喷射沉积铝合金致密化技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喷射沉积技术作为一种新型的金属及金属基复合材料制备技术,在高性能材料制备方面具有独特的优越性。但喷射沉积坯料含有一定的孔隙度,直接使用性能较差,必须通过后续的致密化和塑性变形才能真正实现其高性能。由于孔隙的存在,喷射沉积材料的成形性能较差,直接使用常规的塑性加工工艺(如锻造、轧制等)对其进行加工,因为应力状态容易导致裂纹的形成。而采用挤压等工艺,由于受到设备的限制,无法实现大尺寸坯料的变形。本文针对不同形状的喷射沉积坯料,对大尺寸喷射沉积坯料和喷射沉积板坯的致密化技术分别进行了研究。对于大尺寸坯料而言,在利用有限元技术优化楔压工艺的基础上,首次提出了梯温楔压工艺。而对于喷射沉积板坯而言,对新型的陶粒轧制和外框限制工艺进行了系统的研究。本论文的主要研究内容和研究结论如下:
     (1)研究了喷射沉积5A06铝合金多孔材料高温压缩变形行为及显微组织的演变规律。实验结果表明:喷射沉积5A06铝合金热压缩变形的流变应力随温度的升高与应变速率的降低而减小;在较高的变形温度下,应力-应变曲线较平缓,未出现明显的屈服点;而在较低的变形温度下,应力–应变曲线呈上升趋势,未出现峰值。
     建立了喷射沉积5A06铝合金热压缩变形流变应力的本构方程,将流变应力模型计算值与实测值进行比较,结果较为精确,为有限元数值模拟分析提供了数学模型。并对热压缩后显微组织进行了金相分析和硬度测试,初步探明了孔洞及材料硬度同温度和应变速率的关系。
     建立了单轴压缩时相对密度与高向变形量之间的理论关系,并用有限元模拟了单轴热压缩过程,结果显示理论公式与模拟结果和实验结果三者吻合较好,互相佐证。
     (2)借助于有限元软件,针对大尺寸喷射沉积坯料研究了楔形压制实验中不同的压制温度和压制速度以及压制方式等相关工艺参数对变形与致密化的影响,结果表明:双面楔压可有效提高致密化效果,合理的楔压温度是450~500℃,合理的楔压速度是0.5~1.0mm/s。
     (3)在楔压工艺的基础上,提出了梯温楔压工艺,对梯温楔压过程中致密化和组织演变规律进行了研究,并与恒温楔压结果进行了比较。研究结果表明:梯温楔压工艺可以有效提高喷射沉积坯料整体的致密化效果。当高向变形量达到25%时,坯料沿高向的密度分布均匀,整体相对密度能达到95%以上。与恒温楔压工艺比较发现,采用梯温楔压能增加坯料底部的横向流动,达到消除孔隙的效果,坯料底部的相对密度有很大的提高。通过对比梯温楔压和恒温楔压后坯料的微观组织发现,梯温楔压工艺能有效改善喷射沉积多孔坯料的微观组织。当高向变形量为25%时,与恒温楔压坯料中存在较多孔洞相比,梯温楔压试样已基本致密。由于梯温楔压工艺能提高喷射沉积多孔坯料的致密化效果,因此使梯温楔压试样的力学性能也得到了大幅度的提高。梯温楔压后的断口形貌说明,梯温楔压后材料中大量的孔隙得以消除,同时SiC颗粒与基体间的结合得到了有效改善。
     (4)研究了陶粒轧制工艺参数诸如轧制方式和原始坯件的设计对轧制变形行为的影响,结果表明:采用道次间180°转向轧制工艺,且坯料尺寸调整为L×B×H=30×30×8mm能够满足喷射沉积铝合金板坯轧制成形性能的要求。对在陶粒轧制工艺条件下喷射沉积板坯的致密化规律和变形规律的研究表明:由于陶瓷颗粒对材料纵向和横向变形的阻碍作用使多孔材料的延伸变形量明显小于常规轧制,从而减小了促使裂纹形成的拉应变,有利于材料的致密化进程。在陶粒轧制过程中,板坯在高向变形量达到65%时仍不会形成表面裂纹,而在常规轧制变形中,当轧制高向变形量为26.5%时轧件表面就已经出现较多细密的横向裂纹。陶粒轧制工艺成功地改善了喷射沉积铝合金板坯直接轧制的加工性能,板坯在先陶粒轧制致密再直接轧制工艺下通过充分的变形,能得到较好的室温力学性能,轧制出的8009Al/SiCp复合材料板材的抗拉强度和伸长率分别为505.0MPa和6.5%。
     在陶粒轧制过程中喷射沉积板坯的致密化和轧制变形行为与用于传递压力的陶瓷颗粒介质特性有关。采用200目Al2O3进行陶粒轧制时,喷射沉积铝合金板坯的致密化效果和轧制成形性能最佳。
     (5)分析了外框限制轧制技术的工艺条件和影响喷射沉积坯料致密化效果的各种因素,对合理的外框限制轧制工艺进行了研究。实验结果表明:采用外框限制轧制技术能有效地提高喷射沉积板坯的轧制成形性能,可以避免常规轧制工艺中存在的喷射沉积坯料容易开裂的问题,合理地控制轧件与边框间的间隙尺寸有利于提高沉积坯的致密化效果。当外框和坯料的长度和宽度间隙分别为θB=4~6%,θL=7.5~10%时,板坯的致密化效果和轧制成形性能最佳。
     研究了在外框限制轧制工艺条件下喷射沉积板坯的致密化变形行为和孔洞、组织的演变规律,分析了轧制板材的力学性能。在轧制的初始阶段,轧件高向上的变形不均匀,高向变形量由表面层向中心层逐渐减小。当轧件充满边框内的间隙后,轧件的高向变形逐渐趋于均匀。在轧制过程中,轧件上表面的致密化速度最快。在喷射沉积8009Al/SiCp坯件的轧制过程中,SiC颗粒容易被破碎和细化,其分布也趋于均匀。喷射沉积坯料通过外框限制轧制后致密度最高可达到99.0%,轧件去除边框后可以直接进行常规轧制变形而不会出现裂纹;轧制出的5A06Al合金的抗拉强度和伸长率分别为340.0MPa和12.0%;8009Al/SiCp复合材料板材的抗拉强度和伸长率分别为450.0MPa和9.5%。
