用户名: 密码: 验证码:
热处理降蜡试制优质道路沥青
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蜡的存在严重影响道路沥青的使用性能,蜡使路面夏季发软易形成车辙,冬季发脆易形成裂缝,因此开发降低蜡含量的新工业技术具有重大意义。本文采用化学热处理法降蜡,以蜡含量较高的中间-石蜡基属的减渣LYVR为考察对象,结合沥青质理论研究,筛选了两种添加剂沥青质分散稳定剂和油浆供氢剂馏分,考察了原料单独热处理及与添加剂混合热处理对蜡含量的影响,揭示了热处理降蜡的适宜条件及其物理化学本质,并在此基础上调制出了多种道路沥青产品。
     本文首先从渣油生焦的关键组分沥青质入手,为热处理降蜡筛选抑制生焦的添加剂,在生焦率低于0.1w%的前提下,提高热裂解降蜡的深度。实验表明,沥青质分散稳定剂在常温和热作用下均可降低沥青质分子的缔合作用,在渣油热反应体系中可减弱由沥青质分子物理凝聚引起的相分离,对生焦起物理延迟作用;油浆供氢剂馏分可提供活泼氢抑制缩合反应,对生焦起化学延迟作用。
     然后将减渣LYVR进行热处理,考察蜡含量的变化。结果表明,高温短时间比低温长时间的条件更有利于蜡含量的降低。单独热处理,蜡含量最低降至3.3w%,降蜡率为19.5%;与添加剂混合热处理以提高裂解深度,蜡含量最低降至2.2w%,降蜡率为46.3%。对于蜡含量稍高于3.0w%的孤岛减渣,仅通过单独热处理便可将蜡含量降至2.8w%。
     最后通过对原料LYVR热处理后大于500℃残渣组分各项性质的分析,选用蜡含量降至2.5w%的残渣组分进行沥青调和实验,结果表明,与原料LYVR、油浆或油浆重馏分调配可得到满足多种质量标准的道路沥青产品。
Performances of paving asphalts are markedly influenced by waxes, such as forming ruttings in summer and splits in winter, so it is very important to develop new methods for dewaxing. With vacuum residue LYVR as testing sample and thermal treatment as experimental method, this thesis aims to: 1) select additives to suppress coke formation during thermal treatment according to the theory of residue asphaltene, 2) investigate the influence of thermal treatment on wax-content, optimize dewaxing condition, and formulate highway paving asphalts.
     Firstly, some additives were selected on the basis of residue asphaltene which is the key element for coke formation during thermal treatment. The results were as follows: 1) at normal or high temperature, the selected asphaltene dispersant could reduce the association of asphaltene molecules, 2) hydrogen-transfer of FCC decanted oil and its sub-fractions were evaluated by using anthracene and 9,10-dihydroanthracene as chemical probes, one of sub-fractions could be taken as hydrogen-donor. During thermal treatment, the asphaltene dispersant can decrease phase separation caused by physical congregation of asphaltene molecules, which is physical-delay effect, the sub-fraction of FCC decanted oil can give active H to suppress condensed reactions, which is chemical-delay effect.
     Secondly, vacuum residue LYVR was treated by employing an autoclave. It was found that the condition of high temperature and short time was beneficial to reduce wax-content compared with that of low temperature and long time. When LYVR was treated alone, the minimum wax-content was 3.3w%, the wax-content decreased by 19.5%. When LYVR was treated with additives, the minimum wax-content was 2.2w%, the wax-content decreased by 46.3%. As to another vacuum residue GDVR, the wax-content of which was a little higher than 3.0w%, after treated alone, its wax-content decreased to 2.8w%.
     Lastly, a comprehensive evaluation of treated residue samples(>500℃) was made in this thesis and the one with wax-content of 2.5w% was selected to produce paving asphalts. The results showed that some kinds of highway paving asphalts were formulated by blending with vacuum residue LYVR, FCC decanted oil or heavy fraction of FCC decanted oil.
