基于流化床超高温烟气发生工艺的硫的释放与脱除实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济社会的发展,超高温烟气发生工艺在钢铁、水泥、冶金等行业有着迫切的需求,但以煤作为燃料的工艺会产生大量的污染性气体,对环境造成破坏,煤中硫就是其中主要的污染源。本文针对超高温烟气发生工艺过程中的脱硫控制机理进行了相关基础性和工艺性研究,对工艺过程中硫的迁徙及脱除特性进行了深入分析,为实际生产过程中进行脱硫提供了理论依据和经验参数。
     选取四川煤、山西II类烟煤、黄陵烟煤和林南仓煤四种煤在固定床台架上进行了氮气氛围下的热解实验和氮气/水蒸气氛围下的气化实验,对热解和气化过程中煤中各形态硫的迁徙特性、硫在各产物中的分布等进行了研究。煤中大部分无机硫在热解和气化过程中均会发生分解,但只有一部分会逸出,其中黄铁矿硫的分解以及煤中碱土金属的固硫作用均可生成无机硫化物残留于半焦中。温度的升高及水蒸气含量的降低均不利于无机硫化物的析出。煤中有机硫的脱除与煤种性质存在较大联系,另外高水蒸气含量可以有效抑制煤中活性有机质的固硫作用,有利于煤中有机硫的脱除。H_2S是煤热解和气化过程中主要的含硫气体,其释放量与原煤含硫量、水蒸气含量、煤阶、碱土金属含量等有关。硫在热解和气化产物中的分布为:焦中最多,其次为气相,焦油中较少,水蒸气含量的增加有利于硫从焦中向气相中迁徙。
     选用四川煤在流化床台架上进行了空气/水蒸气气化实验,以及气化半焦与灰渣混合物的燃烧实验,对Ca/S比、水蒸气含量、石灰石品种等因素对脱硫的影响进行了研究。在气化及燃烧过程中,水蒸气含量越高,气化部分释放的硫越多,但总体来讲,大部分硫在燃烧部分释放。Ca/S比的增加有利于脱硫效率的提高,石灰石的品种对于脱硫的影响存在差异。水蒸气含量的提高不利于脱硫效率和石灰石利用率的提高。
     最后结合实验结果,对超高温烟气发生工艺的脱硫提出了一些意见:工艺过程中脱硫的重点在于燃烧部分,以未煅烧石灰石作为脱硫剂的效果并不理想,脱硫效率和脱硫剂利用率均较低,主要原因在于燃烧部分未能较好地脱除SO2。为了改善超高温烟气发生工艺的脱硫效果,有必要在燃烧部分单独添加脱硫剂,另外对脱硫剂提前进行煅烧也是手段之一。
With the development of economic and society, there exists a urgent need of ultra-high temperature fume producing process in the steel, cement, metallurgy and other industries. However, the process with coal as its main fuel would produce large amounts of polluting gases which would damage the environment, and the critical reason is sulfur in coal. In this paper, the fundamental and technological research of desulfurization mechanism of the ultra-high temperature fume producing process was studied. The migration and removal characteristics of sulfur during the process was analyzed in-depth, which provided theoretical basis and empirical parameters to the actual production.
     In this study, Sichuan coal(SC), Shanxi coal(SX), Huangling coal(HL) and Linnancang coal(LN)were used. The pyrolysis experiment under nitrogen atmosphere and gasification experiment under nitrogen/steam atmosphere were determined in a fixed bed bench at atmospheric pressure. The migration characterisics of different forms of sulfur and the distribution of sulfur in different products druing pyrolysis and gasification were studied. Most inorganic sulfur in coal decomposes during pyrolysis and gasification, but only part of them release.The decompositon fo pyrite and the sulfur fixation of alkaline earth metals in coal could generate inorganic sulfide sulfur which remains in semi-coke.The increasing of temperature and the decreasing of the steam content both have a negative influence on the releasing of inorganic sulfide sulfur. There is a big link between the removal of organic sulfur in coal and the coal properties. High content of steam could inhibit the sulfur fixation of active organic matter effectively, which is propitious to remove the organic sulfur in coal. H2S is the main sulfurous gas during pyrolysis and gasification, and the amount of it is impacted by the sulfur content of raw coal, the steam content, the coal rank, the alkaline earth metal content and so on. The distribution of sulfur in products druing pyrolysis and gasification is as follows: most in coke, followed by gas, tar least. The increasing of steam content is in favor of transforming the sulfur from coke to gas.
