基于能耗与作物生产潜力的中国温室气候区划
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国设施作物栽培面积目前已超过300万hm2,成为世界设施农业第一大国。气候条件特别是光热资源,不仅影响温室作物的生长发育、产量和品质,还直接影响温室作物生产的能耗,进而影响温室作物生产的经济效益。温室生产是一种抗逆性强的耗能型产业,受不同气候条件的影响较大,因此温室生产具有很强的区域性。如何充分利用当地光热资源,合理布局不同类型温室并从能耗角度优化温室的结构设计与环境调控,是中国设施农业中需要解决的关键技术问题。
     国内已有的温室气候区划研究没有综合考虑温室生产的能耗利用率或温室生产的投入与产出问题;所采用的气候资料代表性站点不够多,大多数侧重于温室的区域性的静态区划,不能针对历史气候资料的时空变化,利用新近的或更长年代和更多站点的气候资料,及时动态更新温室气候区划结果;在温室能耗估算方面,国内已有研究一方面没有考虑温室夏季的强制通风降温能耗,另一方面没有考虑温室结构和覆盖材料、以及环境控制目标和作物状况对能耗的影响。本研究针对中国温室气候区划和温室能耗估算中存在的问题,根据温室作物生长发育对光温条件的要求,确定不同能耗期的划分指标,系统分析中国主要温室作物不同能耗期的持续天数及相应的光热资源分布情况;结合温室小气候模型、温室能耗预测模型和作物生长模拟模型,全面分析了中国温室基础能耗、主要温室作物潜在产量及能耗利用率分布情况;在此基础上,研究基于能耗与作物潜在产量的温室气候区划方法,对中国温室气候进行区划;并集成中国温室气候区划及能耗与作物潜在产量估算系统,实现温室气候区划的自动、动态和实时制作。主要研究结果如下:
     1.基于能耗的温室作物生产的光热资源分析。从温室周年生产所需能耗的角度出发,根据温室作物生长发育对光温条件的要求,分别以平均气温稳定通过低于温室作物生长发育的最低温度、平均气温稳定通过22℃为依据,确定各地一年中适宜进行温室作物生产的时期(无能耗期)、需要进行加热的时期(加热能耗期)、需要进行通风降温的时期(降温能耗期),计算分析3个时期的持续天数及相应时段的有效积温、负积温和太阳辐射的分布情况。中国温室需要进行加热采暖日数的高值区主要位于西藏和青海、内蒙古和黑龙江省大部分地区,这些区域加温能耗高。而温室降温期的高值区主要位于海南省,高达200d以上,不利于温室生产。一年中温室作物适宜生产的日数高值区主要集中在云南省,腾冲地区高达277d。
     2.温室作物周年生产能耗及潜在产量分析。以Venlo型连栋温室和温室主栽作物黄瓜和番茄为研究对象,利用温室能耗预测模型和作物生长模型,模拟预测在商业化生产中常用的两种不同的温室温度(白天和夜间温度控制目标分别为控制策略一:24℃与19℃,控制策略二:20℃与15℃)和C02体积分数(增施:1000μL/L,自然通风不增施:350μL/L)控制策略下,连栋温室黄瓜、番茄周年生产所需的能耗和潜在产量。在此基础上,计算每单位黄瓜、番茄产量所需要的能耗,并利用GIS技术及反距离权重插值方法获得空间上连续分布的栅格数据,得到中国连栋温室黄瓜和番茄周年生产单位产量能耗分布图。中国温室周年生产黄瓜、番茄单位产量能耗总体趋势是从低纬度地区向高纬高海拔的寒冷地区增加。两种温度控制策略下各地的黄瓜、番茄单位产量能耗差异在8%以内,但增施CO2可以降低各地的黄瓜、番茄单位产量能耗达29%~67%,低纬度地区降低幅度大于高纬高海拔区。中国温室能耗主要受室外气候和温室温度控制目标影响;在两种温室温度控制策略下,黄瓜、番茄潜在产量主要受室外光照条件和室内CO2浓度影响。增施CO2能够大幅提高温室作物产量,是增加温室作物产量和提高能耗利用率的有效手段。
