水稻光合功能衰退与Rubisco结构与功能变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是我国最重要的粮食作物之一。提高其光合效率对于揭示光合作用机理、在
    现有基础上大幅度增加单位面积产量具有极其重要的意义。
     本文系统分析了两套杂交水稻(组合)剑叶光合功能衰退过程中光合参数的变化,
    结果表明:叶片光合功能衰退过程中,瞬时光合速率表现为高值持续期(APD)和
    速降期,叶绿素含量表现出相对稳定期(RSP)和速降期(SFP)。在各个光合参数下
    降过程中,碳同化关键酶RuBPCase活性的下降明显快于光合全电子传递活性的下
    降,提高RuBPCase的羧化效率成为提高光合效率的关键之一。
     叶源量是叶片一生同化CO_2的总量。本文就水稻剑叶叶源量及其与产量性状关系
    进行了研究。结果表明,水稻剑叶叶源量与单株产量、单穗重及每穗实粒数均呈极显
    著正相关,证明叶源量与产量性状紧密相关。通径分析进一步说明,光合功能期对叶
    源量的直接效应最大,其次为瞬时光合速率,叶面积的效应最小。结果还表明,叶源
    量在水稻品种间存在极显著差异,因而存在遗传差异。说明通过育种手段选育叶源量
    大的品种是可行的。与此同时,叶源量存在一定程度的变异,品种内变异系数为6.19~
    17.34%,表明可以通过栽培措施调节叶源量。
     本文还对原有测定超氧阴离子方法进行改进:在关键试剂配制中加入冰醋酸提高
    了检测灵敏度50%;在植物材料的O_2~-的提取过程中同时加入EDTA和羟胺,抑制SOD
    活性并及时“固定”O_2~-,这样所测得得的O_2~-含量更能反映体内的实际情况;同时
    发现O_2~-不由提取上清液产生,间接验证了O_2~-来源于光合膜系统。
     提高Rubisco羧化效率对于提高光合效率具有重要的意义。本文研究了SDS滴定
    对水稻Rubisco结构与活性的影响。SDS作为一种两性分子,在低浓度时具有与光合
    膜类似的特性,研究其作用有助于了解光合膜同Rubisco可能的相互作用。结果表明,
    低浓度SDS(0.4mM)下,Rubisco的羧化酶活性完全丧失,大部分巯基暴露出来;
    SDS浓度继续增大时,Rubisco小亚基先从全酶上解离。SDS处理使Rubisco的三级
    结构也发生变化,但SDS对Rubisco的二级结构影响很小。比较酶的失活与构象变
    
    化,发现酶的活性中,M铂臼以防臼℃纠咽姑寻的构象变化。
     Hh是光合作用能量耗散的次生产物,本文研究了其窿闪郧碰口师用嗣讹矢
    键酶历血曲oe活性的作用,发现在0一M…围侧处理时,
    历山b叨的三级结构和二纫绪阉囱吠助,ND一IhGEE和缸田一wK田电泳图谱也证
    明此时历凸b0和它的大J哑臼舵电泳位团脐d目氏咀昆图壮只有历比曲D的疏
    水表面明硼多,在划血M阶鹏-。当叽…
    20IDM时,RI.xaXi 8{l=seselq*[IMM,a一qot明显下降,
    从天然酶的20%下蹦0(&him4 HA时):疏水表面不断下$但始终多于天然酶
    的疏水表面含量 帆猢明R山色n大亚基之间发生二硫凶时勿陇RllmaXi分
    一。
     采用生物波僧学和生理相结合的手段研究了一种野9勤恻团U和K佚吸淋的
    贝过由o在高温和氧化逆境下的结构和活性的变兀结果表明,正常的野生型水稻的
    RllDIaXIM同浓度闪0AjWT,其结构与WhfigwtgM硼显豹两个阶段:在HA
    浓度低于ZthllM时,绪闽动刮镣的服小;凤Q大于3)I’IM时,三骤软蚜汇潮路
    构发生明显变化,粉地朔刮羹翌俺o郝制。突变付的&吐勿叨也表现同样的趋势,
    但地醚囤骏颠涵,在l()IllMngTRM明显的结构与陇蜘。耐-
    的蹦与活栓由朗融蚁幻侣峭捧现出相同:先辫惦列、。再急剧下降。野生型柳
    k&#6{lffFrASBll为 50’C和 45C。n RubiSC。H$debe了 RUbiSC。
    在氧化逆境和高温下的共性,其差异可能是由于其在叶片一生中蜜u不同修饰造成
    的。
Rice is cue of tie most impoitant anps in China It is of great significance to hierease
     largely erop yield per acie on the present basis aix] discover photosynilic nedianism by
     ovmg photosyndic efficiency
    