As an advanced material preparation technology, spray deposition has an advantage in producing high performance alloys and metal matrix composites. However, the workability and mechanical properties of spray deposited preforms are poor owing to the porosity formed during the deposition processing. So, further densification and plastic deformation treatment are needed to prepare fully dense products with high mechanical properties. Due to the porosity, the forming property of spray deposited preforms is poor. Thereby, processed directly by tranditional plastic working, such as forging and rolling, spray deposited preforms are easy to crack during the processing, because of stress condition. Resultingly limitation of equipment, it is difficult to densify the spray deposited preforms with large dimension by extrusion. According to shapes of spray deposited preforms, different densification technologies of preforms with large dimension and sheets were investigated respectively. As for spray deposited preforms with large dimension, the process parameters of Sequential Motion Compaction (SMC) were optimized by using finite element method. Based on SMC, a novel technique named Sequential Motion Compaction with Temperature Gradient (SMC-TG) was developed firstly. And as for spray deposited sheets, the Ceramic Rolling (CR) and Frame-Confined Rolling (FCR) were studied detailedly. The main researches in this study are as follows:
     (1) A study on the behavior of hot compression of spray-deposited 5A06 aluminum alloy was performed. The experimental results show that the flow stress of spray deposited 5A06 aluminum alloy during the hot compression decrease with the enhancement of deformation temperature and the decrease of strain rate. At the higher deformation temperature, stress-strain curves are gentle and there are no obvious yield points on curves. With comparing, at lower temperature, stress-strain curves are ascending curves, but no peak values on curves.
     A constitutive equation was established by analyzing the relationships of the flow stress and the strain and the deformation temperatures and strain rates. The proposed equation gives a good agreement with the measured values, which consequently can be as the numeric-simulated flow stress model of spray-deposited 5A06 aluminum alloy during hot deformation. In this study, the changes of the microstructure and the hardness have revealed the relationships of temperatures and the strain rates.
     A theoretic relationship to relative density and high reduction was established in the single axial compress, the results of FEM show that the theory values and the FEM results give a good agreement with the measured values.
     (2) By the finite element software, the effects of the different process parameters on the deformation and densification in the SMC process were researched. The results show that the two face SMC is needed and the reasonable temperature is 450℃~500℃, the reasonable velocity is 0.5~1.0mm/s.
