近桩反映研究[D].浙江大学硕士论文,2003,2.
    [29]宗长龙.城市地铁隧道盾构施工对邻近建筑影响研究[D].广州大学硕士论文,2007,5.
    [30]丁智.盾构隧道施工与邻近建筑物相互影响研究[D].浙江大学硕士论文,2007,5.
    [31]王占生,王梦恕.盾构施工对周围建筑物的安全影响及处理措施[J]中国安全科学学报,2002,12(2):45-60.
    [32]段浩,陶建勋.盾构穿越砂卵石地层建筑物施工技术措施[J].现代城市轨道交通,2008(4):34-36.
    [33]于安柱.盾构机穿越廖家巷建筑物群施工技术方案[J].西部探矿工程,2006,4(总第120期):153-154.
    [34]胡新朋,孙谋,王俊兰.盾构隧道穿越既有建筑物施工应对技术[J].现代隧道技术,2006,43(6):60-65.
    [35]Rowe, Kack.A method of estimating surface settlement above tunnels constructed in soft ground.Canadian Geotechnical Journal.1983,20(8):11-22.
    [36]Lee, Rowe.Subsidence due to tunneling.Canadian Geotechnical Journal,1992,29(5):941-954.
    [37]张成.地铁工程土压平衡式盾构施工技术研究[D].西南交通大学硕士论文,2002,12.
    [38]李斌汉.广州地铁工程复合式盾构施工技术研究[D].重庆大学硕士论文,2006,10.
    [39]戚炜.单桩沉降变形与承载力的关系研究[D].河海大学,2004
    [40]《桩基工程手册》编写委员会.桩基工程手册[S].北京:中国建筑工业出版社,1997:9-56
    [41]席宁中.桩端土刚度对桩侧阻力影响的试验研究及理论分析[D].北京:中国建筑科学研究院,2002,5.
    [42]林天健,熊厚金,王利群.桩基础设计指南[M].北京:中国建筑工业出版社,1999.
    [43]KezdiA(1957). The bearing capacity of pile and pile groups[J]. Proc.4th ICSMFE. London. Vol.2.
    [44]佐滕悟.基桩承载力机理[J].土木技术,1965,20(1):1-5.
    [45]Gardner W S. Consideration In the design of drilled Piers[J].Design Construction and Performance of Deep Foundation,1975.
    [46]Kraft L M, Ray R P and Kagawa T(1981). Tbeoretical t-z curves[J]. Geotechnical Engineering division ASCE. Vol.107.No.GT11.
    [47]Seed H B, Reese L C(1957). The action of soft clay along friction Piles[J].Trans..ASCE.Vol.122.
    [48]Coyle H M, Reese L C(1966). Load Transfer for Axially Loaded Piles in Clay [J]. Journal of Soil Mechanics and Foundations Division. ASCE Vol.92, SM2:1-26.
    [49]何思明.轴向荷载下单桩荷载传递机理[A].桩基工程设计与施工[C].北京:中国建筑工业出版社,1994:18-22.
    [50]陈龙珠,梁国钱,朱金颖等.桩轴向荷载-沉降曲线的一种解析算法[J].岩土工程学报,1994,16(6):30-38.
    [51]房卫民,赵明华,苏检来等.由沉降量控制桩竖向极限承载力的分析[J].中南公路工程,1999,24(2):23-25.
    [52]龚维明,章丛俊,吕志涛.群桩沉降实用计算方法[J].工业建筑,1997,27(1):34-39.
    [53]Rojas E, Vale C and R M P. Soil Pile interface model for axially loaded single piled[J]. Soils and Foundations. Japanese Geo-technical Society,1999,39(4):35-45.
    [54]Cooke R W, Price G and Tarr K J(1979). Jacked pile in London clay:a study of load transfer and settlement under working conditions[J]. Geotechnique,1979,29(2).
    [55]Randolph M F and Wroth C P(1978). Analysis of deformation of vertically loaded piles[J].Geotech.Engng, ASCE. Vol.104, No.GT12.
    [56]张凤祥,朱合华,傅德明.盾构隧道[M].北京:人民交通出版社,2004.
    [57]T.Kimura, R.J.Mair, Centrifugal testing of model tunnels in soft clay.in:Proc.of 10th int.conf.Soil Mechanics&Foundations Engineering.1981,114-119.
    [58]何川,李永林.连拱隧道施工引起的地层位移分析[J].岩土力学,2006,26(4):612-616.
    [59]Peck R.B., Deep excavations and tunneling in soft ground.In:Proc.7th Int.Conf on SMFE.SMFE, Mexico City,1969,State of the Art:225-290.
    [60]Knothe, Observations of surface movements under influence of mining and their theoretical interpretation.In:Proc.European Conf.On Ground Movement,1957:210-218.
    [61]O'Reilly, New.B.M, Settlements above tunnels in the United Kingdom-their magnitude and Prediction.In:Proc.Tunneling Institution of Mining and Metallurgy, London,1982:173-181.
    [62]Attewell.P B, Woodman.J P.Predicting the dynamics of ground settlement and its derivatives caused by tunneling in soil.Ground engineering,1982,11:13-22.
    [63]Mair.R J, Taylor.R N, Bracegirdle, Subsurface settlement profiles above tunnels in clays.Geotechnique,43(2):315-320.
    [64]唐益群,叶为民,张庆贺.上海地铁盾构施工引起的地面沉降分析研究(三).地下空间,1995,15(4):250-258.
    [65]Rowe, Kack.A method of estimating surface settlement above tunnels constructed in soft ground.Canadian Geotechnical Journal.1983,20(8):11-22.
    [66]Lee, Rowe.Subsidence due to tunneling.Canadian Geotechnical Journal,1992,29(5):941-954.
    [67]C.Sagareta, Analysis of undrained soil deformation soil deformation due to ground loss, Geotechnique,1987,37(3):301-320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700