     3.基于能耗与作物潜在产量的中国温室气候区划。在分析基于能耗的中国温室生产气候资源及能耗利用率分布情况的基础上,确定温室作物适宜生长期、采暖期、通风降温期的持续天数以及相应时段的辐射和有效积温等10个要素为指标,通过模糊C-均值聚类对基于能耗的温室气候进行一级区域划分,以表征该区域特点的主要因子为指标,分别将每个一级区分为3个二级区(Ⅰ级、Ⅱ级、Ⅲ级区)。中国温室气候适宜区主要分布在北京—山西—陕西—四川—云南以及此线以东以南地区;次适宜区主要分布在西北和辽宁大部分地区,不适宜区则位于中国东北的黑龙江和吉林、内蒙古东北部、新疆北部、以及青藏高原海拔4500米以上地区。适宜区的特点是基于能耗的温室气候条件最优越,一年中适宜温室作物生产时期长,温室生产能耗相对较低,仅为不适宜区的45%左右,以云南为代表的适宜Ⅰ级区温室作物适宜生长期最长,温室作物单位产量所需能耗低,生产效率高,从能耗角度看,发展温室成本相对较低,优势明显。不适宜区冬季温室生产需要加热采暖的天数相对较多,加温能耗大约为适宜区的3倍,单位产量所需能耗是适宜区的220%左右,以黑龙江为代表的不适宜Ⅲ级区,冬季需要加温采暖天数最多,温室作物单位产量所需能耗最高,生产效率低,不适宜发展温室。该研究结果较好地反映了中国温室生产基础能耗、主要作物潜在产量及相关气候条件的地域差异,为中国温室生产合理布局提供科学依据。
     4.温室气候区划及能耗与作物潜在产量估算系统集成。将温室气候区划与温室作物周年生产能耗预测模型和作物生长模型相结合,建立了温室气候区划及能耗与作物潜在产量估算系统。该系统可以将各地区的室外气象资料、温室结构参数、温室环境控制设置点以及作物基本信息作为输入,实现作物发育期预测、潜在干物质生产及产量预测、温室小气候预测、温室运行能耗预测、温室气候区划及查询、系统维护和帮助等功能。实现温室气候区划及能耗与作物潜在产量估算的自动、滚动、实时制作。同时,利用GIS技术实现数据网格化,相比前人的研究,精度明显提高。
     本研究开展基于能耗与作物潜在产量的中国温室气候区划与评价,结合温室运行基础能耗、温室作物潜在产量和能耗利用率分析,将温室生产的投入与产出有机结合,为不同类型温室的合理布局和投资风险评估以及优化温室的结构设计与环境调控提供技术支持。
China has become a world of facilities agriculture first superpower for its facilities of crop planting area currently is more than 300 million hm2. Climatic conditions especially photo-thermal resources, not only affects the greenhouse crop growth, yield and quality, but also affect consumption of greenhouse crop production directly, which affects the economic benefits of greenhouse crop production. Greenhouse production is a kind of resistance by the energy dissipation type of industrial, and it has a strong regional for it can be greatly influenced by different climatic conditions. How to make full use of the local photo-thermal resource, and the reasonable layout of different types of greenhouse, and optimize the structure design and environment regulation of greenhouse with considering energy consumption, which are the key technical problems needed to solve in China's facility agriculture.
