气体监测的可调谐多模二极管激光关联光谱技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对气体的有效探测在环境监测、工业控制和生物医疗等领域都具有重要意义。相比于化学方法,光学技术具有非接触、测量范围大等优点,其中可调谐二极管激光吸收光谱(TDLAS)和关联光谱(COSPEC)是两种主流技术。为了克服TDLAS技术成本高、稳定性差、可靠性低的缺点,本论文在开展了TDLAS和COSPEC技术研究的基础上,将COSPEC引入到TDLAS中,发展了新的可调谐多模二极管激光关联光谱(TMDL-COSPEC)技术,并用该技术开展了多种气体监测的研究。
     开展了TDLAS气体监测技术的研究。在以CO_2为样例气体的测量实验中,使用中心发射波长为1578.7nm的VCSEL型二极管激光器获得了CO_2的高分辨吸收光谱,通过应用波长调制光谱(WMS)技术显著提高了信噪比,采用2s的积分时间获得了130ppm的测量灵敏度,测量值与计算值的偏差小于1%。TDLAS技术的研究为后面气体监测研究工作的开展奠定了基础。
     采用发射波长在300nm附近的LED开展了COSPEC技术监测SO2的研究。通过测量多组不同浓度的SO2获得了具有很高线性度的浓度标定曲线,光强调制系数正比于参考气饱和度。使用Allan方差分析法评估系统的最佳积分时间大于60s,最佳灵敏度好于0.4 ppm。压强变化和NO2的存在对测量的影响很小。该研究表明采用COSPEC技术可实现对SO2的低成本、抗干扰、灵敏测量。
     提出了新的TMDL-COSPEC气体监测技术,该技术结合了TDLAS技术高灵敏和响应快速的技术优势与COSPEC技术抗干扰和坚固稳定的优点。从Beer-Lambert定律出发建立了多模激光吸收光谱理论模型。在TMDL-COSPEC技术测量气体的实验研究中所使用的光源是廉价的Fabry-Pérot(FP)型MDL,其发射光谱与目标气体吸收光谱具有很好的交叠,很容易获得丰富的目标气体的特征吸收信号。使用发射谱在1570nm附近的MDL在没有对光源做温度稳定控制的条件下实现了对CO_2的准确测量,获得的灵敏度为400ppm。样品气内混入的CO干扰气体没有对测量产生影响,证明了TMDL-COSPEC技术的选择性。使用发射波长在1520nm附近的MDL测量了C2H2气体,研究了测量灵敏度与可靠性的关系,实验结果表明,在采用多信号推演待测气体浓度时,灵敏度与可靠性间存在着此消彼长的辩证关系。开展了CO_2和CO的同时测量研究,利用两个分别装有已知浓度CO_2和CO的参考池实现了对两种目标气体的特异性识别和准确定量分析。
     在300~473K的范围内研究了温度对TMDL-COSPEC技术测量气体的影响。在以氧气为测量对象的实验研究中,从理论上分析了温度对气体体积和吸收线形的影响,实施了三种方案找到了在不同应用场景下的温度修正方法并比较了它们的优缺点。温度修正后的测量结果相对标准偏差小于1%,表明温度效应被有效修正。
     分别采用FP型的MDL和VCSEL型单模二极管激光器对TMDL-COSPEC和TDLAS技术进行了比较研究。以氧气为测量对象的实验研究结果表明,尽管TMDL-COSPEC技术的灵敏度比TDLAS技术要差大约3倍,但前者的稳定性远好于后者,并且前者具有对光源要求宽松和使用简单的优点。两种技术均表现出了水平相当的高线性度。应用TMDL-COSPEC技术在无人职守情况下对热电厂烟气中氧气含量实施了连续5天的实时监测,TMDL-COSPEC技术表现出了高度的测量稳定性和对复杂环境的适应性。
     在应用TMDL-COSPEC技术实施气体监测时,不必要求光源必须是单模发射,不必对每个二极管激光器做严格标定,不必做波长稳定控制。这些特性不仅大大降低了气体测量成本,提高了测量的稳定性,更使得气体监测系统更加易用,将有望促进以二极管激光器作为光源的气体监测技术的普及。
Efficient gas detection is of great importance in many fields, including environmental monitoring, industrial control and biomedical applications. Optical techniques benefit from being non-contact and large-range compared with chemical gas sensing methods. Tunable Diode Laser Absorption Spectroscopy (TDLAS) and COrrelation SPECtroscopy (COSPEC) are two of the most widely-used optical techniques. In order to overcome the drawbacks of TDLAS– including high cost, poor stability and low reliability,– this dissertation presents how the concept of COSPEC was combined into TDLAS, and a novel gas sensing technique called Tunable Multimode Diode Laser COrrelation SPECtroscopy (TMDL-COSPEC) was developed and employed for monitoring of various gases.