     Photosynthetic perarnetas of flag leaves of two s of tice hybrids were systanlilLcally
     analyzed during leaf photosynthetic fixetion decline. lAPS (Instantaneous aamit
     photosynthesis rate) displayed APD (Active photosynthetic during) aix] SF1?(Sharp Fall phase)
     while tie chlorophyll content displayed RSP (Relative Steady Phase) and SF1?during leaf
     pkK)tosyntletc function decline. The decline of RuBPCase activity was obviously aster than
     that offrtosyntietic electttm transfer activity. Thfore hiaeasing RuBPCase carboxylase
     efficiency has become one of keys to imriove photosynthetic efficiency.
    
     lie relationship of leaf scxmx capacity (which is tie total amoinit of assimilated CO2 of
    
     leaf cluing whole life) in flag leaf to yield traits was studied. lie results showed that tie
    
     relationships betwcai leaf source capacity hi flag leaf and yield per plant city weight per
     panicle, full spikekts per panide were all positive significant at 1% level, confirming its tight
     conelaficm with yield fruits. Path analysis further showed that APD had the largest direct
     eflcts on leaf souree capacity, while leaf area tie smallest. Tie results also showed that lie
     differuice of leaf soiree capacity in flag leaves among rice varieties was significant at 1%
     level aid accordingly among gax)types ii rice, indicating it is viable for rice varieties with
     high leaf source capacity to be selected Also, tl was variation of leaf source capacity hi rice,
     aid its variation coefficient within a rice variety was 6.l9l7.34%, suggesting that leaf
     source capacity maybe regulated by some planting measures.
    
     The nediod of assaying supaxide anion content in plant was improved by adding ice
     acetic acid hi key regents, which increased sensitivity by 50 % superoxjde
    
     anion fivm plant leaves, adding EDTA aid hydmxylarnine could inhii,it SOD activity aid
    
    
    
    
     fixing supezo,dde anion in situ. By this wy tie st.oxide anion amitait could reflect the
     truth M situ. We also found supaoxide anicm was not generated frm stwnatant, which
     indirectly confirmed that peroxide anion is flomphotosyndiic maub,ure.
    
     lie effects of SDS titmdon on the atmcture and inactivation of rice Rubison v.e studied.
     As a detergent, S1)S, when in low has the similar character wietasyntietic
     membrane. The study on the effect of SDS on tie stnctize and inactivation of rice Rubisco
     1psto tnxieratumi tie hitaaction of Rnbisco with p tosynthetic nnlnie. lie results
     showecL Rnbisco lost all carboxylase activity in lowof SDS (0.4mM)aid most
     sulfiiydiyl groq exposed; when SDSined, SSU fii dociHnd from
    
     Rubisoo holocnzyme. The tertiary structure of Rubisco was hanged by SDS tzUnmit bit
     seccmdary structurc little aflbeted. We can find that tie conhruatianakhange of active site of
     Rubiaco is ster tan that ofholoa]zyme
    
