关中地区县域耕地地力评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以关中平原-陕西省户县为研究对象,分析了1985-2009年土地利用覆被变化,并利用地形位指数和土地利用程度综合指数,探讨了陕西省户县土地利用格局的空间分布,并分析了该区地形梯度上的土地利用程度。并且在ArcGIS等软件的支持下,结合地统计学,分析了户县各种土壤养分的整体特征,利用县域耕地资源评价系统对户县耕地进行了生产潜力评价,用累积曲线分级法确定耕地地力等级。结果表明:
     1.地形位指数可以综合地反映地形条件的空间分布和差异信息。分布指数用于描述某种组分的实际分布与标准分布的差异,可以排除面积的干扰,户县耕地和建设用地在低地形位上的优势明显。
     2.不同高程和坡度分级区域内土地利用类型组合不同,各土地类型的面积在海拔较低、坡度平缓区域占绝对优势,随着高程和坡度的上升,土地利用受人类活动的影响减少,土地利用类型减少,多样性降低。
     3.低海拔和低坡度区域,土地利用类型转换频率快,而随着海拔和坡度增加,土地利用格局较稳定,25度以上区域尚存在部分耕地,这说明还有一定退耕还林的空间和余地。运用DEM和土地利用图建立的三维景观图能够直观显示土地利用空间格局与自然环境的关系,证实了自然因子作为土地利用分布的环境基础,在某种程度上制约着土地利用格局的基本模式。与传统的高程和坡度描述方法相比,地形位指数可以更加综合地反映出地形空间分异的细节信息。
     4.户县有机质水平处于中等水平,全县耕地土壤的有机质平均含量为16.93g/kg,含量大于16g/kg而小于18.0g/kg的面积达3263.581hm~2,占总耕地面积的56.45%,所占耕地面积最多;耕地土壤的碱解氮含量65.71g/kg,也处于中等水平,与土壤有机质具有较好的相关性,土壤有机质含量高的地方,碱解氮含量也高;有效磷,含量小于25mg/kg的面积有33789.62hm~2,占总耕地的81.99%,主要集中在16-18mg/kg之间,占53.16%;耕地土壤速效钾含量较高,平均为137.48mg/kg,最高186.18mg/kg,最少为80.32mg/kg。土壤速效钾含量主要集中在120-150mg/kg之间,面积有26556.99hm~2,占耕地面积的64.44%。
     5.在县域耕地资源评价信息系统支持下,应用层次分析对户县耕地生产潜力进行了评价,其结果显示全县耕地生产潜力较高,其中一级耕地2530.39hm~2,占耕地面积的6.14%,二级耕地19407.49hm~2,占47.09%,三级耕地12426.87hm~2,占30.15%,四级耕地4464.56hm~2,占10.83%,五级耕地2385.13hm~2,占5.79%。
     6.户县耕地地力的高低与土壤类型、坡度、地形地貌等有密切关系,分布规律明显,随着耕地地力等级的提高,地貌类型从较为平缓的河漫滩地和位于山区的坡地向位于黄土台塬、洪积扇灌溉条件较好的的平地过渡。
Taking Huxian, which is a county located in the Guanzhong plain, Shaanxi province, as an example, Analysis of the 1985 and 2009 land use cover change and the study has explored the spatial distribution of land use and analysed the land utilization degree of different terrain gradients within Huxian with data from the Second Soil Survey (SSS), Terrain Bits Index (TBI) and Integrated Land Utilization Degree Index (ILUDI). Besides, based on several Geographical Information System sofewares, for example ArGIS, and Geostatistics, the spatial distribution of soil nutrition in Huxian has been studied. Also the production potential evaluation has been done by using Cultivated Land Resource Evaluation Information System (CLREIS) and Cumulative curve classification method was used to determine the cultivated land fertility level.
     Results are shown as follows:
     1) Terrain index was able to comprehensively reflect the spatial distribution and differences of terrain conditions. Distribution index was developed to describe the discrepancy between actual and standard distribution of one component, overcoming the disturbance caused by area. It was concluded that Huxian cultivated lands and construction lands tend to have more advantages on lowlands.
     2) The combination of land-use types were various in areas of different elevations and gradient grades. Areas of all land-use types were dominant at regions of low altitude and gentle slope. However, the land-use diversity decreased with the increasing altitude and slope followed by the reduced impact of anthropogenic effects.
     3) Land use type converted amongst one another frequently in areas of low altitude and gentle slope. Nevertheless, land use pattern appeared to become relatively more stable when altitude and slope increased. Some cultivated lands still existed on slopes above 25 degrees, which provided the implication for reforestation. The 3D landscape diagrams, which were established using Digital Elevation Models (DEM) and land use maps, offered an effective way to display the links between land use spatial pattern and environmental factors, and this proved that as the base of land use distribution, natural factors restricted the general land use pattern in some degree. TBI could reflect more detailed information of terrain spatial differentiation compared to traditional altitude-slope description methods.