     (3) Based on SMC, the novel technique named as“Sequential Motion Compaction with Temperature Gradient (SMC-TG)”is applied. The densification and evolution of microstructure during SMC-TG were investigated. The results of SMC and SMC-TG were compared. As a result, the SMC-TG process could improve the densification of preform. When the height reduction is 25%, the distribution of relative density along height direction is homogeneous, and the unitary relative density is above 95%. Compared with SMC process, the lateral flow on bottom of preform is increase, the effect on reduction of porosity is attained, and the bottom of preform has higher relative density. SMC-TG could improve the microstructure of spray deposited preforms, by compared SMC with SMC-TG. When the height reduction is 25%, the preform processed by SMC-TG is compact basically, and there are many pores in SMC preform. Due to SMC-TG could densify the spray deposited preform effectively, the mechanical property is improve obviously. From the results of fractography, after SMC-TG, the pore spaces have been eliminated, and at the same time, the bonding between SiC particles and matrix has been reformed.
     (4) The effects of processing conditions during“Ceramic Rolling”technique, such as rolling method and the size of preforms, were investigated. To meet the needs of forming property, the 180°turning rolling method must be adopted, and the best size of preform is L×B×H=30×30×8mm.
     The densification and deformation of spray deposited sheets during CR were investigated. Comparing with traditional rolling, due to the ceramic particles serve the function of rejection of metal flow, a remarkable lower elongation is attained for the ceramic-rolled samples, and tension strain which can induce the occurrence of crack is reduced. It is in favor of the densification process of preform. During traditional rolling, transversal cracks usually occur on the surface of preform when the thickness reduction is up to 26.5%. But in the processing of ceramic rolling, no cracks appear while the thickness reduction is 60%. The CR technique could improve the rolling forming property of spray deposited preform. After CR, it could attain favorable mechanical property at room temperature by direct rolling. The tensile strength and elongation of 8009Al/SiCp is 505.0MPa and 6.5% respectively.
     The densification and plastic deformation behaviors and the fracture behaviors of the as-spray deposited porous performs are related with the effects of particulate characteristics during CR process. The preform could attain best effect of densification and forming property by using the Al2O3 particle with the size of about 200 meshes.
     (5)The processing conditions of FCR and the influence factors on the densification effect were analyzed. The experimental results show that the FCR technique can greatly improve the workability of spray deposited preforms and avoid cracks whcich easily occur during the conventional rolling processing. The best gaps size in length and width wereθB=4.0~6.0% andθL=7.5~10.0% for the densification and workability of spray deposited preforms.
     The densification and deformation mechanism, evolution regularities of the pores and microstructures during the FCR processing are discussed. The mechanical properties of the as-rolled sheets were examined. At the beginning of the rolling processing, the distribution of thickness reduction in the as-rolled sheets were not uniform, the thickness reduction on the surface layer of the sheet was smaller than that in the center layers. When the preforms fully filled the frame, the thickness reduction distribution will tend to be uniform. The densification rate of the surface layer of the preforms was the most fast. During rolling of the 8009Al/SiCp preforms, the SiC particles easily break up into finer pieces and the distribution state tend to be more uniform. The relative density of spray deposited preform could attain 99.0%, and the preforms can be direct rolled without crack. The tensile strength and elongation of 5A06 aluminum alloy is 340.0MPa and 12.0% respectively, and for 8009Al/SiCp composite is 450.0MPa and 9.5% respectively.
