用户名: 密码: 验证码:
基于重金属与底栖生物群落结构耦合关系的近海沉积物环境质量综合评价体系构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋沉积物作为陆源物质的主要接收地,在海洋物质循环中占据极为重要的地位,海洋沉积物的环境质量与水体及生物群落息息相关,对海洋生态系统运转产生影响,所以,科学客观地表征海洋沉积物的环境质量至关重要本学位论文在揭示渤海典型河口和海湾沉积物中重金属与底栖生物群落结构耦合特征的基础上,系统开展了沉积物指标筛选评价阈值和评价方法的解析,构建了海洋沉积物环境质量新型综合评价体系获得了如下的主要结论:
     1.渤海沉积物中重金属含量水平与底栖生物群落具有对应关系,底栖生物群落结构受重金属的影响具有显著的区域性差异,渤海湾底栖生物群落分布显著受As影响,为As提供了群落水平上的关键生态相关性证据;莱州湾底栖生物在Zn含量较高的站位数量较多,显示在低含量水平下Zn对生物生长的促进作用;锦州湾底栖生物群落受Cu Pb Zn和Cd等重金属严重污染影响,结构和功能受到严重损害,难以在该海域生存
     渤海湾沉积物金属含量明显反映了沿岸人为活动的影响,南部远岸区站位底栖生物群落结构显著受到重金属影响,多样性较低,软体动物占绝对优势地位典则对应分析(Canonical correspondence analysis,简称CCA)分析结果表明Zn对近岸海域底栖生物的分布影响较大,As和Hg对南部海域的底栖生物的影响也较为显著,其中As与底栖生物群落分布显著相关(F=1.988,P=0.0260),这为As提供了群落水平上的关键生态相关性证据
     莱州湾沉积物中重金属具有人为源和自然源,其中河流径流为主要输入途径,相关性分析显示Cu和As可能具有相同来源重金属(Metals-PC1)底栖生物群落结构(DIM1)无显著统计相关性,表明相较于重金属,由河流输入引起的物理栖息环境变化是影响底栖群落结构更重要的因素统计分析还显示Zn与物种总丰度具有显著相关性(rs=0.646, P<0.01),这表明底栖生物在Zn含量较高的站位数量较多黄河口表层沉积物重金属含量水平整体较低的情况下,统计分析表明生物量大的底栖生物(软体动物)在重金属含量较高的站位数量较多
     锦州湾生态系统结构和功能严重退化,其沉积物中的Cu Pb Zn和Cd等长期处于高风险水平,其中尤以湾内靠近五里河排污口和葫芦岛锌厂的站位显著,对海洋生态生态系统造成了严重的影响底栖生物调查结果显示仅在零星站位发现极个别的底栖生物,表明在重金属严重污染的影响下,底栖生物仍难以在该海域生存,显示锦州湾沉积物中重金属污染严重
     2.基于沉积物化学-底栖生物群落结构耦合关系,以底栖生物群落结构变化与否作为沉积物环境质量好坏标准的沉积物环境质量综合评价结果显示,渤海(除锦州湾外)沉积物环境质量并未如先前人们所熟知的那么恶劣
     在渤海,渤海湾中部渤海中部以及莱州湾西部的沉积物环境质量普遍较好,而沉积物环境质量较差的站位仅分布于渤海湾南部黄河河口附近小清河口及莱州湾北部,其中渤海湾南部海域沉积物质量较差与高含量Hg的影响有关,莱州湾中北部沉积物质量较差与沉积物中高含量的Cu和As的影响有关,而黄河河口附近和莱州湾部分海域沉积物质量较差主要原因可能与以河流输入为主导的物理胁迫因子有关从这些海域的沉积物综合评价结果整体评判,沉积物质量较差的区域并不多,且从历史数据对分析可知,这些海域沉积物物中重金属水平均有显著下降的趋势,因此,渤海(除锦州湾外)沉积物环境质量并没有像先前人们所熟知的那么恶劣
     3.基于沉积物化学-底栖生物群落结构耦合关系,构建了海洋沉积物环境质量新型综合评价体系,包括筛选出5个组别共18种传统化学致污物和10种备选的新兴致污物的化学指标体系,构建了评价阈值,制定了综合评价指数(IQI)
     系统分析了化学评价指标的生态相关性,筛选出了5个组别共18种传统化学致污物和10种备选的新兴致污物的新型指标体系;基于柱状沉积物中重金属百年前含量,计算并确定了渤海不同区域的背景值;构建了以9个TECs8个PECs为基础,包含我国近海沉积物区域特征的一致性沉积物质量参考值;以渤海沉积物环境质量综合评价结果为依据,基于证据权重思想,构建了综合评价指数(IQI)
Marine sediments are main sinks for terrigenous materials, which play a critical rolein the marine biogeochemical cycles of matters. The environmental quality ofsediment is closely correlated with the water column and the benthic invertebratesinfaunal in particular. Thus a scientifically robust quality assessment framework isvital for marine sediments, since the latter ones are essential component of marineecosystem. Based on systematic study of coupling relationships between toxicmetals and benthic community structure in typical estuarine and marine sediments inBohai Sea, a novel integrated sediment quality assessment framework wasestablished including chemical measurement endpoints, chemical screening values,and an integrated sediment quality index. The main conclusions are as follows:
     1. The benthic community structures were closely correlated with the toxicmetal in the sediment of Bohai Sea. There were enormous regional variations onthe influences of metals on benthic community structures. Our results indicatedthat As in sediments of Bohai Bay was significantly correlated with the benthiccommunity alteration, providing key evidences in community levels in terms ofecological relevance. In case of Laizhou Bay, a trend of increasing species withincreasing proximity to stations with high concentration of Zn, which wassuggested by positive and significant correlations them. In respect of JinzhouBay, sediments were heavily contaminated by Cu, Pb, Zn and Cd, where onlyfew individuals on very occasional locations were found, indicating hardship forsurvival of benthos.
     Variations of toxic metals in sediment from Bohai Bay revealed the significantanthropogenic stressors from the coast. The benthic community structures wereapparently influenced by the toxic metals in the southern portion of Bohai Bay, withthe overwhelming predominance of Mollusca species and low diversity subsequently.Canonical correspondence analysis (CCA) results showed the benthic distribution inthe near shore stations was significantly influenced by Zn. For benthic community inthe southern portion of the Bay, CCA also suggested As and Hg were the mostinfluential stressors. Further, As was significantly correlated to the difference ofbenthic community structure at stations in the surveyed area implied by Monte Carlopermutation test (F=1.988, P=0.0260), which provides key evidences of ecologicalrelevance in the community level.
     For Laizhou Bay, trace metals in this area originate from both the natural andanthropogenic processes, with the riverine inputs predominated. There were alsopossible common sources of Cu and As indicated by significant positive correlations.The major axes of heavy metals (Metals-PC1) and benthic community structure(DIM1) were weak and insignificant correlated, indicating that metals may not be theprimary explanatory factors for benthic alterations. There were significantcorrelations (rs=0.646, P<0.01) between benthic abundance and Zn, which indicateda trend of increasing species with increasing proximity to stations with highconcentration of Zn. In respect of Huanghe River Estuary, the overall metalcontamination level was relatively low. The presence of larger size species (Mollusca)with increasing proximity to stations with higher metal contamination level wasinferred from Pearson correlation analysis between benthic data and chemical data.