     According to the growth and development of greenhouse crop requirements of light and temperature conditions, the photo-thermal resource analysis of Chinese greenhouse crop production was carried out, the appropriate period for greenhouse production, undertaking heating and ventilation cooling was determined, and the distribution of corresponding temperature solar resources was analyzed. The study selected the greenhouse of venlo type, cucumber, tomato as research object, daily average climate data from multiple sites, combined prediction model of energy consumption with growth model of crop in greenhouse, simulation analysis under two different temperature and CO2 concentration control strategy. Greenhouse cucumber and tomato crop year-round output unit production energy consumption, and by using GIS technique to get space distribution of the utilization ratio of energy consumption per unit production of Chinese greenhouse cucumber, tomato in different regions. On this basis, the regionalization and evaluation of greenhouse climate were realized and an energy consumption and potential production based operational software system was established. The main results were as follows:
     1. The photo-thermal resource of greenhouse crop in china were analyzed. Based on the light and temperature requirement for greenhouse crop growth and development, days for daily mean temperature being stably higher than the base temperature for greenhouse crop growth and development and lower than 22℃; days for daily mean temperature being stably higher than the base temperature for greenhouse crop growth; days for daily mean temperature being stably higher than 22℃were determined, respectively. Accordingly, the period suitable for greenhouse crop production, period with greenhouse heating and period with ventilation were determined. And the distribution of effective accumulated temperature, negative accumulated temperature and solar radiation were analyzed. The regions that required most days of heating mainly lie on Xizang, Qinghai, inner mongolia and Heilongjiang province, so in these regions has more the energy consumption of greenhouse production. While Hainan province, which required 200 days of ventilation period, was not fit for greenhouse crops production. The most suitable regions for greenhouse production concentrated in Yunnan province, especially in Tengchong, which had 277 days of suitable period.
     2. The model was established to prdict the potential output and energy consumption of greenhouse crops yrear round preduction.The study selected the venlo muti-greenhouse type, cucumber and tomato crops as research object, combined prediction model of energy consumption with growth model of crop in greenhouse, simulation prediction under two different temperature in commercial production (day and night temperature control target for control strategy one:respectively with 19℃,24℃, control strategy 2:20℃and 15℃) and control strategy with CO2 volume fraction (increase:10 mL/L, natural and ventilated not increase:350 mL/L), in multi-greenhouse, the cucumber, tomato required to consume the energy and potential output. On that basis, it further calculates per unit of cucumber, tomato yield, needed energy consumption, and by using GIS technology and inverse distance weighted interpolation method for the continuous distribution grid data on the space, year-round per unit cucumber production energy consumption distribution map in multi-greenhouse. Cucumber, tomato unit production output energy consumption has a overall increased trend from a low-latitude region to high altitude cold area. The difference between the two kinds of temperature control strategy of cucumber, tomatoes unit output energy consumption within 8%, but increasing CO2 can reduce the unit output energy consumption 29%~67%, the decrease extent in low-latitude region is bigger than high altitude area. The energy consumption in Chinese greenhouse mainly was effected by outdoor climate and greenhouse temperature control target. Under the two control strategies, cucumber, tomato potential output mainly effected by outdoor lighting condition and indoor CO2 concentration. Increasing CO2 would greatly improve cucumber output, which is an effective way to increasing crop output and improving the utilization ratio of energy.
     3. Greenhouse climatic regionalization in China was carried out. According to characteristics of greenhouse crop production, confirm 10 greenhouse climatic regionalization index, with the fuzzy c-means clustering method to zoning the climate, and greenhouse crop production are divided into three class I areas and nine secondary area (each level is divided into levelⅠ,Ⅱ,Ⅲarea) as appropriate, times appropriate and not appropriate. The characteristics of the suitable region is the long period for greenhouse crop production, winter heating low energy consumption and the main factor decided to economic benefit for greenhouse crop production period is total solar radiation quantity. The characteristic of times appropriate and not appropriate is the long greenhouse winter heating time, high energy consumption, cooling energy consumption few in summer, the main factor decided to economic benefit for greenhouse crop production is the negative cumulative temperature of greenhouse needs heating period.