引文
[1] Chen An Chen, Paul Acquaviva, Jung-Hoon Chun. Effects of droplet thermal state on deposit microstructure in spray forming. Scrip. Mater., 1996, 354(5): 689-696
    [2]田荣璋.铝合金及其加工手册.第1版.长沙:中南大学出版社, 2000, 328-332
    [3]陈振华著.多层喷射沉积技术及应用.第1版.长沙:湖南大学出版社, 2003, 1-9, 263
    [4] Han H N, Oh K H, Lee D N. Anlysisi of forging limit for sintered porous metals. Scrip. Metall. Mater., 1995, 32(12): 1934-1944
    [5]库恩H A,劳力A编著,任崇信译.粉末冶金工艺新技术及其分析(第1版).北京:冶金工业出版社,1982,58-61
    [6] Henry R, David P, Delo P. Physical Modelling of Powder Consolidation Processes. Int. Pro. Mater. Sci., 1997, 43: 263-275
    [7] Kim H S, Wom C W, Chun B S. Plastic deformation of porous metal with an initial inhomogeneous density distribution. J. Mater. Pro. Tech., 1998, (74): 213-217
    [8]黄培云.粉末冶金原理.第2版.北京:冶金工业出版社,2000,342-346
    [9] Singer A R E. The Principle of Spray Rolling of Metals. Met. Matter., 1970, 4: 246
    [10] Brooks R G, Leatham A G, Coombs J S. A Novel Method for the Production of Forgings. Metallurgia and Metal Forming, 1977, 4: 157
    [11] Brooks R G. US Patent Nos. 3826301, 1974-07-30
    [12] Brooks R G. US Patent Nos. 3909921, 1975-10-07
    [13] Lavernia E J, Grant N J. Ultrasonic Gas Atomization. Inter. J. Rapid Solidification, 1986, 2(2): 93
    [14] Annavarapu S, Doherty R D. Evolution of Microstructure in Spray Casting. Inter. J. of Powder Metall., 1993, 29(4): 331
    [15] Payne R D, Matteson M A, Moran A L. Application of Neural Networks in Spray Forming Technology. Inter. J. of Powder Metall., 1993, 29(4): 345
    [16] Tokizane N, Ohkubo Y, Shibue K. Proc. of 3rd Inter. Conf. on Spray Forming, eds. Wood J V, Cardiff, UK, 1996: 37
    [17] Duan X, Hao Y, Yoshida M, et al. Liquid Dynamic Compaction of Aluminium Alloy 7150. Inter. J. powder Metall., 1990, 29(2): 149
    [18] Amateau M T, Lee D S, Conway J C. Proc. of 3rd Inter. Conf. on Spray Forming, eds. Wood J V, Cardiff, UK, 1996: 321
    [19] Zhou J, Duszczyk J, Korevaar B M. As-Spray-Deposited Structure of an Al-20Si-5Fe Osprey Preform and its Development during Subsequent Processing. J. Mater. Sci., 1991, 26: 5275
    [20] Yaman M, Widmark H. Proc. of 1st Inter. Conf. on Spray Forming, 1990: 8
    [21] Kelley P, Wong C R, Moran A L. Controlled Porosing in Spray Formed Phosphor Bronze. J. Powder Metall., 1993, 29(2): 161
    [22]陈振华,黄培云,蒋向阳等.多层喷射沉积工艺.中国有色金属学报, 1995, 5(4): 66
    [23]陈振华,蒋向阳,杨伏良等.多层喷射沉积规律.中国有色金属学报, 1995, 5(4): 76
    [24] Watson, William G, Ashok, et al. Method to reduce porosity in a spray cast deposit. US Patent. 4961457, 1990-10-09
    [25] Grant P S. Spray forming. Progress in materials Sci., 1995, 39:497-545
    [26] Prashant Shukla, Mandal R K, Ojha S N. Microstructural modifications induced by spray forming of Al-Cu alloys. Mater. Sci. and Eng., 2001, A304-306:583-586
    [27]熊柏青,朱宝宏,张永安等.喷射成形Al-Fe-V-Si系耐热铝合金的制备工艺和性能.中国有色金属学报,2002,12(2):250-254
    [28]王洪海,马继清,白永贵等.喷射沉积Cu-Pb合金的研究.粉末冶金技术,1994,12(3)176-180
    [29] Kuhn H A. Effects of porosity in materials processing. American society of mechanical engineers, applied mechanics division, AMD, 1976, 16: 171-188
    [30] Mori K, Osakada K. Analysis of the forming process of sintered poeder metals by a rigid-plastic finite-element method. Int. J. Mech. Sci., 1987, 29(4): 229-238
    [31] James W B. Overview of high density P/M forming processes. The International Journal of Powder Metallurgy & Powder Technology, 1985, 21(3): 163-182