     Sichuan coal was chosed to take gasification experiment under air/steam and combustion experiment of the mixture of semi-coke and ash in a fluidized bed bench at atmospheric pressure. The impacts of some factors, such as Ca/S ratio, steam content, kind of limestone and so on, on the desulfurization were studied. The releasing characteristics of sulfur in coal during gasification and combustion is related with the steam content. The higher the steam content is, the more sulfur would release during the gasification, but generally speaking, most sulfur releases during combustion. The increasing of Ca/S ratio is in favor of increasing the desulfurization efficiency. The impacts of different kinds of limestone to the desulfurization are different. The increasing of steam content isn’t in favor of increasing the desulfurization efficiency and the use ratio of limestone.
     Finally, combined with the experiment results, some advises about desulfurization of the ultra-high temperature fume producing process were proposed: the desulfurization of combustion is important. Using uncalcined limestone as the desulphurization agent is not ideal, both the desulphurization efficiency and sorbent utilization was low, primarily due to not remove SO2 effectively druing combustion. In order to improve the desulfurization in ultra-high temperature fume producing process, it's necessary to add desulfurization agent in the combustion part, and another way is to calcine the desulfurization agent in advance.
引文
[1] 2009中国统计年鉴[R].北京:中华统计出版社,2010.
    [2]中华人民共和国国民经济和社会发展第十二个五年规划纲要(建议稿)[R], 2010.
    [3]陈小琛.流化床超高温烟气发生工艺及燃烧器模拟研究[D].武汉:华中科技大学, 2008.
    [4]刘德昌,阎维平.流化床燃烧技术[M].北京:中国电力出版社, 1995.
    [5]王同章.煤炭气化原理与设备[M].北京:机械工业出版社, 2001.
    [6]高洪亮,范晓伟,李冀静等.氧化性气氛下煤热解脱硫的实验研究[J].电站系统工程, 2008(01): 30-32.
    [7]李斌,曹晏,张建民等.高硫煤热解部分气化过程中硫的变迁行为[J].环境科学, 2003(02): 60-65.
    [8] Attar A. Chemistry, thermodynamics and kinetics of reactions of sulfur in coal-gas reactions:a review[J]. Fuel, 1978,57(4): 201-212.
    [9]李斌,曹晏,张建民等.煤热解和气化过程中硫分析出规律的研究进展[J].煤炭转化, 2001,(03):60-65.
    [10]秦宏.流化床炉内煤热解气化过程中硫的释放与脱除研究[D].杭州:浙江大学,2006.
    [11]杨会民,王雅平,王美君等.反应气氛对煤热解过程中硫变迁与释放的影响[J].现代化工, 2009,(S1): 37-39.
    [12]孙林兵,倪中海,张丽芳等.煤热解过程中氮、硫析出形态的研究进展[J].洁净煤技术, 2002,(03): 47-50.
    [13] Sohn H, Szekely J. A Structural Model for Gas-Solid Reactions with a Moving Boundary-III[J]. Chem.Eng.Sci, 1972,27: 763-778.
    [14] Abbasian J, Slimane B R. A Regenerable Copper-Based Sorbent for H2S Removal from Coal Gases[J]. Ind.Eng.Chem.Res, 1998,37(7): 2775-2782.
    [15]广东中毒急救中心E O. Feb,2,2004 .http://www.gdpcc.com/toxi/toxi12,thm.
    [16]赵平,张学元. H2S腐蚀的控制[J].全面控制腐蚀, 2002. 16(5): 4-9.
    [17] Middleton S P, Patrik J W, Walker A.The Release of Coal Nitrongen and Sulfur on Pyrolysi and Partial Gasification in a Fluidized Bed[J]. Fuel, 1997,76(13): p. 1195-1200.
    [18]秦宏,孙佰仲,柏静儒.气化炉内钙基脱硫剂硫化反应的研究[J].东北电力大学学报, 2007,27(6): 5-8.
    [19]刘德昌,陈汉平,张世红等.循环流化床锅炉运行及事故处理[M].北京:中国电力出版社, 2006.