     The gas monitoring technique of TDLAS was first employed to measure CO_2, where the high-resolution absorption spectrum of the gas was obtained by using a VCSEL type of diode laser with a centre wavelength of 1578.7 nm. Wavelength modulation spectroscopy was performed to increase the signal-to-noise ratio. A sensitivity of 130 ppm was obtained with an integration time of 2 s. The discrepancy between the measured and the calculated value was less than 1%. The investigation of the TDLAS method laid a foundation for the latter research work on gas monitoring.
     Sulfur dioxid monitoring was performed by COSPEC utilizing a LED with the emitted spectrum around 300 nm. A concentration calibration profile with high linearity was obtained by measuring different concentrations of SO2. The intensity modulation index was found propotional to the saturation of the reference gas. The system performance was evaluated by Allan variance methods, yielding a sensitivity better than 0.4 ppm and an optimum integration time longer than 60 s. The accuracy of the concentration measurements were not significantly affected by pressure changes or simultaneous presence of NO2. These results indicate that COSPEC for SO2 monitoring has the advantage of low cost, high specificity and high sensitivity.
     A novel TMDL-COSPEC technique for gas monitoring was proposed by combining the high sensitivity and speed of TDLAS and the insensitivity to gas interferences and robustness of COSPEC. A theoretical model of the multi-mode laser absorption spectroscopy was established on the basis of the Beer-Lambert law. Low-cost Fabry-Pérot-type MDLs were employed in TMDL-COSPEC experiments. Since the random radiation spectra of the MDLs greatly overlapped with the absorption spectra of the target gases, plenty of absorption signals were readily obtained. The CO_2 concentration was accurately measured with a sensitivity of 400 ppm by using a MDL emitting around 1570 nm without temperature stablization. The interfering CO gas in the sample did not affect the measurement, demonstrating the specificity of TMDL-COSPEC. The relationship between sensitivity and reliability was studied by measuring C2H2 employing a MDL with the emission spectrum aournd 1520 nm. The measurement results indicated that there is a trade-off between sensitivity and reliability for retrieving gas concentrations by multiple absorption signals. Simultaneous detection of CO_2 and CO was also performed. Both of the two target gases were specifically identified and accurately analyzed by using two reference gas cells containing well-calibrated concentrations of CO_2 and CO, respectively.
     Temperature effects on the gas monitoring using TMDL-COSPEC was investigated in the temperature range of 300-473 K,, where oxygen was used as the sample gas. The temperature effects on gas volume and absorption line shape were theoretically analysed. Temperature correction methods were found in three different application schemes, and their advantages and disadvantages were compared. The relative standard deviations of measurement results after temperature correction were less than 1%, indicating that the temperature effects were well corrected.
     The performances of TMDL-COSPEC and TDLAS were compared by measuring the oxygen gas concentration employing FP-type MDLs and a VCSEL-type single mode diode laser, respectively. Although the sensitivity of TMDL-COSPEC was worse than the TDLAS by a factor of about 3, the stability of the former was far better than the latter. Futhermore, the TMDL-COSPEC had the advantage of ease-of-use since the laser source did not require extensive characterization before empolyment. Both of the two techniques displayed nearly perfect linearity. By employment of TMDL-COSPEC, we performed 5-days unattended real-time monitoring of the oxygen content of exhaust gas in a coal-combustion-based power plant, demonstrating the high stability and adaptability of TMDL-COSPEC in a complex environment.
     By using TMDL-COSPEC, the diode laser source is not necessarily single mode, does not require extensive characterization and does not need temperature stablization. The above advantages of TMDL-COSPEC scale down the system cost, enhance the measurement stability and make the system easy to use, which is promising to the promotion and widespread application of diode-laser-based gas monitoring techniques.