    
     of 11202 on the atnicture aid inactivation of rice Rnbisco vu inve4gated. The tertiary aix]
     secondary sxs were little inThiezeed by 0-20mM H2 taeat that as thought to be
     in physiological concu1ia.L While tie hydrophobic sure of Ruihisco increased to lie
     maximum by 2(knM H202 treaflyrmt lie tertiary aid seccrdary stwcUzrc changed greatly
     when H202 concermm was ne than 20mM. Tie content of ez4zlix dedlied obviously
     flom 20% in native form to zero by 60mM 11202 kattnert lie hychuphobic surface content
     also declined but a
引文
Asada K. The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999. 50: 601-639
    Austin R B, Bingham J, Blackwell R D Evans L T, Ford M A(1980) . Genetic improvements in winter wheat yields since 1900 and associated physiological change. J Agric Sci Camb,94:675-689
    Bai JH, Xu D, Wang HR, Zheng SY, Zhou HM (1999) Evidence for the existence of an unfolding intermediate state for aminoacylase during denaturation in guanidine solutions. Biochem. Biophys. Ada 1430:39-45
    Badger MR, Andrews TJ, Canvin DT et al. (1980) Interactions of hydrogen peroxide with ribulose bisphosphate carboxylase oxygenase. J. Biol. Chem. 255 (16) : 7870-7875
    Bradford MM. (1976) A rapid and sensitive method for the quantitaton of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248
    Brennan T,Anna Rychter,Chaim Frenkel (1979) . Activity of enzymes involved in the turnover of hydrogenperoxide during fruit senescence. Bot Gaz,140:384-388
    Bohin V, Bizot H, Audebrand M et al. (1993) Differential scanning calorimetric studies of the effects of ions and pH on ribulose 1,5-bisphosphate carboxylase/oxygenase. Int. J. BioL Macromol. 15 (4) : 195-200
    Chandra Babu. R., P. S. Srivinisan, N. Natarajaratanam, et al. Relationship between leaf photosynthesis rate and yield in blackgram genotypes. Photosyntnetia, 1985,19:159-163
    Chollet R, Anderson LL (1977) Conformational changes associated with the reversible cold inactivation of ribulose-1, 5-bisphophate carboxylase-oxygenase. Biochim. Biophys. 93
    
     Acta 482:228
    Coombs J, Hall DO, Long SP, Scurlock JMO (1986) . to: Coombs J(eds), QIU Guoxiong (translate) (Qiu Guoxiong translate). Techniques in bioproductivity and photosynthesis.Beijing:Science Press, 142-144 (in Chinese).
    Crosbie, T.M., and R.B. Pearce. Effects of recurrent phenotypic selection for high, and low photosynthesis on agronomic traits in two maize populations. Crop Sci. 1982,22:809-813
    Davies KJA. (1987) Protein damage and degradation by oxygen radicals. J. Biol. Chem. 262 (20) : 9895-9901
    Desimone M, Henke A, Wagner E. (1996) Oxidadve stress induced partial degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase in isolated chloroplasts of barley. 111: 789-796
    Eckardt NA, Portis AR. (1997) Heat denaturation profiles of ribulose-l,5-bisphosphate carboxylase/oxygenase (Rubisco) and Rubisco activase and the inability of Rubisco activase to restore activity of heat-denatured Rubisco. Plant Physiol. 113(1) : 243-248
    Elderd BD, Vos T, Huertos M et al. (1999) Green Revolutions. Science 1999 283: 1265.
    Ellman GL (1959) Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82:70-77
    Elstner E.F. et al. Inhibition of nitrite formation from hydroxylaminonium-chloride: a simple assay for superoxide dismutase. Anal Biochem. 1976. 70:616-620
    Evans L T (1992) . From leaf photosynthesis to crop productivity. Research in Photosynthesis, VolⅣpp587-594, ed. by Nosio Murata
    Evans L.T., Dunstone R,L. Some physiological aspects of evolution in wheat Aust J Biol Sci,1970,23:725-741
    Frank J, Vater J, Holzwarth JF. (1998) Thermodynamics and kinetics of sugar phosphate
    