     4. A photo-thermal resources based system for greenhouse climatic regionalization and energy consumption estimation system was developed. The greenhouse crop growth and development model and the greenhouse microclimate control and energy consumption prediction model were coupled in this study to develop a photo-thermal resources based system for greenhouse climatic regionalization and energy consumption estimation system. Using the outdoor weather data of each region, greenhouse structure parameters, set point of environment control and crop information, the system could predict the development stage, potential dry matter production and yield of greenhouse crop, prediction of greenhouse microclimate and energy consumption, climatic regionalization, system maintenance and help etc. Using 30 years (1971-2000) average daily weather data from 621 standard weather stations in China, a case study was conducted for greenhouse climate zonation and energy consumption estimation for a vnlo type greenhouse where infinite growth cucumber and tomato crops grow yearly around.
     The system developed in this study can provide decision support for investment risk analysis and theory basis for environment regulation, optimize greenhouse structure design from energy consumption point of view.
引文
[1]. De Wit C T. Photosynthesis of leaf canopies. Agric Res Report [D], Wageningen,1965.
    [2]. De Wit CT. Simulation of assimilation, Respiration and transpiration of crops [M]. Simulation Monographs. Pudoc. Wageningen,1978.
    [3]. Baker DN. GOSSYM:A simulation of cotton crop dynamics, In Computers applied to the management of large-scale agricultural centerprises [M]. Proc. VSA-VSSR Semiar, Moscow, Kishiev,1976:100-123.
    [4].王向东,张建平,马海莲,等.作物模拟模型的研究概况及展望[J].河北农业大学学报,2003,(6):20-22.
    [5].倪纪恒,罗卫红,李永秀,等.温室番茄发育模拟模型研究[J].中国农业科学,2005,38(6):1219-1225.
    [6].袁昌梅,罗卫红,张生飞.等.温室网纹甜瓜叶面积与光合生产模拟模型研究[J].南京农业大学学报,2006,29(1):7-12.
    [7].徐国彬,罗卫红,陈发棣,等.温度和辐射对一品红发育及主要品质指标的影响[J].园艺学报,2006,33(1):168-171
    [8].张晓艳,刘锋,王风云,等.蝴蝶兰生长动态模型设计与实现[J].中国农学通报,2007,23(11):398-402.
    [9]. Duncan W G..Simulation of Growth and Yield in Cotton:A Computer Analysis of the Nutritional Theroy [J]. Proe Beltwidc Cotton Prod Res Conf,1971,78:45-61.
    [10].曹永世.美国CERES作物模拟模型及其应用[J].世界农业,1991,(9):52-55
    [11].Antonio S, Vincenzo C, Stefano D, Vito M. Greenhouse solarization: effects on soil microbiological parameters and agronomic aspects. Scientia Horticulturae,2008,16:98-103
    [12].Hugo UF, Pieters JG. Modelling greenhouse temperature using system identification by means of neural networks [J]. Neurocomputing,2004,56:423-428.
    [13].Raphael L, Ido S. Greenhouse temperature modeling: a comparison between sigmoid neural networks and hybrid models [J]. Mathematics and Computers in Simulation,2004,65:19-29.
    [14]. Ido S, Ilya I. Seasonal Optimization of the Greenhouse Environment For a Simple Two-stage Crop Growth Model [J]. J. agric. Engng Res,1998,70:145-155
    [15].Baille A, Lopez JC., Bonachela S.,et al. Night energy balance in a heated low-cost plastic greenhouse [J]. Agricultural and Forest Meteorology,2006,137:107-118.
    [16].Abdel GAM., Ishigami Y, Goto E et al. A Method for measuring Greenhouse Cover Temperature using a Thermocouple [J]. Biosystems Engineering,2006,95 (1):99-109.
    [17].Sujata N, Tiwari GN. Energy and exergy analysis of photovoltaic/thermal integrated with a solar greenhouse [J]. Energy and Buildings,2008,4:2015-2021.