    [32] Ferguson B, Kuhn A, Smith O D, et al. Hot consolidation of porous performs using 'soft' tooling. The International Journal of Powder Metallurgy & Powder Technology, 1984, 20(2): 131-139
    [33] Bhargava S, Dube R K. Changes in the longitudinal flow and apparent plastic Poisson’s ratio of a porous metal strip during hot densification rolling. Metallurgical Transactions A, 1988, 19A: 1250-1211
    [34] Deshmukh A R, Sundararajan T, Dube R K, et al. Analysis of cold densification rolling of a sintered porous metal strip. Mater. Pro. Tech., 1998, (84): 9-72
    [35] Raman R V, Rele S V, Meeks H S. Novel processing route for fabrication of the high temperature YBA2CU3O7-x superconductor. Advances in PowderMetallurgy, 1990, 15: 451-457
    [36] Hebeisen C J. A review of the triennial conference on HIP Technology. International Journal of Powder Metallurgy, 2005, 41(5): 58
    [37] Anderson R L, Joanna G. High speed consolidation of rapidly solidified high temperature powder performs. Metal Powder Report, 1988, 43:678-681
    [38] Raman R V. Advances in full density consolidation of engineered materials. Advances in Powder Metallurgy, 1992, 2: 401-419
    [39]马福康.等静压技术.第1版.北京:冶金工业出版社,1991,27
    [40] Bergmann D, Fritsching U. Sequential thermal modeling of the spray-forming process. International Journal of Thermal Sciences, 2004, 43: 403-415
    [41] Ferguson B L. Compaction and Other Consolidation Processes. Advances in Powder Metallurgy, 1992, 2: 507
    [42] Raman R V, Rele S V, Lasley C C. Advanced processing of high temperature P/M copper alloy for aerospace applications. 1991 P/M in Aerospace and Defense Technologies, 1991, 2: 333-340
    [43] Ramas R V. Rapid consolidation of aluminum alloys. Light Metal Age, 1990, 48: 40
    [44] Mohan H G, Ivan L E, Raj S V. Influence of processing on the microstructure and mechanical properties of a NbAl3-base alloy. Journal of Materials Research, 1992, 7: 1696-1706
    [45] Lynn F B. Emerging alternatives to hot isostatic pressing. Carbide and Tool Journal, 1986, 18:17-27
    [46] Tang F, Hagiwara M, Schoenung JM. Formation of coarse-grained inter-particle regions during hot isostatic pressing of nanocrystalline powder. Scripta Materialia, 2005, 53(6): 619-624
    [47] Kim H S, Wom C W, Chun B S. Plastic deformation of porous metal with an initial inhomogeneous density distribution. J. Mater. Pro. Tech., 1998, (74):213- 217
    [48] Palm M, Preuhs J, Sauthoff G. Production scale processing of a new intermetallic NiAl–Ta–Cr alloy for high-temperature application: Part II. Powder metallurgical production of bolts by hot isostatic pressing. Journal of Materials Processing Technology, 2003, 136(3): 114-119
    [49] Miura H, Honda T, Hens K F. High performance 4600 steels by injection molding. Proc Powder Injection Molding Symp 92, 1992, 18(6): 203-217
    [50] Engstrom U, Johansson B, Rutz H, et al. High Density Materials for FutureApplications. Advances in Powder Metallurgy and Particulate Materials, Metal Powders Industries Federation, 1995, 3(11): 106-126
    [51] Zhou Z Y, Chen P Q, Zhao W B, et al. Densification model for porous metallic powder materials. J. Mater. Pro. Tech., 2002, 129: 385-388
    [52] Bergmann D, Fritsching U. Sequential thermal modelling of the spray- forming process. International Journal of Thermal Sciences, 2004, 43: 403-415
    [53] Shi X L, Shao G Q, Duan X L, et al. Mechanical properties, phases and microstructure of ultrafine hardmetals prepared by WC–6.29Co nanocrystalline composite powder. Mater. Sci. and Eng., 2005, A392: 335-339