引文
[1] 黄伟祈. 用溶剂脱沥青方法从中东和吐哈减压渣油中生产高等级道路沥青. 石油沥青,1996;10(4):38-45
    [2] 许志军. C4溶剂脱沥青技术及其应用. 炼油与化工,1998;3(5):44-47
    [3] 陆善祥,刘馥英. 化学预处理和溶剂脱沥青的结合过程. 金山油化纤,1995;1(3):5-9
    [4] 李志军,宁爱民. 道路石油沥青蜡对沥青性质的影响. 石油沥青,1999;13(3): 1-23
    [5] Weihe I. A.. A solvent-residue Phase diagram for tracking residue conversion. Ind. Eng. Chem. Res., 1992; 31(2): 530-535
    [6] Que Guohe, Liang wenjie. Thermal conversion of ShengLi residue and its constituents. Fuel, 1992; 71: 1483-1485
    [7] 李生华,刘晨光,梁文杰等. 从石油溶液到碳质中间相Ⅰ. 石油胶体溶液及其理论尝析. 石油学报(石油加工),1995;11(1):55-60
    [8] 李生华,刘晨光,阙国和等. 渣油热反应体系中第二液相形成与液相掺兑物的关系. 石油学报(石油加工),1999;15(4):7-11
    [9] 张龙力,杨国华,阙国和等. 常压渣油热反应过程中胶体的稳定性. 石油学报(石油加工),2003;19(2):82-89
    [10] León O., Rogel E., Espidel J., et al. Asphaltenes: Structural Characterization, Self-Association, and Stability Behavior. Energy & Fuels, 2000; 14(1): 6-10
    [11] Aarre Kellomaki. Molar polarizations and dipole moments of bitumens. Fuel, 1991; 70: 1103-1104
    [12] Spiecker P. Matthew, Gawrys Keith L., Kilpatrick Peter K.. Aggregation and solubility behavior of asphaltenes and their subfractions. Journal of Colloid and Interface Science, 2003; 267(1): 178-193
    [13] Barbour R. V., Petersen J. C.. Molecular interactions of asphalt. Infrared study of the hydrogen-bonding basicity of asphalt. Anal. Chem., 1974; 46(2): 273-277
    [14] David L. Mitchell, James G. Speight. The solubility of asphaltenes in hydrocarbon solvents. Fuel, 1973; 52: 149-152
    [15] Branco Valter Antonio M., Mansoori G. Ali, De Almeida Xavier Luiza Cristina, et al. Asphaltene flocculation and collapse from petroleum fluids. Journal of Petroleum Science and Engineering, 2001; 32(2-4): 217-230
    [16] Mohamed R. S., Ramos A. C. S., Loh W.. Aggregation Behavior of Two Asphaltenic Fractions in Aromatic Solvents. Energy & Fuels, 1999; 13(2): 323-327
    [17] Rahimi P., Gentzis T., Fairbridge C.. Interaction of Clay Additives with Mesophase Formed during Thermal Treatment of Solid-Free Athabasca Bitumen Fraction. Energy & Fuels, 1999; 13(4): 817-825
    [18] Tanabe K., Gray M. R.. Role of Fine Solids in the Coking of Vacuum Residues. Energy & Fuels, 1997; 11(5): 1040-1043
    [19] Figueiras A., Granda M., Casal E., et al. Influence of primary QI on pitch pyrolysis with reference to unidirectional C/C composites. Carbon, 1998; 36(7-8): 883
    [20] Korai Yozo, Wang Yong-Gang, Yoon Seong-Ho, et al. Effects of carbon black addition on preparation of meso-carbon microbeads. Carbon, 1997; 35(7): 875
    [21] 王宗贤. 渣油悬浮床加氢裂化生焦及抑焦机制:[博士学位论文],石油大学北京:1999
    [22] 王宗贤,郭爱军,阙国和. 辽河渣油热转化和加氢裂化过程中生焦行为的研究. 燃料化学学报,1998;26(4):326-333
    [23] Gentzis Thomas, Rahimi P.. The effect of carbon additives on the mesophase induction period of Athabasca bitumen. Fuel Processing Technology, 2001; 69(3): 191-203
    [24] Gaspar González, Antonieta Middea. Peptization of asphaltene by various oil soluble amphiphiles. Colloids and Surfaces, 1991; 52: 207-217