     The Jinzhou Bay ecosystem has been severely degraded. Sediments in the surveyedregion were heavily contaminated by Cu, Pb, Zn and Cd, which poses highecological risks. Our results showed that the higher concentrations of metals werefound in the sediments located near the Wulihe River and Huludao Zinc Smelter,which indicated massive influences of the source locations. Benthic investigationrevealed that there were very few individuals on very occasional locations, which further indicated that the Jinzhou Bay ecosystem were seriously impaired.
     2. Integrated sediment quality assessment was performed in light of thecoupling relationships between benthic community structure alterations andtheir possible explanatory factors, usually toxic metals. The resulting pictures ofsediment quality in the Bohai Sea (excluding Jinzhou Bay) however showed thatlevels of metal contamination were minor-than-expected.
     In the study areas, unimpaired sediments were mainly rested far from the rivermouth, including the central portion of Bohai Bay and Bohai Sea, the western part ofLaizhou Bay. Impaired sediments however mainly distributed near the HuangheRiver mouth, Xiaoqinghe River mouth and northern portion of Laizhou Bay.Sediment degradation in southern portion of Bohai Bay was mainly resulted from Hg,while Cu and As may be the caused for sediment impairment in central north ofLaizhou Bay. For sediments in the Huanghe River Estuary and parts of Laizhou Bay,sediment impairment was mainly explained by river dominated stressors such asphysical habitat alteration rather than toxic metals. The overall results of integratedsediment quality assessment showed that the majority of sediment locations were notthe impaired ones. Additionally, Decades records of heavy metals in variouspublication results also suggested a mitigation trend of metals. Therefore, theenvironment quality of sediments in Bohai Sea (except Jinzhou Bay) wasminor-than-expected.
     3. In light of the coupling relationships between toxic metals and benthiccommunity alterations, a novel marine sediment quality assessment frameworkincluding18measurement endpoints in5categories and10backupmeasurements of emerging contaminants, chemical screening values, and anintegrated quality index was established.
     A selection of18traditional chemical endpoints distributed in5chemical groups and10backup measurements of emerging contaminants on the basis of the ecologicalsignificances. The geochemical background values for metals were calculated and summarized from the concentrations of metals in deep layers of core sediments formBohai Bay, Laizhou Bay and Jinzhou Bay, respectively. Further, the toxicitythreshold for metals were also derived from9single TECs and8single PECs(including TEL-PEL in China) by the method of consensus-based sediment qualityguidelines. Based on the integrated assessment results of Bohai Sea, an integratedquality index (IQI) was condensed form benthic community structure, predictedtoxicity and sediment contamination through a weight of evidence method.
引文
Adams W J, Chapman P M.2007, Assessing the harzard of metals and inorganic metlasubstances in aquatic and terrestrial systems[M]. SETAC.
    Adams W J, Green A S, Ahlf, W, et al.2005. Using sediment assessment tools and a weight ofevidence approach[M]//Wenning RJ, Bateley GE, Ingersoll CG, eds. Use of SedimentQuality Guidelines and Related Tools for the Assessment of Contaminated Sediments.Florida: SETAC Press, pp.163-225.
    Ankley G T, Phipps G L, Leonard E N, et al.1991. Acid-volatile sulfide as a factor mediatingcadmium and nickel bioavailability in contaminated sediments[J]. EnvironmentalToxicology and Chemistry,10:1299-1307.
    Apitz, S.E., Barbanti, A., Bocci, M., et al.2007a. The sediments of the Venice Lagoon (Italy)evaluated in a screening risk assessment approach: part I-application of internationalsediment quality guidelines[J]. Integrated Environmental Assessment and Management,3:393-414.
    Apitz S E, Barbanti A, Giulio Bernstein A, et al.2007b. The assessment of sediment screeningrisk in Venice Lagoon and other coastal areas using international sediment qualityguidelines [J]. Journal of Soils and Sediments,7:326-341.
    Apitz S E.2003. Analysis of the internationally used sediment quality guidelines (SQGs) for usein Venice Lagoon sediment assessment and management [R]. Herts, UK: SEAEnvironmental Decisions, pp.111-112.
    ASTM (American Society for Testing and Materials).2008. Standard test methods for measuringthe toxicityof sediment—associated contaminants with freshwater invertebrates, E1706-05E1[S]. Annual Book of Standards, Volume11.05. West Conshohocken, Pennsylvania.
    Bailer A J, Hughes M R, See K, et al.2002. A pooled response strategy for combining multiplelines of evidence to quantitatively estimate impact[J]. Human and Ecological RiskAssessment: An International Journal,8:1597-1611
    Barnett A M, Bay S M, Ritter K J, et al.2007. Sediment Quality in California Bays andEstuaries[R]. Southern California Coastal Water Research Project.
    Barrick R, Becker S, Brown L, et al.1988. Sediment quality values refinement:1988update andevaluation of Puget Sound AET (Apparent Effects Threshold), Final report[R], PTIEnvironmental Services, Bellevue, WA (USA).
    Batley G E.2012.“Heavy metal”-a useful term[J]. Integrated Environmental Assessment andManagement,8:215-215.
    Batley G E, Burton G A, Chapman P M, et al.2000. Uncertainties in sediment qualityweight-of-evidence (WOE) assessments[J]. Human and Ecological Risk Assessment: AnInternational Journal,8:1517-1547.
    Baudo R.2008. The bioassay-based approach in sediment quality assessment[J]. Annalidell'Istituto Superiore di Sanità,44:233-238.
    Bay S, Berry W, Chapman P M, et al.2007. Evaluating consistency of best professionaljudgment in the application of a multiple lines of evidence sediment quality triad[J].Integrated Environmental Assessment and Management,3:491-497.
    Bay S M, Weisberg S B.2012. Framework for interpreting sediment quality triad data[J].Integrated Environmental Assessment and Management,8:589-596.
    Belan T A.2004. Marine environmental quality assessment using polychaete taxocenecharacteristics in Vancouver Harbour[J]. Marine Environmental Research,57:89-101.
    Benedetti M, Ciaprini F, Piva F, et al.2012. A multidisciplinary weight of evidence approach forclassifying polluted sediments: Integrating sediment chemistry, bioavailability, biomarkersresponses and bioassays[J]. Environment International,38:17-28.
    Borgmann U, Norwood W P.2000. What is wrong with the sediment quality triad[M]//PenneyK C, Coady K A, Murdoch M H, Parker W R, Niimi A J, eds. Canadian Technical Report ofFisheries and Aquatic Sciences,2331:53.
    Borja A, Bricker S B, Dauer D M, et al.2008. Overview of integrative tools and methods inassessing ecological integrity in estuarine and coastal systems worldwide[J]. MarinePollution Bulletin,56:1519-1537.
    Borja A, Franco J, Pérez V.2000. A marine biotic index to establish the ecological quality ofsoft-bottom benthos within European estuarine and coastal environments[J]. MarinePollution Bulletin,40:1100-1114.
    Braithwaite R A, McEvoy L A.2004. Marine biofouling on fish farms and its remediation[J].Advances in Marine Biology,47:215-252.