     binding to D-ribulose 1,5-bisphosphate carboxylase/oxygenase (RUBISCO). J. Chem. Soc. Trans. 94 (15) : 2127-2133
    GarabG(ed.). (1999) Photoysnthesis: Mechanisms and effects. Kluwer Academic Publishers, Dordrecht
    Goldstein AH, PorpigliaPJ, Hansen LD et al. (1999) Future Food Science 1999 283: 1115.
    Grebanier AE, Champagne D, Roy H. (1978) Effects of Mg~(2+) and substrates on the conformation of ribulose-1,5-bisphosphate carboxylase. Biochemistry 17 (2) : 5150-5155
    Hammond ET, Andrews TJ, Woodrow IE. (1998) Regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase by carbamylation and 2-carboxyarabinitol 1-phosphate in tobacco: insights from studies of antisense plants containing reduced amounts of rubisco activase. Plant Physiol. 118: 1463-1471
    Heath 0. V. S., Gregory F. G. (1938) The constancy of the mean net assimilation and its ecological importance. Ann Bot. 2:811-818
    Ishida H, Nishimori Y, Sugisawa M et al. (1997) The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is fragmented into 37-kDa and 16-kDa polypeptides by active oxygen in the lysates of chloroplasts from primary leaves of wheat. Plant Cell Physiol. 38: 471-479
    Ishida H, Shimizu S, Makino A et al. (1998) Light-dependent fragmentation of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase in chloroplasts isolated from wheat leaves. Planta 204: 305-309
    Jensen RG, Bahr JT (1977) Ribulose-1,5-bisphosphate carboxylase-oxygenase, Ana Rev.
    
     Plant Physiol. 28:379
    Jiang RF, Wang ZX, Xu GJ (1997) Substrate induced reactivation of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase denatured by low concentrations of guanidine hydrochloride. Biochim. Biophys. Acta 1343:95-101
    Jordan DB, Chollet R (1983) Inhibition of ribulose bisphosphate carboxylase by substrate ribulose 1,5-bisphosphate. J. Biol. Chem. 258:13751-13758
    Jun Hidema, Amane Makino, Tadahiko Mae, et. al. (1991) Photosynthetic characteristics of rice leaves aged under different irradiances from full expansion through senescence. Plant Physiol. 97:1287-1293
    Krall JP, Edwards GE. (1992) Relationship between photosystem II activity and CO_2, fixation in leaves. Physiologic Plantarum. 86:180-187
    Kwok SY, Wildman SG (1974) Studies on a confomational change of tobacco ribulose diphosphate carboxylase induced by D-ribulose-1, 5-diphosphate. Arch. Biochem. Biophys. 161:354-359
    Lawlor ,D.W. (1995) Photosynthesis, productivity and environment J.Exp.Bot 46 (special issue): 1449-1461.
    Liao YG, Li LR (1991) Purifation of rubisco from rice and its properties compared with those of tobacco. Acta Phytophysiologica Sinica 17(2) : 183-191
    Libouga DG, Aguilbohin V, Douillard R. (1996) Thermal denaturation and gelation of rubisoc: effects of pH and ions. Int J. Biol. Macromol. 19(4) : 271-277
    Lorimer GH, Andrews TJ, Tolbert NE (1975) D-ribulose-1,5-diphosphate oxygenase. In Wood, W. A. (ed). Meth. In Enzymology 42 Part C Page 484-487
    Makino A, Oamand B (1991) Solubilization of ribukwe-l, 5-bisphosphate carboxylase from the membrane traction of pea leaves. Photosynthesis Res. 29:79-85
    Mann CC. (1999) Future food: Bioengineer: Genetic engineers aim to soup up
    