     4) Soil organic matter content in Huxian was in the medium level. Average soil organic content of cultivated lands was 16.93g/kg, 3236.581hm~2 of cultivated lands, which equalled 56.45% of the total area, contained organic content between 16.0g/kg and 18.0g/kg. Meanwhile, the soil alkali-hydro nitrogen content was 65.71g/kg and also lied in medium level, having a good correction with soil organic matter. That is to say, high soil organic content places had high alkali-hydro nitrogen content as well. For rapidly-available phosphorus, 33789.62hm~2 of cultivated lands, which equalled 81.99% of the total area, held less than 25mg/kg with more concentrated between 16 and 18mg/kg accounting for 53.16% of total land areas. Content of soil rapidly-available potassium was relatively higher, with concentration on 120-150mg/kg occupying 26556.99hm~2, which was equivalent to 64.44% of the total cultivated areas. The average, top and bottom content were 137.48mg/kg, 186.18mg/kg and 80.32mg/kg, respectively.
     5) The assessment of production potential of Huxian cultivated areas has been completed using hierarchical analysis supported by Geographic Information System (GIS) and CLREIS. It was concluded that Huxian cultivated lands had relatively high production potential, and could be divided into five levels. Level one, 2530.39hm~2 accounting for 6.4% of total arable areas; Level two, 19407.49hm~2, 47.09%; Level 3, 12426.87hm~2 equivalent to 30.15% of the total; Level 4, 4464.56hm~2 covering 10.83% of the total ; Level 5, 2385.13hm~2 standing for 5.79% of the total.
     6) The soil fertility level of Huxian cultivated, landform lands was closely related to terrain, soil type and slop etc., showing markedly regional distribution. In response to soil fertility rises, physiognomy types transferred from flood lands and sloping lands to some well-irrigated flat grounds such as loess tablelands and flood accumulate fans etc.
引文
鲍士旦. 1999.土壤农化分析.第三版.南京:中国农业出版社
    毕如田,王镔,王晋民. 2005.基于mapgis的耕地地力评价系统的建立及应用.山西农业大学学报(自然科学版), 25: 97-101
    陈宏金,朱艳,刘小军,马广,梅淑芳. 2008.基于GIS的土壤肥力综合评价研究.农机化研究, (1): 28-31
    陈署晃,耿庆龙,张昀,庄羽,董巨河,贾登泉,赖波. 2010.基于GIS的新疆县级耕地地力评价研究.新疆农业科学, 47(1): 184-188
    方灿华,马友华,钱国平,赵艳萍,周福红,王鹏举,游建秋. 2008.基于GIS的明光市耕地地力评价.中国农学通报, 24(12): 308-312