    Brumbaugh W G, Hammerschmidt C R., Zanella L, et al.2011. Interlaboratory comparison ofmeasurements of acid-volatile sulfide and simultaneously extracted nickel in spikedsediments[J]. Environmental Toxicology and Chemistry,30:1306-1309.
    Burton G A, Chapman P M, Smith E P.2002. Weight-of-evidence approaches for assessingecosystem impairment[J]. Human and Ecological Risk Assessment: A International Journal,8:1657-1673.
    Burton A G, Johnston E L.2010. Assessing contaminated sediments in the context of multiplestressors[J]. Environmental Toxicology and Chemistry,29:2625–2643.
    Burton G.A.2010. Metal Bioavailability and Toxicity in Sediments[J]. Critical Reviews inEnvironmental Science and Technology,40:852-907.
    CSBQTS (China State Bureau of Quality and Technical Supervision),2002. The People’sRepublic of China National Standards GB18668-2002Marine Sediment Quality[S].Beijing: The Standards Press of China.
    CSBQTS (China State Bureau of Quality and Technical Supervision),2008. The People’sRepublic of China National Standards GB17378.5-2007The Specification for marinemonitoring Part5: Sediment analysis[S]. Beijing: The Standards Press of China.
    Chapman P M.1989. Current approaches to developing sediment quality criteria[J].Environmental Toxicology and Chemistry,8:589-599.
    Chapman P M.1990. The sediment quality triad approach to determining pollution-induceddegradation[J]. Science of the Total Environment,97-98:815-825.
    Chapman P M.1996. Presentation and interpretation of sediment quality triad data[J].Ecotoxicology,5:327-539
    Chapman P M.2000. The sediment quality triad: then, now and tomorrow. International Journalof Environment and Pollution,13:351-356
    Chapman P M.2007. Do not disregard the benthos in sediment quality assessments![J] MarinePollution Bulletin,54:633-635.
    Chapman, P M.,2009. Letter to the editor: Borja et al.'s (2008)"Overview of integrative toolsand methods... worldwide" omits key elements[J]. Marine Pollution Bulletin58,456-456.
    Chapman P M.2011. Indices: Attractive delusions[J]. Integrated Environmental Assessment andManagement,7:313.
    Chapman P M, Anderson J.2005. A decision-making framework for sediment contamination[J].Integrated Environmental Assessment and Management,1:163-173.
    Chapman P M, Hollert H.2006. Should the sediment quality triad become a tetrad, a pentad, orpossibly even a hexad?[J]. Journal of Soils and Sediments,6:4-8.
    Chapman, P.M., Maher, B.,2014. The need for truly integrated environmental assessments[J].Integrated Environmental Assessment and Management,10:151.
    Chapman P M, McDonald B G, Lawrence G S,2002. Weight-of-evidence issues andframeworks for sediment quality (and other) assessments[J]. Human and Ecological RiskAssessment: An International Journal,8:1489-1515.
    Chapman, P.M., Smith, M.,2012. Assessing, managing and monitoring contaminated aquaticsediments[J]. Marine Pollution Bulletin,64:2000-2004.
    Chapman P M, Wang F.Y. Assessing sediment contamination in estuaries [J]. EnvironmentalToxicology and Chemistry,2001:20:3-22.
    Chapman, P.M., Wang, F.Y., Caeiro, S.S.,2013. Assessing and managing sedimentcontamination in transitional waters[J]. Environment International55:71-91.
    Cherry D S, Currie R J, Soucek D J, et al.2001. An integrative assessment of a watershedimpacted by abandoned mined land discharges [J]. Environmental Pollution,111:377-388
    Clarke K R.1993. Non-parametric multivariate analyses of changes in community structure[J].Australian Journal of Ecology,18:117-143.
    Clements W H, Hickey C W, Kidd K A.2012. How do aquatic communities respond tocontaminants? It depends on the ecological context[J]. Environmental Toxicology andChemistry,31:1932-40.
    CNEMC (China National Environmental Monitoring Center),1997. Report of comprehensiveenvironmental investigation in coastal ecosystems in Bohai Sea and Yellow Sea. pp.27-29.
    Cui B L, Li X Y.2010. Coastline change of the Yellow River estuary and its response to thesediment and runoff (1976-2005)[J]. Geomorphology,127:32-40.
    Dean H K.2008. The use of polychaetes (Annelida) as indicator species of marine pollution: areview[J]. Revista de Biologia Tropical,56:11-38.
    DeForest D K, Van Genderen E J.2012. Application of U.S. EPA guidelines in abioavailability-based assessment of ambient water quality criteria for zinc in freshwater[J].Environmental Toxicology and Chemistry,31:1264-1272.
    DelValls T A, Riba I.2007. A weight of evidence approach to assess sediment quality in theGuadalquivir estuary[J]. Aquatic Ecosystem Health and Management,10:101-106.
    Di Toro D M.2013. The interplay of environmental toxicology and chemistry in thedevelopment of sediment quality criteria[J]. Environmental Toxicology and Chemistry,32:7-9.
    Di Toro D M, Mahony J D, Hansen D J, et al.1992. Acid volatile sulfide predicts the acutetoxicity of cadmium and nickel in sediments[J]. Environmental Science&Technology,26:96-101.
    Di Toro D M, Zarba C S, Hansen D J et al.1991. Technical basis for establishing sedimentquality criteria for nonionic organic chemicals using equilibrium partitioning[J].Environmental Toxicology and Chemistry,10:1541-1583.
    Duan L Q, Song J M, Li X G, et al.2011. Thallium concentrations and sources in the surfacesediments of Bohai Bay[J]. Marine Environmental Research,73:25-31.
    Eggen R I L, Behra R., Burkhardt-Holm P, et al.2004. Challenges in ecotoxicology[J].Environmental Science&Technology,38:58-64.
    Eijsackers H J P, Groot M, Breure A M.2008. Upgrading system-oriented ecotoxicologicalresearch[J]. Science of the Total Environment406,373-384.
    Fairey R, Long E R, Roberts C A, et al.2001. An evaluation of methods for calculating meansediment quality guideline quotients as indicators of contamination and acute toxicity toamphipods by chemical mixtures[J]. Environmental Toxicology and Chemistry,20:2276-2286.
    Feng H A, Jiang H Y, Gao W S, et al.2011. Metal contamination in sediments of the westernBohai Bay and adjacent estuaries, China[J]. Journal of Environmental Management,92:1185-1197.
    Forbes V E, Calow P.2004. Systematic approach to weight of evidence in sediment qualityassessment: Challenges and opportunities. Aquatic Ecosystem Health&Management,7:339-350
    Gao X L, Chen C T A.2012. Heavy metal pollution status in surface sediments of the coastalBohai Bay[J]. Water Research,46:1901-1911.
    Gao X L, Li P M.2012. Concentration and fractionation of trace metals in surface sediments ofintertidal Bohai Bay, China[J]. Marine Pollution Bulletin,64:1529-1536.
    Gao X L, Li P M, Chen C T A.2013. Assessment of sediment quality in two important areas ofmariculture in the Bohai Sea and the northern Yellow Sea based on acid-volatile sulfide andsimultaneously extracted metal results[J]. Marine Pollution Bulletin,72:281-288.
    Gao X L, Zhou F X, Chen C T A,2014. Pollution status of the Bohai Sea: An overview of theenvironmental quality assessment related trace metals[J]. Environment International,62:12-30.