     crop photosynthesis. Charles C. Mann Science 1999 283: 314-316.
    Marty J.F., Warwick B.S., T.G. Allan, etal. Photosynthetic characteristics of three asparagus cultivars differing in yield[J]. Crop Sci., 1999,39:1070-1077
    Miziorko HM, Lorimer GH (1983) Ribulose-1, 5-bisphosphate carboxylase-oxygenase. Ana Rev. Biochem. 52:507-535
    Paulsen Jm, Lane MD.(1966) Spinach ribulose diphosphate carboxylase. I. Purification and properties of the enzyme. Biochemistry 5:2350-2357
    Perchorowicz JT, Raynes DA, Jensen RG. (1982) . Measurement and perservation of the in vivo activation of ribulose 1,5-bisphosphate carboxylase in leaf extracts. Plant Physiol. 1982 vol 69:1165-1168.
    Pettigrew, W.T., and Meredith W.R.. (1991) Leaf gas exchange parameters vary among cotton genotypes[J]. Crop Sci, 34:700-705
    Portis AR(1990) Rubisco activase. Biochim. Biophys. Ada 1015:15-28
    Portis AR (1992) Regulation of Ribulose-1,5-bisphosphate carboxylase/oxygenase activity. Ana Rev. Plant Physiol. 43:415-437
    Rabin BR, Trown PW. (1964) Mechanism of action of carboxydismutase. Nature. 202: 1290-1293
    Read BA, Tabita FR. (1992) A hybrid ribulosebisphosphate carboxylase/oxygenase enzyme exhibiting a substantial increase in substrate specificity factor. 5553-5560
    Read BA, Tabita FR. (1994) High substrate specificity factor ribulose bisphosphate carboxylase/oxygenase from eukaryotic marine algae and properties of recombinant cyanobacterial RubiSCO containing "algal" residue modifications. Arch. Biochem. Biophys. 312(1) : 210-218
    Saskia M, Paul W, Anthony AG et al. (1992) Conformational states of ribulosebisphosphate carboxylase and their interaction with chaperonin 60.
    
     Biochemistry 31:3635-3644
    Scandalios J.G. (1993) Oxygen stress and superoxide dismutase Plant PhysioL 101:7-12
    Schloss JV, Hartmann FC (1977) Inactivation of ribuloselnsphosphate carboxylase/oxygenase from spinach with the affinity label N-bromoacetylethanolamine phosphate. Biochim. Biophys, Res. Commun. 77:230
    Scopes RK. (1969) Crystalline 3-phosphoglycerate kinase from skeletal muscle. Biochem. J. 113:551-554
    Shi Y, Luo W, Tian WX, Zhang T, Zhou HM (1998) Inactivation and conformational changes of fatty acid synthase fiom chicken liver during unfolding by sodium dodecyl sulfate. tat J. Biochem. & Cell Biol., 30:1319-1330
    Sugiyama T, Akazawa T (1967) Structure and function of chloroplast proteins. J. Biochem. 62(4) : 474-482
    Suss KH, Arkona C, Manteuffel R et al. (1993) Calvin cycle multienzyme complex are bound to chloroplast thylakoid membranes of higher plants in situ. Proc. Natl. Acad. Sci. USA 90:5514-5518
    Suss KH, Prokhorenko I, Adler K. (1995) In situ association of calvin cycle enzymes, ribulose-1,5-bisphosphate carboxylase/oxygenase activase, feredoxin-NADP+ redutase and nitrite redutase with thylakoid and pyrenoid membranes of Chlamydomanos reinhardii chloplasts as revealed by immunoeletron microscopy. Plant PhysioL 1995, 107:1387-1397
    Tomimatsu Y.(1980) Macromolecular properties and submit interactions of ribulose-1,5 bispnospnate carboxylase from alfalfa. Biochim. Biophys. Acta 622:85-93
    Tomimatsu Y., Donovan JW. (1981) Effect of pH, Mg~(2+), CO_2 and mercurials on the circular dichroism, thermal stability and light scattering of ribulose 1,5-bisphosphate carboxylases from alfalfa, spinach and tobacco. Plant Physiol. 68:808-831
    