    [20] GB/T 214-2007煤中全硫的测定方法[S].中华人民共和国国家质量监督检验检疫总局, 2007.
    [21] GB/T 215-2003煤中各形态硫的测定方法[S].中华人民共和国国家质量监督检验检疫总局, 2003.
    [22]王利花,王素珍,赵炜.还原性气氛下煤中硫热解迁移规律(Ⅰ)H_2和N_2气氛下煤中硫热解释出规律的比较[J].煤炭转化, 2009(01): 10-13.
    [23] GB 12211-90城市燃气中硫化氢含量测定[S].中华人民共和国国家质量监督检验检疫总局, 1990.
    [24]郑铁华,张立辉.燃煤硫析出规律的研究进展[J].山西煤炭, 2007.
    [25] D L Zoller, M V Johnston, J Tomic, et al. Thermogravimetry-photoionization mass spectrometry of different rank coals[J]. Energy and Fuels, 1999,13(5): 1097-1104.
    [26] P Rutkowski, G Gryglewicz, S Mullens, et al. Study on organic sulfur functionalities of pyridine extracts from coals of different rank using reductive pyrolysis[J]. Energy and Fuels, 2003,17(6): 1416-1422.
    [27] J Yperman, D Franco, J Mullens, et al. Determination of sulfur groups in pyrolyzed low-temperature coal by atmospheric-pressure t.p.r[J]. Fuel, 1995, 74(9): 1261-1265.
    [28]徐龙,杨建丽,李允梅等.兖州煤热解预脱硫行为(Ⅰ)热解过程中硫的迁移[J].化工学报, 2003(10): 1430-1435.
    [29]周强.煤的热解行为及硫的脱除[D].大连:大连理工大学, 2004.
    [30]高洪亮,范晓伟,王方等.惰性气氛下煤热解脱硫的试验研究[J].热力发电,2008,(10): 28-30+48.
    [31]戴和武,周仕学.煤热解过程中硫的脱除[J].煤炭加工与综合利用, 1996(01): 38-40.
    [32] J.V.Ibarra, J.L.Miranda, A.J.Perez. Product distribution and sulfur forms in the low temperature pyrolysis of a Spanish subbituminous coal[J]. Fuel Processing Technology, 1987, 15(1): 31-43.
    [33] G Gryglewicz. Sulfur transformation during pyrolysis of a high sulfur polish coking coal[J]. Fuel, 1995,74(3): 356-361.
    [34] M.R.Khan. Prediction of sulfur distribution in products during low temperature coal pyrolysis and gasification[J]. Fuel, 1989,68(12): 1439-1449.
    [35] G.Gryglewicz. Effectiveness of high temperature pyrolysis in sulfur removal from coal[J]. Fuel Processing Technology, 1996. 46(3): 217-226.
    [36] F.Mondragon, A. Jaramillo, F. Saldarriaga. Effects of morphological changes and mineral matter on H2S evolution during coal pyrolysis[J]. Fuel, 1999,78(15): 1841-1846.
    [37] Chen H K, Li B Q, Zhang B J. Effects of mineral matters on products on products and sulfur distributions in hydropyrolysis[J]. Fuel, 1999, 78(6): 713-719.
    [38] V.Padmaker, T. Theodore, L. Sunggyu. Effect of pyritic sulfur and mineral matter on organic sulfur removal from coal[J]. Fuel Science & Technology International, 1993,11(7): p923-936.
    [39]齐永琴,李文,陈皓侃等.义马煤的流化床热解脱硫研究[J].中国矿业大学学报, 2003,(02): 25-29.
    [40]陈皓侃,李保庆,张碧江.高硫煤加氢热解脱硫的研究Ⅰ.热解与加氢热解脱硫的对比[J].燃料化学学报, 1997,(04): 60-65.
    [41] M.Sciazko, K. Kubica. The effect of dolomite addition on sulphur,chlorine and hydrocarbons distribution in a fluid-bed mild gasification of coal[J]. Fuel Processing Technology, 2002,77-78(20): 95-102.
    [42]李文,于惠梅,陈皓侃.矿物质脱除对煤中硫在氢气热解中逸出的影响[J].中国矿业大学学报, 2003(06).