    Giangrande A, Licciano M, Musco L.2005. Polychaetes as environmental indicators revisited[J].Marine Pollution Bulletin,50:1153-1162.
    Goto D, Wallace W G.2010. Relative importance of multiple environmental variables instructuring benthic macroinfaunal assemblages in chronically metal-polluted salt marshes[J].Marine Pollution Bulletin,60:363-375.
    Gottardo S, Semenzin E, Giove S, et al.2011a. Integrated risk assessment for WFD ecologicalstatus classification applied to Llobregat River basin (Spain). Part I-Fuzzy approach toaggregate biological indicators[J]. Science of the Total Environment,409:4701-4712
    Gottardo S, Semenzin E, Giove S, et al.2011b. Integrated risk assessment for WFD ecologicalstatus classification applied to Llobregat River basin (Spain). Part II-Evaluation processapplied to five environmental Lines of Evidence[J]. Science of the Total Environment,409:4681-4692
    Grapentine L, Anderson J, Boyd D, et al.2002. A decision making framework for sedimentassessment developed for the Great Lakes[J]. Human and Ecological Risk Assessment: AnInternational Journal,8:1641-1655.
    Green R, Chapman P M.2011. The problem with indices[J]. Marine Pollution Bulletin,62:1377-1380.
    Hammerschmidt C R, Burton G A.2010. Measurements of acid volatile sulfide andsimultaneously extracted metals are irreproducible among laboratories[J]. EnvironmentalToxicology and Chemistry,29:1453-1456.
    Hartwell S I, Hameedi M J, Pait A S.2011. Empirical assessment of incorporating sedimentquality triad data into a single index to distinguish dominant stressors between sites[J].Environmental Monitoring and Assessment,174:605-623.
    He B, Yun Z J, Shi J B, et al.2013. Research progress of heavy metal pollution in China:Sources, analytical methods, status, and toxicity[J]. Chinese Science Bulletin,58:134-140.
    Horowitz A J, Elrick K A.1987. The relation of stream sediment surface area, grain size andcomposition to trace element chemistry [J]. Applied Geochemistry,2:437-451.
    Hu B Q, Li G G, Li J, et al.2013. Spatial distribution and ecotoxicological risk assessment ofheavy metals in surface sediments of the southern Bohai Bay, China[J]. EnvironmentalScience and Pollution Research,20:4099-4110.
    Hu J Y, Jin F, Wan Y, et al.2005. Trophodynamic behavior of4-monylphenol and nonylphenolpolyethoxylate in a marine aquatic food web from Bohai Bay, North China: Comparison toDDTs[J]. Environmental Science&Technology,39:4801-4807.
    Hu L M, Guo Z G, Feng J L, et al.2009. Distributions and sources of bulk organic matter andaliphatic hydrocarbons in surface sediments of the Bohai Sea, China[J]. Marine Chemistry,113:197-211.
    Hu L M, Zhang G, Zheng B H, et al.2009. Occurrence and distribution of organochlorinepesticides (OCPs) in surface sediments of the Bohai Sea, China[J]. Chemosphere,77:663-672.
    Hu W, Wang T, Khim J, et al.2010. HCH and DDT in Sediments from Marine and AdjacentRiverine Areas of North Bohai Sea, China[J]. Archives of Environmental Contaminationand Toxicology,59:71-79.
    Hutchings P.1998. Biodiversity and functioning of polychaetes in benthic sediments[J].Biodiversity and Conservation,7:1133-1145.
    Iannuzzi J, Butcher M, Iannuzzi T.2011. Evaluation of potential relationships between chemicalcontaminants in sediments and aquatic organisms from the lower Passaic River, New Jersey,USA[J]. Environmental Toxicology and Chemistry,30:1721-1728.
    Ingersoll C G, Kemble N, MacDonald D, et al.2001. Prediction of sediment toxicity usingconsensus-based freshwater sediment quality guidelines[C]. Proceedings of the7th FederalIntergency Sedimentation Conference., Reno,Nevada.
    Ingersoll C G, MacDonald D D, Brumbaugh W G, et al.2002. Toxicity assessment of sedimentsfrom the Grand Calumet River and Indiana Harbor Canal in northwestern Indiana, USA[J].Archives of Environmental Contamination and Toxicology,43:156-167.
    Ingersoll C G, MacDonald D D, Wang N, et al.2000. Predictions of sediment toxicity usingconsensus-based freshwater sediment quality guidelines[R], In EPA905/R-00/007,Chicago,Illinois: Great Lakes National Program Office.
    Jia H, Sun Y, Liu X., et al.2011. Concentration and bioaccumulation of dechlorane compoundsin coastal environment of northern China[J]. Environmental Science&Technology,45:2613-2618.
    Jiang W S, Pohlmann T, Sun J, et al.2004. SPM transport in the Bohai Sea: field experimentsand numerical modeling[J]. Journal of Marine Systems,44:175-188.
    Jin F, Hu J Y, Liu J, et al.2008. Sequestration of nonylphenol in sediment from Bohai Bay,North China[J]. Environmental Science&Technology,42:746-751.
    Jin X S, Shan X J, Li X, et al.2013. Long-term changes in the fishery ecosystem structure ofLaizhou Bay, China[J]. Science China Earth Sciences56:366-374.
    Keller G H, Zhen J, Yang Z S, et al.1990. Mass physical properties of Huanghe delta andSouthern Bohai Sea near-surface deposits, China[J]. Marine Georesources&Geotechnology,9:207-225.
    Kemp W, Boynton W, Adolf J, et al.2005. Eutrophication of Chesapeake Bay: historical trendsand ecological interactions[J]. Marine Ecology Progress Series,303:1-29.
    Khalaf M A, Kochzius M.2002. Changes in trophic community structure of shore fishes at anindustrial site in the Gulf of Aqaba, Red Sea[J]. Marine Ecology Progress Series,239:287-299.
    Kiffney P M, Clements W H.2003. Ecological effects of metals on benthic invertebrates[M]//SIMON T P. Biological Response Signatures: Indicator Patterns Using AquaticCommunities. CRC.
    Lee B G, Griscom S B, Lee J S, et al.2000a. Influences of dietary uptake and reactive sulfideson metal bioavailability from aquatic sediments[J]. Science,287:282-284.
    Lee B G, Lee J S, Luoma S N, et al2000b. Influence of acid volatile sulfide and metalconcentrations on metal bioavailability to marine invertebrates in contaminatedsediments[J]. Environmental Science&Technology,34:4517-4523.
    Leonard D, Robert Clarke K, Somerfield P J, et al.2006. The application of an indicator basedon taxonomic distinctness for UK marine biodiversity assessments[J]. Journal ofEnvironmental Management,78:52-62.
    Li G S, Wang H L, Liao H P.2010. Numerical simulation on seasonal transport variations andmechanisms of suspended sediment discharged from the Yellow River to the Bohai Sea[J].Journal of Geographical Sciences,20:923-937.
    Li X Y, Liu L J, Wang Y G, et al.2012. Integrated Assessment of Heavy Metal Contaminationin Sediments from a Coastal Industrial Basin, NE China[J]. Plos One,7: e39690.doi:10.1371/journal.pone.0039690.