    [54] Seop K H. Densification mechanisms during hot isostatic pressing of stainless steel powder compacts. Journal of Materials Processing Technology, 2002, 123(2): 319-322
    [55] Rahaman M N, Dutton R E, Semiatin S L. Fabrication of dense thin sheets ofγ-TiAl by hot isostatic pressing of tape-cast monotapes. Mater. Sci. and Eng., 2003, A360: 165-179
    [56] Abkowitz S. Isostatic Pressing of Complex Shapes from Titanium and Titanium Alloys, Production to Near Net Shape Source Book. American Society for Metals, 1983, 2: 167
    [57] Shima S, Oyane M. Plasticity theory for porous metallurgy. Int. J. Mech. Sci., 1976, 18(6): 285-291
    [58] Deshmukh A R, Sundararajan T, Dube R K, et al. Analysis of cold densification rolling of a sintered porous metal strip. Mater. Pro. Tech., 1998, (84): 56-72
    [59]詹美燕,陈振华.喷射沉积多孔材料轧制变形理论.材料研究学报, 2004, 18 (6): 661-667
    [60] Kuhn H A, Downey C L. Deformation characteristics and plasticity theory of sintered powder materials. Int. J. Powder Metallurgy, 1971, 7(1): 15-25
    [61]明田勇藏,津和秀夫.精密机械, 1969, 35: 765转引:岛进.粉末成形の力學にっぃて.材料, 1973, 238(22): 112
    [62] Schwarts E, et al. International Journal of Powder Metallurgy, 1969, 5: 79转引:岛进.粉末成形の力學にっぃて.材料, 1973, 238(22): 112
    [63] Suh N P. International Journal of Powder Metallurgy, 1969, 5: 69转引:岛进.粉末成形の力學にっぃて.材料, 1973, 238(22): 112
    [64]大矢根守哉.金属粉末の壓縮成形にする研究.ほか粉末および粉末冶金. 1976, 22(8): 11
    [65] Corapcioglu Y U. Constitutive equations for plastic deformation porous materials.Powder Technol., 1978, 21: 269-275
    [66] Kim K T, Suh J, Kwon Y S. Plastic field of cold isostatically pressed and sintered porous iron under tension and torsion. Powder Metall., 1990, 33: 321-329
    [67] Green R J. A plasticity theory for porous solids. Int. J. Mech. Sci., 1972, 14: 215-224
    [68] Doraivelu S M, Gegel H L, Gunasekera J S, et al. A new yield function for compressible P/M materials. Int. J. Mech. Sci., 1984, 26: 527-535
    [69] Kim K T. Elastic-plastic response of porous metals under triaxial loading. Int. J. Soilds struct., 1988, 24: 937-945
    [70] Rele S V, Raman R V, Kapoor D. Soild state densification of tungsten heavy alloys at low temperature and high pressures. Advances in Powder Metallurgy, 1992, 2: 421-429
    [71] Rabin B H, Wright R N, Knibloe J R. Reaction processing of iron aluminides. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, A153: 706-711
    [72]王尔德,张连洪,霍文灿.粉末多孔体的塑性泊松比与致密化方程.粉末冶金技术, 1987, 5(1): 1-5
    [73]张连洪,王祖堂.粉末冶金多孔可压缩材料塑性理论研究的进展.金属成形工艺, 1989, 4: 55-60
    [74]华林,毛华杰,赵仲治.粉末冶金锻造变形力和密度计算.粉末冶金工业, 2000, 10(1): 32-35
    [75]华林,赵仲治.烧结材料塑性理论及应用.机械工程学报, 1992, 28(4): 94-101
    [76]任学平,王尔德,霍文灿.粉末体的屈服准则.粉末冶金技术, 1992, 10(1): 8-12
    [77]卫平原,阮雪榆.粉末烧结材料塑性变形过程中的有限元分析.中国有色金属学报, 1994, 4(4): 56-61
    [78]彭大暑.塑性加工力学.第1版,长沙:中南大学出版社, 1987: 131
    [79] Brooks, Reginald G. Method and apparatus for making shaped articles from sprayed molten metal or metal alloy. 1984, US Patent, Re31,767
    [80] Alfred Richard Eric Singer. Method of forming composite metal strip. 1973, US Patent, 3775156
    [81] Gerling R, Schimansky F P, Wegmann G, et al. Spray forming of Ti-48.9Al (at.%) and subsequent hot isostatic pressing and forging. Mater. Sci. and Eng., 2002, A326: 73-78
    [82] Kuhn H A, Ferguson B L, Simith O D. Pseudo-HIP using conven-tional presses. Metal Powder Report, 1983, 38(6): 321-323
    [83]郭德,周志德.金属粉末轧制.第一版.北京:冶金工业出版社, 1984,77-79
    [84]詹美燕.喷射沉积材料压缩和轧制变形规律研究:[湖南大学博士学位论文].长沙:湖南大学, 2005, 6
    [85] Atkinson H V, Zulfia A, Filho A L, et al.Hot isostatic processing of metal matrix composites. Materials & Design, 1997, 18: 243-245