    [25] Chia-Lu Chang, H. Scott Fogler. Stabilization of Asphaltenes in Aliphatic Solvents Using Alkylbenzne-Derived Amphiphiles. 1, Effect of the Chemical Structure of Amphiphiles on Asphaltene Stabilization. Langmuir, 1994; 10(6): 1749-1757
    [26] Chia-Lu Chang, H. Scott Fogler. Stabilization of Asphaltenes in Aliphatic Solvents Using Alkylbenzene-Derived Amphiphiles. 2, Study of the Asphaltene-Amphiphile Interactions and Structures Using Fourier Transform Infrared Spectroscopy and Small-Angle X-ray Scattering Techniques. Langmuir, 1994; 10(6): 1758-1766
    [27] León O., Rogel E., Urbina A., et al. Study of the Adsorption of Alkyl Benzene-Derived Amphiphiles on Asphaltene Particles. Langmuir, 1999; 15(22): 7653-7657
    [28] León O., Contreras E., Rogel E., et al. The Influence of the Adsorption of Amphiphiles and Resins in Controlling Asphaltene Flocculation. Energy & Fuels, 2001; 15(5): 1028-1032
    [29] Laux Horst, Rahimian Iradj, Butz Thorsten. Theoretical and practical approach to the selection of asphaltene dispersing agents. Fuel Processing Technology, 2000; 67(1): 79-89
    [30] Irwin A. Wiehe, Torris G. Jermansen. Design of Synthetic Dispersants for Asphaltenes. Petroleum Science and Technology, 2003; 21(3-4): 527-536
    [31] Oh K., Deo M. D.. Effect of Organic Additives on the Onset of Asphaltene Precipitation. Energy & Fuels, 2002; 16(3): 694-699
    [32] 张会成,邓文安,阙国和. 胜利渣油在掺兑物下热反应体系的相态分离行为.燃料化学学报,1997;25(3):227-232
    [33] 程建,刘以红,罗运华. 溶剂脱沥青生产道路沥青技术进展. 现代化工,2000; 20(9):28-31
    [34] 刘莉萍. 部分氧化法生产高等级道路沥青的工艺设计. 广东化工,2003;3(4):24-26
    [35] 宋涛,王仁辉,程国香. 科威特原油生产高等级道路沥青工艺及产品使用性能评价. 石油沥青,1999;13(4):20-24
    [36] 郭爱军. 渣油热反应体系内部氢转移行为的研究:[硕士论文],石油大学,东营:2000
    [37] 姜阿娜. 提高渣油延迟焦化液收改善石油焦质量研究:[硕士论文],石油大学,东营:2004
    [38] 张龙力. 渣油胶体稳定性的研究:[博士论文],石油大学,北京:2003
    [39] 李传,石斌,阙国和等. 渣油悬浮床加氢裂化与热裂化反应过程中胶体稳定性的比较. 石油炼制与化工,2005;36(4):1-5
    [40] 张龙力,杨国华,孙在春等. 质量分数电导率法研究几种不同渣油的胶体稳定性. 燃料化学学报,2003;31(2):115-118
    [41] Meyer D., Oviawe P., Nicole D., et al. Modeling of hydrogen transfer in coal hydroliquefication--4.The reaction of benzylphenylether with four hydroaromatic solvents at 300℃[J]. Fuel, 1990; 69: 1309-1316
    [42] Yokono T., Obara T., Iyama S., et al. Hydrogen donor and acceptor abilities of coal and pitch-factors govering mesophase development from low rank coal during carbonnization. Carbon, 1984; 22: 623-624
    [43] Wang S. L., Curtis C. W.. An investigation of hydrogen transfer in coprocessing using model donors and reduced resids. Energy& Fuel, 1994; 8(2): 446-454
    [44] Kamiya Y., Nagae S.. Relative reaction of hydrogen donor solvent in coal liquefaction. Fuel, 1985; 64: 1242-1245
    [45] 李生华,刘晨光,阙国和等. 渣油热反应体系中第二液相与焦的关系. 燃料化学学报,1998;26(1):1-6
    [46] 王宗贤,张宏玉,郭爱军等. 渣油中沥青质的缔合状况与生焦趋势研究. 石油学报(石油加工),2000;16(4):60-64
    [47] 刘晨光,朱春媚,梁文杰等. 减压渣油热反应特性与原料组成的关联. 石油学报(石油加工),1999;15(1):1-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700