    Linkov I, Loney D, Cormier S, et al.2009. Weight-of-evidence evaluation in environmentalassessment: Review of qualitative and quantitative approaches[J]. Science of the TotalEnvironment,407:5199-5205.
    Linkov I, Welle P, Loney D, et al.2011. Use of multicriteria decision analysis to support weightof evidence evaluation[J]. Risk Analysis,31:1211-1225
    Liu J H, Cao L, Huang W, et al.2013. Species-and tissue-specific mercury bioaccumulation infive fish species from Laizhou Bay in the Bohai Sea of China[J]. Chinese Journal ofOceanology and Limnology,31:504-513.
    Loayza-Muro R A, Elías-Letts R, Marticorena-Ruíz J K, et al.2010. Metal-induced shifts inbenthic macroinvertebrate community composition in Andean high altitude streams[J].Environmental Toxicology and Chemistry,29:2761-2768.
    Long E R, Chapman P M.1985. A sediment quality triad: Measures of sediment contamination,toxicity and infaunal community composition in Puget Sound[J]. Marine Pollution Bulletin,16:405-415.
    Long E R, Dutch M, Aasen S, et al.2004. Sediment quality triad index in Puget Sound [EB/OL].[2012-02-27]. http://www.ecy.wa.gov/pubs/0403008.pdf
    Long E R, Field L J, MacDonald D D.1998. Predicting toxicity in marine sediments withnumerical sediment quality guidelines[J]. Environmental Toxicology and Chemistry,17:714-727.
    Long E R, MacDonald C.2006. Calculation and uses of mean sediment quality guidelinequotients: A critical review[J]. Environmental Science&Technology,40:1726-1736.
    Long E R, MacDonald D D.1998. Recommended Uses of Empirically Derived SedimentQuality Guidelines for Marine and Estuarine Ecosystems[J]. Human and Ecological RiskAssessment: An International Journal,4:1019-1039
    Long,E R, MacDonald D D, Severn C G, et al.2000. Classifying probabilities of acute toxicity inmarine sediments with empirically derived sediment quality guidelines[J]. EnvironmentalToxicology and Chemistry,19:2598-2601.
    Long E R, MacDonald D D, Smith S. L, et al.1995. Incidence of adverse biological effectswithin ranges of chemical concentrations in marine and estuarine sediments[J].Environmental Management,19:81-97.
    Luo W, Lu Y, Wang T, et al.2010. Ecological risk assessment of arsenic and metals insediments of coastal areas of northern Bohai and Yellow Seas, China[J]. Ambio,39:367-375.
    Ma M, Feng Z, Guan C, et al.2001. DDT, PAH and PCB in sediments from the intertidal zoneof the Bohai Sea and the Yellow Sea[J]. Marine Pollution Bulletin,42:132-136.
    MacDonald D D, Carr R S, et al.1996. Development and evaluation of sediment qualityguidelines for Florida coastal waters[J]. Ecotoxicology,5:253-278.
    MacDonald D D, Dipinto L M, Field J, et al.2000a. Development and evaluation ofconsensus-based sediment effect concentrations for polychlorinated biphenyls[J].Environmental Toxicology and Chemistry,19:1403-1413.
    MacDonald, D.D., Ingersoll, C.G.,2010. Tools for assessing Contaminated sediments in freshwater, estuarine, and marine ecosystems[M]//Sedimentology of Aqueous Systems(eds.).Blackwell Publishing.
    MacDonald D D, Ingersoll C G, Berger et al.2000b. Development and evaluation ofconsensus-based sediment quality guidelines for freshwater ecosystems[J]. Archives ofEnvironmental Contamination and Toxicology,39:20-31
    Maruya, K A, Landrum P F, Burgess R M., et al.2012. Incorporating contaminant bioavailabilityinto sediment quality assessment frameworks[J]. Integrated Environmental Assessment andManagement8,659-673.
    McGeer J C, Brix K V, Skeaff J M, et al.2003. Inverse relationship between bioconcentrationfactor and exposure concentration for metals: implications for hazard assessment of metalsin the aquatic environment[J]. Environmental Toxicology and Chemistry,22:1017-1037.
    Mcpherson C, Chapman P M, Debruyn A M H, et al.2008. The importance of benthos in weightof evidence sediment assessments-A case study[J]. Science of the Total Environment,394:252-264.
    Meng W, Qin Y W, Zheng B H, et al.2008. Heavy metal pollution in Tianjin Bohai Bay,China[J]. Journal of Environmental Sciences,20:814-819.
    Menzie C, Henning M H, Cura J, et al.1996. Special report of the Massachusettsweight-of-evidence workgroup: A weight-of-evidence approach for evaluating ecologicalrisks[J]. Human and Ecological Risk Assessment: An International Journal,2:277-304.
    Moore, J.N., Luoma, S.N.,1990. Hazardous wastes from large-scale metal extraction. A casestudy[J]. Environmental Science&Technology,24,1278-1285.
    NCSB (North China Sea Branch of State Oceanic Administration).2010. Report on the State ofthe Marine Environment in North China Sea (2009)[R].
    NCSB (North China Sea Branch of State Oceanic Administration).2011Report on the State ofthe Marine Environment in North China Sea (2010)[R].
    Newman, M.C., Unger, M.A.,2002. Fundamentals of ecotoxicology[M]. CRC Press.
    Niu, H., Deng, W., Wu, Q., Chen, X.,2009. Potential toxic risk of heavy metals from sedimentof the Pearl River in South China[J]. Journal of Environmental Sciences,21,1053-1058.
    O'Connor T P, Paul J F.2000. Misfit Between Sediment Toxicity and Chemistry[J]. MarinePollution Bulletin,40:59-64.
    O'brien A L, Keough M J.2013. Detecting benthic community responses to pollution in estuaries:A field mesocosm approach[J]. Environmental Pollution,175:45-55.
    Paixao J F, de Oliveira O M, Dominguez J M, et al.2011. Integrated assessment of mangrovesediments in the Camamu Bay (Bahia, Brazil)[J]. Ecotoxicology and Environmental Safety,74:403-415.
    Pan K, Wang W X.2012. Trace metal contamination in estuarine and coastal environments inChina[J]. Science of the Total Environment,421-422:3-16.
    Peng H, Wei Q W, Wan Y, et al.2010. Tissue Distribution and Maternal Transfer of Poly-andPerfluorinated Compounds in Chinese Sturgeon (Acipenser sinensis): Implications forReproductive Risk[J]. Environmental Science&Technology,44:1868-1874.
    Peng H, Zhang K, Wan Y, et al.2012. Tissue Distribution, Maternal Transfer, and Age-RelatedAccumulation of Dechloranes in Chinese Sturgeon[J]. Environmental Science&Technology,46:9907-9913.
    Piva F, Ciaprini F, Onorati F, et al.2011. Assessing sediment hazard through a weight ofevidence approach with bioindicator organisms: A practical model to elaborate data fromsediment chemistry, bioavailability, biomarkers and ecotoxicological bioassays[J].Chemosphere,83:475-485.
    Qiao S Q, Shi X F, Zhu A M, et al.2010. Distribution and transport of suspended sediments offthe Yellow River (Huanghe) mouth and the nearby Bohai Sea[J]. Estuarine Coastal andShelf Science,86:337-344.