    [86] Pagounis E, Talvitie M, Lindroos V K. Consolidation behavior of a particle reinforces metal matrix composite during HIPing. Materials Research Bulletin, 1996, 3(110): 1277-1285
    [87] Kuhn H A. Effects of porosity in materials processing. American society of mechanical engineers, applied mechanics division, AMD, 1976, 16: 171-188
    [88]袁武华,詹美燕,徐海洋等.耐热铝合金的致密化工艺与材料性能.材料开发与应用,2003,18(3):18-21
    [89]袁武华,陈振华.高性能耐热铝合金管材的制备及性能.中南工业大学学报,2000,31(5):437-440
    [90]袁武华,徐海洋,陈清等.大尺寸耐热铝合金管坯的致密化及性能研究.湖南大学学报,2003,30(3):35-39
    [91]陈振华.现代粉末冶金技术.北京:化学工业出版社, 2007, 275-276
    [92]陈刚,刘鹏飞,范才河等.大型喷射沉积环件的楔压致密化加工.矿冶工程,2006,26(2):100-102
    [93]吉喆.大尺寸7075/SiCp复合材料循环压制工艺的研究:[湖南大学硕士学位论文].长沙:湖南大学,2006
    [94]袁武华,吉喆,陈振华.循环压制对喷射沉积7075/SiCp致密化的影响.湖南大学学报(自然科学版), 2006, 33(2): 82-85
    [95]张兴全,彭颖红,阮雪榆等.多孔体材料在镦粗变形过程中表面裂纹的有限元预测.上海交通大学学报, 1998, 32(5): 14-17
    [96] Mori K, Osakada K. Analysis of the Forming Process of Sintered Powder Metals by a Rigid-plastic Finite-element Method. International Journal of Mechanical Sciences, 1987, 29(4): 229-238
    [97] Oh S I, Gegel H. ALPIDP-MODELING of P/M forming by the finite element method. Proceedings of 14th NAMRC Conference, Minneapolis, Minnesota, 1986, 294-302
    [98]屠挺生,林大为.金属粉末烧结材料泊松比模型的探讨.金属成形工艺, 2001, 19(2): 4-7
    [99]侯红亮,焦满囤,米新兰.多孔材料挤压过程数值模拟.华北航天工业学院学报, 2000, 10(2): 5-8
    [100]侯红亮,任学平.可压缩材料挤压过程的有限元模拟.金属成形工艺, 2001, 19(3): 4-8
    [101] AShok, G K,颜炼.粉末冶金连杆的热锻:三维计算机模型.武钢技术, 1998, 36(6): 57-59
    [102] Wang P T. Thermo mechanical deformation of powder-based porous aluminum PartⅡ: Constitutive model including densification hardening. Powder technology, 1991, 66(1): 21-32
    [103] McQueen H J, Celliers O C. Application of hot workability studies to extrusion processing. PartⅢ: Physical and mechanical metallurgy of Al-Mg-Si and Al-Zn-Mg alloys. Canadian Metallurgical, Quarterly, 1997, 36 (2): 73-86
    [104] McQueen H J, Ryan N D. Constitutive analysis in hot working.Materials Science and Engineering A, 2002, 322(1-2): 43-63
    [105] Zhang Hui, Yang Libin, Peng Dashu, et al. Flow stress equation for multipass hot-rolling of aluminum alloys, Journal of Central South University of Technology, 2001, 8(1): 13-17
    [106]詹美燕,夏伟军,张辉等.喷射沉积-挤压FV0812耐热铝合金的热压缩变形流变行为研究.湖南科技大学学报(自然科学版), 2004, 19(2): 37-41
    [107]任学平,康永林.粉末塑性加工原理及其应用.北京:冶金工业出版社, 1998, 48, 56-60
    [108]刘建涛,陈焕铭,胡本芙等.某新型粉末高温合金的高温变形与动态再结晶.兵器材料科学与工程, 2004, 27(4): 10-13
    [109] Takuda H, Fujimoto H, Hatta N. Modeling on flow stress of Mg-Al-Zn alloys at elevated temperatures. Journal of Materials Processing Technology, 1998, 80-81(8): 513-516
    [110] Jonas J J, Sellars C M, Mc W J. Strength and structure under hot working conditions. Tegart Int. Metall. Reviews, 1969, 14(130): 1-24
    [111] Zener C, Hollomon J H. Effect of strain-rate upon the plastic flow of steel. J. Appl. Phys, 1944, 15(1): 22
    [112] Gronostajski Z. The constitutive equations for FEM analysis. Journal of Materials Processing Technology, 2000, 106(1-3): 40-44
    [113] Zener C, Hollomon J H. Problems in non-elastic deformation of metals. J. Appl. Phys, 1946, 17(2): 69-82
    [114] Zhan Mei-yan, Chen Zhen-hua, Zhang Hui, et al. Flow stress behavior of porousFVS0812 Aluminum Alloy during hot-compression. Mechanics Research Communications, 2006, 33(4): 508–514
    [115] Liu Wen-chang,Zheng Yang-zeng,Wang Ming-zhi, et al. Hot deformation behavior of 18Mn-18Cr-0.5N austenite steel.Iron and Steel, 1994, 29(7): 55-57.