    [18].吴瑞芬,刘寿东.日光温室小气候监测模式及调控技术研究[J].内蒙古气象,2001,(4):29-32.
    [19].戴剑锋,罗卫红,徐国彬,等.长江中下游地区Venlo型温室空气温湿度以及黄瓜蒸腾速率模拟研究[J].农业工程学报,2005,21(5):107-112.
    [20].辛本胜,乔晓军,滕光辉.日光温室环境预测模型构建[J].农机化研究,2006,(4):96-100.
    [21].胥芳,张立彬,陈教料,等.玻璃温室小气候温湿度动态模型的建立与仿真[J].农业机械学报,2005,36(11):102-131.
    [22].Bennisa N, Duplaix J, Enea G, et al.Greenhouse climate modelling and robust control [J]. Computersand electronicsin agriculture,2008,61:96-107.
    [23].Weihong Luo, Hendrik Feije de Zwart, Jianfeng Dail, et al. Simulation of Greenhouse Management in the Subtropics, Part Ⅰ:ModelValidation and Scenario Study for the Winter Season [J]. Biosystems Engineering,2005,90 (3):307-318.
    [24]. Cecilia S, Taeke J. A model of humidity and its applications in a greenhouse [J]. Agricultural and Forest Meteorology,1995,76:129-148.
    [25].Pieters J. G., Deltour J. M.. Modeling solar engergy input in greenhouse [J]. Solar Energy,1999, 67:119-130.
    [26].Boulard. T. The mechanisms involved in the natural ventilation of greenhouse [J]. Agricultural and Forest Meteorology,1996,79:61-77.
    [27].Cemek B, Demir Y. Testing of the condensation characteristics and light transmissions ofdifferent plastic film covering materials [J]. Polymer Testing,2005,24(3):284-289.
    [28].Korner O, Challa H. Process-based humidity control regime for greenhouse crops [J]. Computers and Electronics in Agriculture,2003,39:173-192.
    [29]. Van Straten G, Challa H, Buwalda F. Towards user accepted optimal control of greenhouse climate [J]. Computers and Electronics in Agriculture,2000,26:221-238.
    [30].De Zwart HF. Analyzing energy—saving options in greenhouse cultivation using a simulation mode 1. Ph.D dissertation [D]. The Netherlands:Agricultural University of Wageningen,1996.
    [31]. KiSrner O, Bakker MJ, Heuvelink E. Daily temperature integration:asimulation study to quantiry energy consumption[J]. BiosystemsEngineering,2004,87:333-343.
    [32].陈端生.建温室必须考虑区域气候条件[M].中国花卉园艺,2001,13:8-9.
    [33].周长吉.现代温室工程[M].北京:化学工业出版社,2003.
    [34].吴静怡,金鼎,王如竹.蔬菜温室各种供热系统的经济性分析[J].上海农业学报,2001,17(2):22-26.
    [35].李永秀,罗卫红,倪纪恒,等.用辐热积法模拟温室黄瓜叶面积、光合速率与干物质产量[J].农业工程学报,2005,21(12):131-136.
    [36].倪纪恒,罗卫红,李永秀,等.温室番茄叶面积与干物质生产的模拟[J].中国农业科学,2005, 38(8):1629-1635.
    [37].袁昌梅,罗卫红,张生飞,等.温室网纹甜瓜发育模拟模型研究[J].园艺学报,2005,32(2):262-267.
    [38].李永秀,罗卫红,倪纪恒,等.温室黄瓜生育期模拟模型的研究[J].南京气象学院学报,2008,31(2):257-263.
    [39].李永秀,罗卫红,倪纪恒,等.温室黄瓜干物质分配与产量预测模拟模型初步研究[J].农业工程学报,22(2):116-121.
    [40].倪纪恒,罗卫红,李永秀,等.温室番茄干物质分配与产量的模拟分析,应用生态学报,2006,17(5):811-816.