    Qin Y W, Meng W, Zheng B H, et al.2006. Heavy metal pollution in tidal zones of Bohai Bayusing the dated sediment cores[J]. Journal of Environmental Sciences,18:610-615.
    Ramos-Gomez J, Martins M, Raimundo J, et al.2011. Validation of Arenicola marina in fieldtoxicity bioassays using benthic cages: Biomarkers as tools for assessing sedimentquality[J]. Marine Pollution Bulletin,62:1538-1549.
    Reimann C, De Caritat P.2000. Intrinsic flaws of element enrichment factors (EFs) inenvironmental geochemistry[J]. Environmental Science&Technology,34(24):5084-5091.
    Reimann C, De Caritat P.2005. Distinguishing between natural and anthropogenic sources forelements in the environment: regional geochemical surveys versus enrichment factors[J].Science of the Total Environment,337:91-107.
    Reynoldson T B, Thompson S P, Milani D.2002. Integrating multiple toxicological endpoints ina decision-making framework for contaminated sediments[J]. Human and Ecological RiskAssessment: An International Journal,8:1569-1584
    Rickard D, Morse J W.2005a. Acid volatile sulfide (AVS)[J]. Marine Chemistry,97:141-197.
    Rickard D, Morse J W.2005b. Acid volatile sulfide: Authors' closing comments[J]. MarineChemistry,97:213-215.
    Rosenberg D M, Resh V H.1993. Freshwater biomonitoring and benthic macroinvertebrates[M].Chapman&Hall.
    Ryu J, Khim J S, Kang S-G, et al.2011. The impact of heavy metal pollution gradients insediments on benthic macrofauna at population and community levels[J]. EnvironmentalPollution,159:2622-2629.
    Scrimshaw, M.D., DelValls, T.A., Blasco, J., Chapman, P.M.,2007. Sediment Quality Guidelinesand Weight of Evidence Assessments[M]//Sustainable Management of Sediment Resources(eds.). Elsevier, pp.295-309.
    Schmidt T S, Soucek D J, Cherry D S.2002. Modification of an ecotoxicological rating tobioassess small acid mine drainage-impacted watersheds exclusive of benthicmacroinvertebrate analysis[J]. Environmental Toxicology and Chemistry,21:1091-1097
    Segner, H.,2007. Ecotoxicology–How to Assess the Impact of Toxicants in a Multi-FactorialEnvironment?[M]//Multiple Stressors: A Challenge for the Future. Springer Netherlands, pp.39-56.
    Semenzin E, Critto A, Rutgers M, et al.2008. Integration of bioavailability, ecology andecotoxicology by three lines of evidence into ecological risk indexes for contaminated soilassessment[J]. Science of the Total Environment,389:71-86.
    Shaw J P, Dondero F, Moore M N, et al.2011. Integration of biochemical, histochemical andtoxicogenomic indices for the assessment of health status of mussels from the TamarEstuary, UK[J]. Marine Environmental Research,72:13-24
    Simpson S L, Batley G E.2007. Predicting metal toxicity in sediments: a critique of currentapproaches[J]. Integrated Environmental Assessment and Management,3:18-31.
    Simpson S L, Batley G E, Chariton A A, et al.2005. Handbook for sediment qualityassessment[M]. Environmental Trust, Canberra, Australia.
    Slye J L, Kennedy J H, Johnson D R, et al.2011. Relationships between benthicmacroinvertebrate community structure and geospatial habitat, in-stream water chemistry,and surfactants in the effluent-dominated Trinity River, Texas, USA[J]. EnvironmentalToxicology and Chemistry,30:1127-1138.
    Smith E P, Lipkovich I, Ye K.2002. Weight-of-evidence (WOE): Quantitative estimation ofprobability of impairment for individual and multiple lines of evidence[J]. Human andEcological Risk Assessment: An International Journal,8:1585-1596.
    Song J M.2010. Biogeochemical Processes of Biogenic Elements in China Marginal Seas[M],Springer. pp.206-231.
    Swartz R C.1999. Consensus sediment quality guidelines for polycyclic aromatic hydrocarbonmixtures[J]. Environmental Toxicology and Chemistry,18:780-787.
    Tessier A, Campbell P, Bisson M.1980. Trace metal speciation in the Yamaska and St. Fran oisrivers (Quebec)[J]. Canadian Journal of Earth Sciences,17:90-105.
    Thompson B, Lowe S.2009. Assessment of macrobenthos response to sediment contaminationin the San Francisco Estuary, California, USA[J]. Environmental Toxicology and Chemistry,23:2178-2187.
    US EPA (US Environmental Protection Agency),1991. Draft analytical method fordetermination of acid volatile sulfide in sediment[S]. Washington, DC, USA: Office ofScience and Technology.
    Van der Oost R., Beyer, J, Vermeulen N P.2003. Fish bioaccumulation and biomarkers inenvironmental risk assessment: a review. Environmental Toxicology and Pharmacology,13:57-149.
    Wan Y, Hu J Y, An W, et al.2006. Congener-specific tissue distribution and hepaticsequestration of PCDD/Fs in wild herring gulls from Bohai Bay, North China: Comparisonto coplanar PCBs[J]. Environmental Science&Technology,40:1462-1468.
    Wan Y, Hu J Y, Yang M, et al.2005. Characterization of trophic transfer for polychlorinateddibenzo-p-dioxins, dibenzofurans, non-and mono-ortho polychlorinated biphenyls in themarine food web of Bohai Bay, North China[J]. Environmental Science&Technology,39:2417-2425.
    Wan Y, Hu J Y, Zhang K, et al.2008. Trophodynamics of polybrominated diphenyl ethers in themarine food web of Bohai Bay, North China[J]. Environmental Science&Technology,42:1078-1083.
    Wan Y, Jin X H, Hu J Y, et al.2007a. Trophic dilution of polycyclic aromatic hydrocarbons(PAHs) in a marine food web from Bohai Bay, North China[J]. Environmental Science&Technology,41:3109-3114.
    Wan Y, Wei Q W, Hu J Y, et al.2007b. Levels, tissue distribution, and age-related accumulationof synthetic musk fragrances in Chinese sturgeon (Acipenser sinensis): Comparison toorganochlorines[J]. Environmental Science&Technology,41:424-430.
    Wan Y, Wiseman S, Chang H, et al.2009. Origin of Hydroxylated Brominated Diphenyl Ethers:Natural Compounds or Man-Made Flame Retardants?[J]. Environmental Science&Technology,43:7536-7542.
    Wang F Y, Chapman P M.1999. Biological implications of sulfide in sediment-a reviewfocusing on sediment toxicity[J]. Environmental Toxicology and Chemistry,18:2526-2532.
    Wang H J, Bi N S, Saito Y, et al.2010. Recent changes in sediment delivery by the Huanghe(Yellow River) to the sea: Causes and environmental implications in its estuary[J]. Journalof Hydrology,391:302-313.
    Wang L, Lee F S C, Wang X R, et al.2007. Chemical characteristics and source implications ofpetroleum hydrocarbon contaminants in the sediments near major drainage outfalls alongthe coastal of Laizhou Bay, Bohai Sea, China[J]. Environmental Monitoring andAssessment,125:229-237.