    [116] Zhang B, Zhang H B, Ruan X Y, et al. The hot deformation behavior and dynamic recrystalization model of 35CrMo steel. Acta Metallurgical Sinica, 2003, 16(3): 183-191
    [117]刘助柏,王连东,刘国辉等.大型锻件铸造工艺理论与技术的进展.大型铸锻件, 1988, 2: 8-12
    [118] Lavernia E J. Spray atomization and deposition processing of particulate reinforced metal matrix composites. Key Engineering Materials, 1991, 53-55: 153-159
    [119] Chu M G, Denzer D K, Chakrabarti A K, et al. Evaluation of aluminum and nickel alloy materials produced by spray deposition. Materials Science and Engineering, 1988, 98: 227-232
    [120] Mathur P, Apelian D, Lawley A. Analysis of the spray deposition process. Acta Metall, 1989, 37(2): 429-443
    [121]范才河.喷射沉积5A06铝合金楔压致密化工艺的研究:[湖南大学硕士学位论文].长沙:湖南大学, 2006
    [122]葛荣德.粉末热压模型研究.硅酸盐学报, 1994, 22(3): 253-258
    [123]马福康.等静压技术.第一版.北京:冶金工业出版社, 1991, 27
    [124] Ferguson B L. Emerging alternatives to hot isostatic pressing. Int. J. Powder Metallurgy & Powder Technology, 1985, 21(3): 201-218
    [125]刘咏,周科朝,黄伯云等.粉末冶金成形技术—陶瓷模工艺.材料导报, 1996, 4: 19-23
    [126] Deibel C, Thornburg D R, Emley F. Continuous compaction by cyclic pressing. Powder Metallurgy, 1960, 5: 32-44
    [127] Pryds N H, Hattel J H, Pedersen T B, et al. Emerging alternatives to HIP. Acta Materials, 2002, (50): 4075
    [128] Chan H W. Ceracon process for P/M technology: A review of recent developments. Materials & Design, 1988, 9: 355-358
    [129] Ecer G M, Sakarcan M, Yeltekin S. Metals joining and coating using the Ceracon process. ASM, 1985, 9: 221-231
    [130] Raman R V, Rele S V, Hunn D L. Oxidation resistance of powder metallurgy zirconium aluminide densified by the Ceracon process. Advances in PowderMetallurgy and Particulate Materials, 1993, 6: 25-39
    [131]郑弃非,谢水生,袁冠森.利用ROC技术制备TiNi形状记忆合金的研究.稀有金属, 1999, 23(4): 284~288
    [132]韩凤麟主译,赖和怡主审.美国金属学会主编.金属手册.第九版.第七卷.北京:机械工业出版社,1994
    [133] Rawers J, Biancaniello F, Jiggetts R, et al. Warm-HIP compaction of attrition-milled iron alloy powders. Scripta Mater. 1999, 7(5): 311-319
    [134]苏A N,柯尔巴什尼可夫.颗粒材料.第1版.北京:国防工业出版社, 1986, 97-99
    [135] Ecer G M, Yeltekin S, Sakarcan M. Ceracon produced wear resistent P/M coatings. Progress in Powder Metallurgy, 1986, 41:701-722
    [136] Chan H W, Oslin B L, Sutherland T J, et al. Ceracon processing of P/M 2124 aluminum, Microstructure and tensile properties. International Journal of Powder Metallurgy, 1989, 25: 351-355
    [137] Beltz R J, Dankoff J D, Henry R J, et al. Microstructure and properties of vacuum sintered and Ceracon processed high speed steel-alumina composite materials. Advances in Powder Metallurgy, 1991, 6:177-189
    [138] Engstrom U, Johansson B, Rutz H, et al. High Density Materials for Future Applications. Advances in Powder Metallurgy and Particulate Materials, 1995, 3(11): 106-126
    [139] Atkinson H V, Zulfia A, Filho A L, et al. Hot isostatic processing of metal matrix composites. Materials & Design, 1997, 18: 243-245
    [140] Dube R K. Metal strip via roll compaction and related powder metallurgy routes. Inter. Mater. Reviews, 1990, 35(5): 253-291
    [141]詹美燕,匡勇,周明等.多孔金属及合金成形过程中的致密化与变形理论研究.稀有金属与硬质合金, 2002, 30(4): 42-47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700