    [41].罗卫红,汪小显,戴剑锋,等.南方现代化温室黄瓜冬季蒸腾测量与模拟研究[J].植物生态学报,2004,28(1):59-65.
    [42].戴剑锋,罗卫红,李永秀,等.基于小气候模型的温室能耗预测系统研究[J].中国农业科学,2006,39(11):2313-2318.
    [43].汪小旵,丁为民,罗卫红,等.南方现代化温室能耗预测模型的建立与分析[J].南京农业大学学报,2006,29(1):116-120.
    [44].李世奎,候光良,欧阳海等.中国农业气候资源和农业气候区划[J].北京:科学出版社,1988.
    [45].肖秀珠,周振湘,赖闽,等.烤烟气候适应性分析及基于GIS的专题农业气候区划[J].安徽农业科学,2007,35(17):5319-5320.
    [46].李树勇,周顺亮,徐巧初,等.江西省农业气候资源区划[J].江西农业学报,2007,19(2):102-105.
    [47].乔丽,杜继稳,江志红,等.陕西省生态农业干旱区划研究[J].干旱区地理,2009,32(1)112-118.
    [48].王连喜,陈怀亮,李琪,余卫东.农业气候区划方法研究进展[J],中国农业气象,2010,31(2):277-281.
    [49].王燕.用模糊聚类分析法对某地区气候区划[J].集宁师专学报,2000,22(4):30-32.
    [50].梁平,王洪斌,龙先菊,等.黔东南州种植太子参的气候生态适宜性分区[J].中国农业气象,2008,29(3):329-332.
    [51].杨凤瑞,孟艳静,高桂芹,等.用DTOPSIS方法评价内蒙古中西部农业气候资源[J].气象,2008,34(11):106-110.
    [52].金志风,尚华勤.GIS技术在常山县胡抽种植气候区划中的应用[J].农业工程学报,2003,19(3):153-155.
    [53].张纪增.日光温室栽培区的划分[J].农村实用工程技术,1991,(3):12.
    [54].邱仲华,康永颉,王捷,等.甘肃高效节能目光温室区划初报[J].农业工程学报,1996,12(增刊):143-144.
    [55].吕国华,汪洪礼,史为民,等.新疆节能日光温室发展区划与结构优化探讨[J].农业工程学报,1996,12(增刊):48-51.
    [56].汪李平,向长萍.中国节能型日光温室的气候区划[J].农业工程学报,1998,(14),增刊:36-40.
    [57].齐玉春,陈端生.中国东部淮河以北地区节能型日光温室蔬菜生产的气候区划风险初探[J].农业工程学报,1998,(14),增刊:32-36.
    [58].徐师华.西北干旱农业气候区发展设施农业浅析.发展中的中国工厂化农业.工厂化农业可持续发展研讨会论文集[M].北京出版社,2000.
    [59].葛徽衍,张永红.影响关中东部冬季日光温室生产的气候变化特点[J].中国农业气象,2006,27(3):187-190.
    [60].张永红,葛徽衍,李秀琳.关中东部设施农业气候资源分布及变化特征[J].中国农业气象.2009,30(2):153-157
    [61].李春,柳芳,黎贞发等.环渤海地区节能型日光温室生产的气候资源分析.中国农业资源分析,2009,30(2):50-53.
    [62].赵子征,彭高军,辛本胜.中国西北地区节能型日光温室蔬菜生产气候区划[J].农机化研究,2006,5:87-90.
    [63].张亚红,陈青云.中国温室气候区划及评述.农业工程学报,2006,22(11):197-202.
    [64].崔读昌.中国农业气候学[M].杭州:浙江科学技术出版社,1999,678.
    [65].段若溪,姜会飞.农业气象学[M].北京:气象出版社,2002:275.
    [66].Kang-tsung Chang著,陈健飞等译.地理信息系统导论[M].北京:科学出版社,2003:357.