    封志明,刘玉杰. 2004.土地资源学研究的回顾与前瞻.资源科学, 26(4): 2-10
    傅伯杰, 1991.陕北黄土高原土地评价研究.水土保持学报, 5(1): 1-5
    高强,刘淑霞,王瑞有,王景利. 2001.黑土区土壤养分状况变化及施肥措施.吉林农业大学学报, 23(1): 65-68
    户县农业区划办公室. 1983.户县综合农业区划土壤分册
    户县农业区划办公室. 1992.户县农业区划更新研究(1980-1990).陕西旅游出版社
    户县统计局. 2010.户县统计年鉴
    户县志编纂委员会. 1987.陕西地方志丛书:户县志
    黄河. 2004. GIS支持下的莆田县耕地基础地力评价与可持续利用对策.福建农林大学学报(自然科学版), 33(2): 245-249
    黄健,李会民,张惠琳,马兵,孙宇新,张国恩,朱健菲. 2007.基于GIS的吉林省县级耕地地力
    评价与评价指标体系的研究.吉林农业科学, 32(1): 57-62
    黄鑫全. 2006. GIS技术在新罗区耕地地力评价中的应用.亚热带水土保持, 18(1): 29-31
    黄杏元,倪绍祥. 1993.地理信息系统支持区域土地利用决策的研究.地理学报, 48(2): 114-121
    贾宁凤,段建南,乔志敏. 2007.土地利用空间分布与地形因子相关性分析方法.经济地理, 27(2): 310-312
    姜爱林,包纪祥,刘瀛洲. 1999.耕地概念的界定与耕地质量评价的新方法初探.中国地质矿产经济, 12(5): 20-25
    李贤胜,叶军华,杨平,卢祖瑶,聂文芳. 2009.基于GIS的广德县耕地地力定量评价.土壤, 41(3): 490-494
    李勇,苏文贵,肖笃宁. 1996.地理信息系统在典型区土地利用适宜性评价中的应用-以大洼县小三角洲为例.土壤, 1: 14-20
    林培. 1992.试论土地资源学.中国土地科学, 6(4): 34-37
    刘红君,王冬梅,卢中民. 2009.县域耕地地力评价的原则与程序.河南农业, 5: 30-30
    刘友兆,王峻,刘吉军,姚翠巧,杨建海,吴俊品. 2001.地理信息系统支持下的县域耕地分等研究.南京农业大学学报, 24(3): 106-110
    刘岳,梁启章,沈洪全. 1983.土地信息系统及其试验研究:以北京十三陵地区为例.中国地理学会,地理学与农业,北京:科学出版社, 86-93
    龙惠芳,郭熙,赵小敏,夏昆,郭大千. 2009.基于GIS的县域耕地地力评价研究——以江西省乐平市为例.江西农业大学学报, 31(2): 359-363
    卢剑波,王兆骞. 2000. GIS支持下的青石山小流域农业生态信息系统(QWAEIS)及其应用研究.应用生态学报, 11(5):703-706
    鲁明星,贺立源,吴礼树. 2006.我国耕地地力评价研究进展.生态环境, 15(4): 866-871
    麻永建,夏保林. 2009.基于GIS和RS的城市建设用地生态适宜性评价――以南阳市西峡县为例.河南科学, 27(8): 1011-1014
    马廷刚,常庆瑞,赵业婷,李慧燕,申健. 2011.陕西省武功县耕地地力评价研究.水土保持通报, 31(2): 186-190
    马廷刚,郝庆照,李俊良,姜晓燕,刘庆花. 2010.平度市测土配方施肥土壤养分现状分析.陕西农业科学, (5) : 72-76
    马文杰,冯中朝. 2005.粮食综合生产能力与耕地流失的关系研究.农业现代化研究, 26(5): 353-357
    闵宗殿. 1989.中国农史系年要录.北京:中国农业出版社
    牛彦斌,许暤,秦双月,周亚鹏. 2004. GIS支持下的耕地地力评价方法研究.河北农业大学学报, 27(3): 84-88
    欧阳进良,宇振荣. 2002.基于GIS的县域不同作物土地综合生产力评价.农业现代化研究, 23(2): 97-101
    秦明周,赵杰. 2000.城乡结合部土壤质量变化特点与可持续性利用对策――以开封市为例.地理学报, 55(5): 545-554
    邱炳文,周勇,李学垣, 2002.地理信息系统支持下的区域土壤资源适宜性动态评价.土壤学报, 39(3): 301-307
    石声汉. 1957.从齐民要术看中国古代的农业科学知识.北京:科学出版社
    史舟,管彦良等. 2002.基于GIS的县级柑橘适宜性评价咨询系统研制.浙江大学学报:农业与生命科学版, 28(5): 492-494
    斯钧浪,齐伟,曲衍波,李乐. 2009.胶东山区县域土地利用在地形梯度上的分布特征.应用生态学报, 2009(3): 679-685
    孙艳玲,郭鹏,刘洪斌,武伟. 2003.基于GIS的土壤肥力综合评价.西南农业大学学报, 25(2): 176-179
    汤建东. 2009.广东省耕地地力评价指标的选取与优化.广东农业科学, (4): 89-91
    唐群锋,魏志远,唐树梅,漆智平. 2006.基于GIS的县域耕地资源数据库建立及耕地地力评价.中国农学通报, 22(10): 390-396
    王爱民,缪磊磊. 1999.人地关系研究中的土地利用特征指标分析.经济地理, 19(1): 62-66.