    
    Tsou CL (1993) Location of the active sites of some enzymes in limited & flexible molecular regions. Science 262:380-381
    Voordouw G, van der Vies SM, Bouwmeister PP (1984) Dissociation of ribulose-1, 5-bisphosphate carboxylase/oxygenase from spinach by urea. Eur. J. Biochem. 141: 313-318
    Wang ZF, Huang MQ, Zou XM, Zhou HM (1995) Unfolding, conformational change of active sites and inactibation of creatine kinase in SDS solutions. Biochim. Biophys. Acta 1251:109-114
    Watson D.J. (1947) Comparative physiological studies on the growth of field crops. Ann Bot N S. 11:375~407
    Yang Y, Zhou HM (1998) Reactivation kinetics of 5,5'-dithiobis-(2-nitrobenzoic acid)-modified creatine kinase reactivated by dithiothreitol. Biochem Biophys. Acta 1388: 190-198
    Yokota S, Mae T, Makino MA et al. (1990) Effect of sodium dodecylsulfate on the degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase in the extract of rice (Oryza saliva L.) leaves. Soil Sd. Plant Nutr. 36 (1): 91-96
    Zhou HM, Tsou CL (1986) Comparison of activity and conformation changes during refolding of urea-denatured creatine kinase. Biochem. Biophys. Acta 869:69-74
    Zhou HM, Zhang XH,Yin Y, Tsou CL (1993) Confrmational changes at the active site of creatine kinase at low concentrations of guanidium chloride. Biochem J. 291: 103-107
    曹树青,翟虎渠,张红生等。(1999)不同类型水稻品种叶源量及有关光合生理指标的研究,中国水稻科学,13(2):91~94
    曹树青,翟虎渠,张荣铣等,(2000)不同产量潜力的水稻品种剑叶光台特性的研究.南京农业大学学报(印刷中)
    李培武,张荣铣,朱培仁。(1989)大豆第二复叶—生中同化物供应能力及其输出动态研究。南京农业大学学报12(1);28-33
    
    
    莫惠栋.农业试验设计.(1984)上海,上海科学技术出版社,151-544
    王爱国,罗广华。(1990)植物的超氧物自由基与羟胺反应的定量关系植物生理学通讯 6:55--57
    沈允钢,施教耐,许大全(1998)。动态光合作用科学出版社
    肖凯,谷俊涛,邹定辉,张荣铣。(1998)杂种小麦及其亲本光合同化特性研究.作物学报,24(4):503~508
    许大全,沈允钢.光合作用与作物产量。作物高产高效理论与实践.北京:农业科学出版社,17~23
    宣亚南,吴源英,张荣铣等。(1996)小麦旗叶展开后氮素对光合能力的调控及其与穗粒重的关系,南京农业大学学报,19(1):5~9
    张荣铣,程在全,陈佩度等。(1988)小麦进化过程中光合特性的演化趋势,主要作物生长发育及控制技术课题研究报告 1:1-8.
    张荣铣,程在全,方志伟等。(1992)关于光合速率高值持续期的初步研究,南京师范大学学报,15:76~86
    张荣铣,程在全,吴源英(1990)。不同染色体组小麦种叶片全展后的光合速率及叶绿素含量的变化。江苏农业学报6(1):1-9
    张荣铣,程在全,吴源英(1992)。关于小麦叶片光合速率高值持续期的初步研究。南京师范大学学报(自然科学版)Vol 15增刊:76-86
    张荣铣,戴新宾,许晓明等。(1999)叶片光合功能期与作物光合生产潜力。南京师范大学学报(自然科学版)22(3);250-260
    张荣铣,方志伟(1994)。不同夜间温度对小麦旗叶光合作用和单株产量的影响。作物学报20(6):710--715
    张荣铣,高忠(1994)。小麦种和品种间叶片展开后光合特性的差异及其机理。《作物高产高效生理研究生理进展》35-45.科学出版社 1994
    
    
    张荣铣,刘晓忠,方志伟等。(1997)小麦叶片展开后碳同化能力—叶源量的估算。中国农业科学30(1):84~91
    张荣铣,王传海(1992)。干旱加速多年生黑麦草叶片衰老机理的初步研究。南京师范大学学报(自然科学版) Vol 15(增刊):135-141
    张荣铣,魏锦城(1990)。关于改进小麦光合特性及光合生产力的几个问题。南京师范大学学报(自然科学版)Vol 15增刊:140-160
    张荣铣,朱根海(1992)。作物品种间离体叶片失绿进程的模式。南京师范大学学报(自然科学版)Vol 15(增刊):87-94

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700