    Wang Y, Liu R H, Fan D J, et al.2013. Distribution and Accumulation Characteristics of HeavyMetals in Sediments in Southern Sea Area of Huludao City, China[J]. Chinese GeographicalScience,23,194-202.
    Wang Y W, Liang L, Shi J B, et al.2005. Study on the contamination of heavy metals and theircorrelations in mollusks collected from coastal sites along the Chinese Bohai Sea[J].Environment International,31:1103-1113.
    WDNR (Wisconsin Department of Natural Resources).2003. Consensus-Based SedimentQuality Guidelines Recommendations for use&Application Interim Guidelines[R].Madison.
    Weed DL.2005. Weight of evidence: A review of concept and methods[J]. Risk Analysis,25:1545-1557.
    Wenning R J.2005. Use of sediment quality guidelines and related tools for the assessment ofcontaminated sediments[M]. SETAC.
    Wenning R J, Dodge D G.2000. Ecological risk assessment of navigation channel sediment inthe Venice Lagoon, Italy[R]. Alameda (CA): ChemRisk Group, McLaren/Hart.
    Wenning R J, Ingersoll C G.2002.Use of sediment quality guidelines (SQGs) and related toolsfor the assessment of contaminated sediments[M]. Summary from a SETAC PellstonWorkshop. Pensacola, Florida: SETAC Press.
    Wildhaber M L, Schmitt C J.1996. Estimating aquatic toxicity as determined through laboratorytests of Great Lakes sediments containing complex mixtures of environmentalcontaminants[J]. Environmental Monitoring and Assessment,41:255-289
    Wildsmith M, Rose T, Potter I, et al.2009. Changes in the benthic macroinvertebrate fauna of alarge microtidal estuary following extreme modifications aimed at reducingeutrophication[J]. Marine Pollution Bulletin,58:1250-1262.
    Wildsmith M, Rose T, Potter I, et al.2011. Benthic macroinvertebrates as indicators ofenvironmental deterioration in a large microtidal estuary[J]. Marine Pollution Bulletin,62:525-538.
    Wilkin R T, Ford R G.,2002. Use of hydrochloric acid for determining solid-phase arsenicpartitioning in sulfidic sediments[J]. Environmental Science&Technology,36:4921-4927.
    Winter M. Abundance of elements in earth’s crust.1996.[EB/OL].http://www.webelements.com/contents.html.
    Ye C M,1991. Pollution and protection of Bohai bay[J]. Marine Pollution Bulletin,23:15-18.
    Zhan S F, Peng S T, Liu C g, et al.,2010. Spatial and temporal variations of heavy metals insurface sediments in Bohai Bay, North China[J]. Bulletin of Environmental Contaminationand Toxicology,84:482-487.
    Zhang C S, Wang L J, Li G S, et al.2002. Grain size effect on multi-element concentrations insediments from the intertidal flats of Bohai Bay, China[J]. Applied Geochemistry,17:59-68.
    Zhang J.1996. Geochemistry of arsenic in the Huanghe (Yellow River) and its delta region-areview of available data[J]. Aquatic Geochemistry,1:241-275.
    Zhang J, Huang W W, Martin J M.1988. Trace metals distribution in Huanghe (Yellow River)estuarine sediments[J]. Estuarine Coastal and Shelf Science,26:499-516.
    Zheng N, Wang Q, Liang Z, et al.2008. Characterization of heavy metal concentrations in thesediments of three freshwater rivers in Huludao City, Northeast China[J]. EnvironmentalPollution154,135-142.
    Zhou H, Zhang Z N, Liu X S, et al.,2007. Changes in the shelf macrobenthic community overlarge temporal and spatial scales in the Bohai Sea, China[J]. Journal of Marine Systems,67:312-321.
    Zhou H, Zhang Z, Liu X S, et al.,2012. Decadal change in sublittoral macrofaunal biodiversityin the Bohai Sea, China[J]. Marine Pollution Bulletin,64:2364-2373.
    陈朝华,吴海燕,陈克亮,等.2011.近岸海域生态质量状况综合评价方法——以同安湾为例[J].应用生态学报,22:1841-1848.
    陈江麟,刘文新,刘书臻,等.2004.渤海表层沉积物重金属污染评价[J].海洋科学,28:16-21.
    陈静生,张莉,陈皓,等.1985.锦州湾沉积物重金属污染若千问题研究[J].环境科学学报,5:129-139.
    陈静生,周家义,1992.中国水环境重金属研究[M].中国环境科学出版社.
    陈克亮,时亚楼,林志兰,等.2012.基于突变理论的近岸海域生态风险综合评价方法——以罗源湾为例[J].应用生态学报,23:213-221.
    邓勇,邱瑞山,罗鑫,2007.基于证据权重法的成矿预测[J].地质通报,26:1228-1234.
    丁清峰,张本龙,王冠,金圣凯,2011.青海北巴颜喀拉成矿带基于专家证据权重法锑金矿资源潜力评价[J].吉林大学学报:地球科学版41:1423-1431.
    杜俊涛,陈洪涛,田琳.2010.北黄海表层沉积物中重金属含量及其污染评价[J].中国海洋大学学报,40:167-172.
    范文宏,张博,陈静生,等.2006.锦州湾沉积物中重金属污染的潜在生物毒性风险评价[J].环境科学学报26,1000-1005.
    符文侠,刘国贤.1996.锦州湾泥沙来源,洄淤状况与建港条件分析[J].沉积学报,14:149-156.
    付云娜,陈则玲.1992.锦州湾地区人发中Cd Hg累积的调查研究[J].海洋环境科学,11:61-63.
    甘华阳,梁开,郑志昌.2010.珠江口沉积物的重金属背景值及污染评价分区[J].地球与环境,38:344-350.
    郝静,李淑媛,周永芝,等.1989.渤海辽东湾沉积物中Cu, Pb, Zn, Cd环境背景值初步研究[J].海洋学报,11:742-748.
    何孟常,王子健.2002.利用综合评价方法和等级模型评价乐安江水体重金属污染[J].生态学报,22:80-86.
    胡宁静,石学法,刘季花,等.2011.莱州湾表层沉积物中重金属分布特征和环境影响[J].海洋科学进展,29:63-72.
    黄厚见,平仙隐,李磊,等.春,夏季长江口海水,沉积物及生物体中重金属含量及其评[J].生态环境学报,2011,20:898-903.
    黄华瑞,庞学忠,1992.渤海西南部潮间带沉积物中的重金属[J].环境科学,5:44-46.
    黄薇文,张经,陆贤崑.1985.黄河口地区底质中重金属的分布特征污染评价及其与泥沙运动的关系[J].环境科学,6:29-34.
    贾三石,杨义彪,门业凯,等.2010.基于证据权重法的辽西钼-多金属矿床评价预测[J].东北大学学报(自然科学版)31,572-575.
    贾树林.1983.锦州湾污染对海洋生物的影响[J].海洋环境科学,2:1-10.
    贾树林,王淑华,田力.1982.排污对锦州湾大型底栖动物生态的影响[J].海洋环境科学,1:79-87.
    李庆召,李国新,罗专溪,等.2009.厦门湾海域表层沉积物重金属和多环芳烃污染特征及生态风险评价[J].环境化学,6:869-875.
    李淑媛,郝静.1992.渤海湾及其附近海域沉积物中Cu,Pb,Zn,Cd环境背景值的研究[J].海洋与湖沼,23:39-48.