    王静宇,袁希平,甘淑. 2008.基于GIS技术的县域耕地地力评价―以云南省寻甸县为例.昆明理工大学学报(理工版), 33(3): 1-6
    王良杰,赵玉国,郭敏,张甘霖. 2010.基于GIS与模糊数学的县级耕地地力质量评价研究.土壤, 42(1): 131-135
    王蓉芳. 1996.中国耕地的基础地力与土壤改良.北京:中国农业出版社
    王瑞燕,赵庚星,李涛,岳玉德. 2004. GIS支持下的耕地地力等级评价.农业工程学报, 20(1): 307-310
    王瑞燕,赵庚星,李涛. 2004.山东省青州市耕地地力等级评价研究.土壤, 36(1): 76-80
    邬伦,刘瑜,张晶,马修军,韦中亚,田原. 2001.地理信息系统原理、方法和应用.北京:科学出版社
    吴天木. 2007.测土配方肥样品采集与制备.新农业, 4: 44-44
    尹君,许嗥,林培,褚达华. 1998.地理信息系统在土地多宜性评价中的应用.河北农业大学学报, 21(1): 83-88
    喻红,曾辉,江子瀛. 2001.快速城市化地区景观组分在地形梯度上的分布特征研究.地理科学, 21(1): 64-69
    张炳宁,刘林旺. 1999.基本农田信息系统的建立及其应用:耕地地力等级体系研究.土壤学报, 36: 510-521
    张凤荣,安萍莉,王军艳,张军连,刘黎明,陈焕伟. 2002.耕地分等中的土壤质量指标体系与分等方法.资源科学, 24(2): 71-75
    张海涛,周勇,汪善勤,唐红华,柳洪,雷新美,王德华. 2003.利用GIS和RS资料及层次分析法综合评价江汉平原后湖地区耕地自然地力.农业工程学报, 19(2): 219-223
    张淑娟,何勇,方慧. 2003.基于GPS和GIS的田间土壤特性空间变异性的研究.农业工程学报, 19(2): 39-44
    张铁婵,常庆瑞,刘京. 2009.土壤养分元素空间分布不同插值方法研究――以榆林市榆阳区为例,28(2): 177-182
    张镱锂,刘林山,摆万奇,郑度,李双成,阎建忠. 2002.青藏公路对区域土地利用和景观格局的影响——以格尔木至唐古拉山段为例.地理学报, 57 (3): 253-266
    赵斌,王玉丰等. 2002.辽宁省开展耕地地力评价因素的探讨.农业经济, (12): 32-33
    赵定海,黄玺瑛. 2007.栅格图矢量化技术中的细线追踪算法研究.装甲兵工程学院学报, 21(2): 24-28
    中国科学院南京土壤研究所. 1978.土壤理化分析.上海:上海科学技术出版社
    中华人民共和国农业部. 1997.全国耕地类型区、耕地地力等级划分(NY/T309-1996).中国标准出版社
    周勇,田有国,任意,汪善勤,张海涛. 2003.基于GIS的区域土壤资源管理决策支持系统.系统工程理论与实践, (3): 140-144
    朱照宇,邓清禄,匡耀求,欧阳婷萍,黄宁生. 2001.土地资源质量及可持续利用宏观评价指标与TLEL模式.地球科学-中国地质大学学报, 26(2): 217-220
    庄大方,刘纪远. 1997.中国土地利用程度的区域分异模型研究.自然资源学报, 12(2): 105-111.
    宗跃光,王蓉,汪成刚,王红扬,张雷. 2007.城市建设用地生态适宜性评价的潜力---限制性分析---以大连城市化区为例.地理研究, 26(6): 1117-1126
    Bibby J S, Mackney D.1969. Land Use Capability Classification.SoilSurvey of England and Wales,Technical Monograph
    Canada Land Inventory.1972. SoilCapability Classification forAgriculture.The Canada Land Inventory ReportNo. 2[R]. Department of RegionalEconomic Expansion
    Danesh M. 1995. Practical applications of geographic information systems and digital elevation models in water resources development. WRM’95 Proceedings of Regional Conference on Water Resources Management, Isfahan, 301-310
    David R. Lapena, Lawrence W. 1996. An investigation of the spatial association between snow depth and topography in a Prairie agricultural landscape using digital terrain analysis . Hydrology, 184(3-4), 15 October 1996: 277-298
    FAO.1976.A Framework for Land Evaluation.Rome.
    Klingebiel A A , Montgomery P H.1961.Land Capability Classification. USDA Handbook: 210 Ostendorf B, Reynolds J F. 1998. A model of arctic tundra vegetation derived from topographic gradients. Landscape Ecology, 13: 187-201
    Pan J J, Zhao T L, Zhao Q Q. 2005. Dynamcs of soil erosion in xingguo County,China,determined using remote scnsing and GIS. Pedosphere, 15(3): 356-362
    Saaty T L. 1980. The Analytical Hierarchy Process: Planning,Priority Setting, Resource Allocation. New York. MeGraw Hill
    Swsnond F J, Kratz T K, Caine N. 1988. Landform effects on ecosystem pattern and processes. BioScience, 92-99
    Tomlin C D. 1990. Geographic information systems and cartographic modeling. Prentice-Hall, Englewood Cliffs, NJ
    Wang K, Shi X Z, Yu D S, Shi D M, Chen J M, Xu B B, Liang Y, Li D C. 2005. Environmental factors affecting temporal and spatial dynamics of soil erosion in Xingguo County,South China. Pedosphere, 15 (5): 620-627
    Wen H, Qian YS. 1990. Research on the effect of agriculture on nitrate pollution of groundwater in northern China plain. Agro-Environ Protect, 9: 1-5
    Yang HD, Hu YM, Deng FQ,Chen FX,Wang F. 2005. Application of immune algorithm to evaluation of soil resource quality. Pedosphere, 660-668
    Zhang J, Goodchild M F. 2002. Uncertainty in Geographic Information. New York:Taylor & Francis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700