    [43] Guan R Q, Li W, Li B Q. Effects of Ca-based additives on desulfurization duringcoal pyrolysis[J]. Fuel, 2003, 85(15-17): 1961-1966.
    [44] M Telfer, Zhang D K. The influence of water-soluble and acid-soluble inorganic matter on sulphur transformations during pyrolysis of low-rank coals[J]. Fuel, 2001, 80(14): 2085-2098.
    [45] S.Karaca. Desulfrization of a Turksih lignite at various gas atmospheres by pyrolysis. Effect of mineral matter[J]. Fuel, 2003, 82(12): 1509-1516.
    [46] Zhang D K, M.Telfer. Sulfur transformation in a South Australian low-rank cial during pyrolysis[J]. Symposium (International) on Combustion, 1998, 2: 1703-1709.
    [47] S Marinov, P Tuuliev, M G Stefanova, et al. Low rank coals sulphur functionality study by AP-TPR/TPO coupled with MS and potentionmetric detection and by XPS[J]. Fuel Processing Technology, 2004, 85(4): 267-277.
    [48]张成,曹娜,邱建荣.煤燃烧前温和热解汞和硫的释放特性研究[J].中国电机工程学报, 2009,(20): 35-40.
    [49] J.S.S. Damste, J.W. de Leeuw. Organically bound sulphur in coal.A molecular approach[J]. Fuel Processing Technology, 1992,30(2): 109-178.
    [50] J V Aelst,R A Rodriguez, J Yperman, et al. A.p.-t.p.r.investigation of the effect of nitric acid leaching on the sulphur distribution in coal[J]. Fuel, 2000,79(5): 537-544.
    [51] P Rutkowski, S Mullens, J Y perman, et al. AP-TPR investigation of the effect of pyrite removal on the sulfur characterization of different rank coals[J]. Fule Processing Technology, 2002,76(2): 121-138.
    [52]尤先锋,刘生玉,吴争鸣等.煤热解过程中氮和硫化合物分配及生成机理[J].煤炭转化, 2001(03): 1-5.
    [53]冯玉滨.煤的热解与硫析出特性试验研究[J].济南:山东大学,2005.
    [54] F.Edward, D.P. Allan,C. Meng. Distribution of volatile sulfur containing product during fixed bed Pyrolysis and gasification of coals[J]. The Canadian journal of chemical engineering, 1991,69: 869-875.
    [55] Miura. Analysis of formation rates of sulfur-containing gases during the pyrolysis of various coals[J]. Energy&Fuels, 2001,15(3): p. 629-636.
    [56]刘粉荣,李文,李保庆等. AP-TPR-MS法考察六枝煤固定床热解过程中的硫变迁行为[J].燃料化学学报, 2009(02):第150-155页.
    [57]李斌,王洋,张建民.高硫煤半焦水蒸气部分气化预脱硫的研究[J].中国矿业大学学报, 2004,33(3): 337-342.
    [58]赵丽红,楚希杰.煤焦气化反应及硫的析出特性分析[J].煤炭科学技术, 2010,38(3): 116-119.
    [59]王增辉,叶雅青.煤炭洗选加工及应用基础[M].华东化工学院出版社, 1991.
    [60] P.S.Maa, C.R. Lewis, Jr. C.E. Hamrin. Sulfur transformation and removal for Western Kentucky coals[J]. Fuel, 1975,54(1): 62-69.
    [61] Montano P A, Vaishnava P P,King J A. Mossbauer Study of Decomposition of Pyrite in Hydrogen[J]. Fuel, 1981,60(8): 712-717.
    [62] Furfari S, Cypres R. Hydropyrolysis of a High-sulfur , High-calcite Italian Sulcis Coal 3:Pyrite Behavior[J]. Fuel, 1983,62(3): 615-619.
    [63] Chen H, Li B, Zhang B. Decomposition of pyrite and the interaction of pyrite with coal organic matrix in pyrolysis and hydropyrolysis[J]. Fuel, 2000,79: 1627-1631.
    [64]陈皓侃.热解和加氢热解过程中硫变迁规律[D].太原:中科院山西煤化所, 1998.
    [65] Levy J H, White T J. The reaction of pyrite with water vapour[J]. Fuel, 1988,67(10): 1336-1339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700