    [67].ESRI. ArcGIS 9-Using ArcMap [M]. ESRI Press 2004.
    [68]. Sen ZK, Oztopal A., Sahin AD, SOlar irradition from sunshine duration by geno-fuzzy partial approach [J]. Energy Sources,2004,26(4):377-386.
    [69].Iqbal, M.. An Introduction to Solar Radiation [M], Academic Press, New York,1983.
    [70].Goudriaan J. Crop Micrometeorology: A Simulation Study [M]. Wageningen: Pudoc.1977:249.
    [71].Goudriaan J, Van Laar HH. Modelling potential crop growth processes:textbook with exercises [D]. Dordrecht: Kluwer Academic Publishers.1994:240.
    [72].Gijzen H. Simulation of photosynthesis and dry matter production of greenhouse crops [A]. Simulation Report CABO-TT, nr.28. Wageningen: Centre for Agrobiological Research [M], Wageningen Agricultural University,1992,17-21.
    [73].Boulard T, Feuilloley P, Kittas C. Natural ventilation performance of six greenhouse and tunnel types [J]. Journal of Agricultural Engineering Research,1997,67:249-266.
    [74].Boulard T, Baille A. Modelling of air exchange in a greenhouse equipped with continuous roof vents [J]. Journal of Agricultural Engineering Research,1995,61:37-48.
    [75]. Bailey B, Cotton R F. Glasshouse thermal screen: influence of single and double screens on heat loss and crop environment [M]. NJAE Dep note DN/G/821,1980:15.
    [76].Stanghellini C. Transpiration of greenhouse crops, an aid to climate management [M]. The Netherlands: Agricultural University of Wageningen,1987.
    [77].Boulard T, Wang S. Greenhouse crop transpiration simulation from external climate conditions [J]. Agricultural and Forest Meteorology,2000,100:25-34.
    [78].Monteith J L, Unsworth M H. Principles of environmental physics [M]. London:Edward Arnold, 1990:291.
    [79].Monsi M, Saeki T. Uber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung fur die Stoffproduktion. Japanese Journal of Botany,1986,14:22-52.
    [80].Heuvelink E. Tomato growth and yield:quantitative analysis and synthesis [M]. Wageningen: Wageningen Agricultural University,1996.
    [81].Spitters, C. J. T., Toussaint, H. A. J. M. & Goudriaan, J. Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. Part I. Components of incoming radiation [J]. Agricultural and Forest Meteorology,1986,38,217-29.
    [82].苏高利,柳钦火,邓芳萍,等.基于LS2SVM方法的晴空逐时太阳辐射模型[J],北京师范大学学报(自然科学版),2007,43(3):274-278.
    [83].张继祥,刘克长,魏钦平,等.美国黑核桃实生苗生态生理过程对环境因素响应的数值模拟气象要素日变化进程的数理模型[J].生物数学学报,2005,20(4):469-476.
    [84].牛强,夏士雄,周勇等.改进的模糊C-均值聚类方法[J].电子科技大学学报,2007,36(6):1257-1259.
    [85].陈端生,郑海山,刘步洲.日光温室气象环境综合研究[J].农业工程学报,1990,6(2):77-81.
    [86].吉翔华,陈超,邵正荣等.基于主题子空间的文本模糊C均值聚类方法[J].小型微型计算机系统,2007,(12):2225-2228.
    [87].马晓群,王效瑞,徐敏,等.GIS在农业气候区划中的应用[J].安徽农业大学学报,2003,30(1):105-108.
    [88].冯晓云,王建源.基于GIS的山东农业气候资源及区划研究[J].中国农业资源与区划,2005,14(2):60-62.
    [89].姚益平等.浙江农村气象灾害防御手册[M].北京:气象出版社,2009:1-9.
    [90].陈正旭,封秀燕,王亚云.多岛屿地图上绘制气象要素等值线色块的自适应方法[J].气象科技,2009,37(3):357-359.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700