    李淑媛,刘国贤.1994.渤海沉积物中重金属分布及环境背景值[J].中国环境科学,14:370-376.
    李淑媛,苗丰民.1995.渤海底质重金属环境背景值初步研究[J].海洋学报,17:78-85.
    李淑媛,苗丰民.1996.渤海重金属污染历史研究[J].海洋环境科学,15:28-31.
    李淑媛,苗丰民,赵全民,等.2010.辽东半岛西南及渤海中部海域表层沉积物的地球化[J].海洋地质与第四纪地质,30:123-130.
    李新正,于海燕,王永强,等.2002.胶州湾大型底栖动物数量动态的研究[J].海洋科学集刊,44:66-73.
    李新正.2010.中国海洋大型底栖生物-研究与实践[M].北京:海洋出版社, pp.53-54.
    刘录三,郑丙辉,李宝泉,等.2012.长江口大型底栖动物群落的演变过程及原因探讨[J].海洋学报34:134-145.
    刘文新,汤鸿霄.1999.河流沉积物重金属污染质量控制参考值的研究I. C-B-T质量三合一方法(Triad)[J].环境科学学报,19:120-126.
    罗先香,张蕊,杨建强,等.2010.莱州湾表层沉积物重金属分布特征及污染评价[J].生态环境学报,19:262-269.
    吕鹏,朱鹏飞,毕志伟,等.2011.基于GIS和证据权模型的克什克腾旗有色金属成矿预测与评价[J].地质与勘探47:909-917.
    马嘉蕊,邵秘华,鲍永恩,等.1995.黄渤海辽宁省海湾的环境现状及其评价[J].环境科学研究8:27-34.
    马梅,王子健.2001.官厅水库和永定河沉积物中多氯联苯和有机氯农药的污染[J].环境化学,20:238-243.
    马绍赛,辛福言,崔毅,等.2004.黄河和小清河主要污染物入海量的估算[J].海洋水产研究,25:47-51.
    马锡年,李全生,沈万仁,等.1989.渤海南部沉积物中的铜和锌[J].海洋与湖沼20,381-386.
    秦喜文,张树清,李晓峰,等.2009.基于证据权重法的丹顶鹤栖息地适宜性评价[J].生态学报,29:1074-1082.
    秦延文,苏一兵,郑丙辉,等.2007.渤海湾表层沉积物重金属与污染评价[J].海洋科学,31:28-33.
    水利部黄河水利委员会,2010年黄河泥沙公报[EB/OL].http://www.yellowriver.gov.cn/nishagonggao/2010/index.html.
    宋金明.1997.中国近海沉积物-海水界面化学[M].海洋出版.1-222.
    宋金明.2000.黄河口邻近海域沉积物中可转化的磷[J].海洋科学,24:42-45.
    宋金明.2004.中国近海生物地球化学[M].山东科技出版社.1-591.
    孙丕喜,王波,张朝晖,等.2006.莱州湾海水中营养盐分布与富营养化的关系[J].海洋科学进展,24:329-335.
    宛立,王年斌,丁倩,等.2009.锦州湾海域重金属的污染分布[J].水产科学28,55-59.
    王化泉,赵丽云,1985.海洋环境质量化学生态学因素综合评价的初步研究-粤东近岸浅海区评价[J].海洋环境科学,4:10-16.
    王树芬,尚龙生,朱建东.1983.锦州湾海区几种海洋动物重金属含量[J].海洋环境科学,2:39-45.
    王伟力,耿安朝,刘花台,等.2009.九龙江口表层沉积物重金属分布及潜在生态风险评价[J].海洋科学进展,27:502-508.
    文梅,鞠莲,易柏林,等.2011.双台子沉积环境质量综合评价[J].中国海洋大学学报(自然科学版),41:391-397.
    吴斌,宋金明,李学刚,等.2011.一致性沉积物质量参考值(CBSQGs)及其在近海沉积物环境质量评价中的应用[J].环境化学,30:1949-1956.
    吴斌,宋金明,李学刚.2013.黄河口表层沉积物中重金属的环境地球化学特征[J].环境科学,34:1324-1332.
    吴晓燕,刘汝海,秦洁,等.2007.黄河口沉积物重金属含量变化特征研究[J].海洋湖沼通报, S1:69-74.
    翁仲颖,黄延林,1996.沉积物粒度对重金属吸附的影响[J].环境工程14,47-50.
    徐亚岩,宋金明,李学刚,等.2012.渤海湾表层沉积物各形态重金属的分布特征与生态风险评价[J].环境科学,33:732-740.
    薛敏,史致丽,吕小乔,等.1988.黄河口及邻近海域表层沉积物中有机物锌,铜,铁,锰的分布特征[J].海洋湖沼通报,3:44-49.
    于萍,刘汝海,王艳,等.2010.葫芦岛南岸海域沉积物重金属生态风险评价[J].中国海洋大学学报(自然科学版)40,151-156.
    张秋丰,屠建波,胡延忠,等.2008.天津近岸海域生态环境健康评价[J].海洋通报,27:73-78.
    张启明,陈建平,齐先茂,2007.基于GIS的证据权法在三江北段铜多金属成矿预测中的应用[J].沉积与特提斯地质27,106-112.
    张莹,吕振波,徐宗法,等.2012.环境污染对小清河口大型底栖动物多样性的影响[J].生态学杂志,31:381-387.
    张玉凤,王立军,霍传林,等.2008.锦州湾表层沉积物重金属污染状况评价[J].海洋环境科学,27:178-181.
    张玉凤,宋永刚,王立军,等.2011.锦州湾沉积物重金属生态风险评价[J].水产科学30:156-159.
    张远辉,杜俊民.2005.南海表层沉积物中主要污染物的环境背景值[J].海洋学报,27:161-167.
    赵宝刚,邵秘华,鲍永恩,等.2008.东海表层沉积物中重金属集散特征及变化规律[J].大连海事大学学报,34:13-16.
    赵其渊,李家丰,丁红,等.1985.黄河口沉积物微量元素的多元统计分析[J].山东海洋学院学报,15:169-178.
    赵一阳.1983.中国海大陆架沉积物地球化学的若干模式[J].地质科学,4:307-314.
    赵一阳,鄢明才.1994.中国浅海沉积物地球化学[M].北京:科学出版社.175-178.
    赵志芳,党伟,王瑞雪,等.2010.基于证据权重法的区域地质环境稳定性遥感评价研究[J].国土资源遥感22:9-13.
    中国海湾志编纂委员会.1997.中国海湾志,第二分册:辽东半岛西部和辽宁省西部海湾[M].北京:海洋出版社.
    中国海湾志编纂委员会.1998.中国海湾志,第十四分册:重要河口[M].北京:海洋出版社,pp.75.
    周红,华尔,张志南.2010.秋季莱州湾及邻近海域大型底栖动物群落结构的研[J].中国海洋大学学报(自然科学版),40:80-87.
    周红,张志南.2003.大型多元统计软件PRIMER的方法原理及其在底栖群落生态学中的应用[J].青岛海洋大学学报(自然科学版),33:58-64.
    周秀艳,王恩德,朱恩静.2004.辽东湾河口底泥中重金属的污染评价[J].环境化学,23:321-325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700