引文
1王振亚,李海洋,周士康.光谱技术在大气环境监测中的应用.物理. 2001, 30(9): 549~555
    2国家环境保护总局.空气和废气监测分析方法.中国环境科学出版社. 2003: 3~22
    3薛祖源.国外大气污染防控一斑.中国环保产业. 2003, 09: 37~41
    4国家环境保护总局.空气和废气监测分析方法指南(上册).中国环境科学出版社. 2006: 73~123
    5 P. Werle. A Review of Recent Advances in Semiconductor Laser Based Gas Monitors. Spectrochim. Acta A. 1998, 54(2): 197~236
    6 J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson. A Potential Remote Sensor of CO in Vehicle Exhausts Using 2.3 um Diode Lasers. Meas. Sci. Technol. 2000, 11(11): 1576~1584
    7 G. Somesfalean, Z. G. Zhang, M. Sjoholm, and S. Svanberg. All-Diode-Laser Ultraviolet Absorption Spectroscopy for Sulfur Dioxide Detection. Appl. Phys. B. 2005, 80(8): 1021~1025
    8 G. Wysocki, Y. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser. Dual Interband Cascade Laser Based Trace-Gas Sensor for Environmental Monitoring. Appl. Opt. 2007, 46(33): 8202~8210
    9 A. I. Nadezhdinskii, Y. Y. Ponurovskii, and D. B. Stavrovskii. Non-Contact Detection of Explosives by Means of a Tunable Diode Laser Spectroscopy. Appl. Phys. B. 2008, 90(2): 361~364
    10 I. Linnerud, P. Kaspersen, and T. Jaeger. Gas Monitoring in the Process Industry Using Diode Laser Spectroscopy. Appl. Phys. B. 1998, 67(3): 297~305
    11 X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee. Development of a Tunable Diode Laser Sensor for Measurements of Gas Turbine Exhaust Temperature. Appl. Phys. B. 2006, 82(3): 469~478
    12 A. Farooq, J. B. Jeffries, and R. K. Hanson. In Situ Combustion Measurements of H2O and Temperature near 2.5 um Using Tunable Diode Laser Absorption. Meas. Sci. Technol. 2008, 19(7): 075604
    13 K. L. Moskalenko, A. I. Nadezhdinskii, and I. A. Adamovskaya. Human BreathTrace Gas Content Study by Tunable Diode Laser Spectroscopy Technique. Infrared Phys. Techn. 1996, 37(1): 181~192
    14 K. Namjou, C. B. Roller, T. E. Reich, J. D. Jeffers, G. L. McMillen, P. J. McCann, and M. A. Camp. Determination of Exhaled Nitric Oxide Distributions in a Diverse Sample Population Using Tunable Diode Laser Absorption Spectroscopy. Appl. Phys. B. 2006, 85(2-3): 427~435
    15 S. Svanberg. Laser Based Diagnostics - From Cultural Heritage to Human Health. Appl. Phys. B. 2008, 92(3): 351~358
    16 M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel. Recent Advances of Laser-Spectroscopy Based Techniques for Applications in Breath Analysis. J. Breath Res. 2007, 1(1): 014001
    17 G. Somesfalean, M. Sjoholm, L. Persson, H. Gao, T. Svensson, and S. Svanberg. Temporal Correlation Scheme for Spectroscopic Gas Analysis Using Multimode Diode Lasers. Appl. Phys. Lett. 2005, 86(18): 184102
    18刘文清,崔志成,刘建国,谢品华,董凤忠,张玉钧,魏庆农.大气痕量气体测量的光谱学和化学技术.量子电子学报. 2004, 21(2): 202~210
    19 E. M. Zdankiewicz.气体检测的原理及应用(一)化学传感技术.传感器世界. 1998, 1: 16~26
    20 U. Platt, D. Perner, and H. W. Patz. Simultaneous Measurements of Atmospheric CH2O, O3 and NO2 by Differenctial Optical Absorption. J. Geophys. Res. 1979, 84(C10): 6329~6335
    21 P. Weibring, H. Edner, S. Svanberg, G. Cecchi, L. Pantani, R. Ferrara, and T. Caltabiano. Monitoring of Volcanic Sulphur Dioxide Emissions Using Differential Absorption Lidar (DIAL), Differential Optical Absorption Spectroscopy (DOAS), and Correlation Spectroscopy (COSPEC). Appl. Phys. B. 1998, 67(4): 419~426
    22 G. Honninger, C. von Friedeburg, and U. Platt. Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS). Atmos. Chem. Phys. 2004, 4: 231~254
    23 C. Kern, S. Trick, B. Rippel, and U. Platt. Applicability of Light-Emitting Diodes as Light Sources for Active Differential Optical Absorption Spectroscopy Measurements. Appl. Opt. 2006, 45(9): 2077~2088
    24 E. V. Browell, S. Ismail, and W. B. Grant. Differential Absorption Lidar (DIAL)Measurements from Air and Space. Appl. Phys. B. 1998, 67(4): 399~410
    25 P. Ambrico, A. Amodeo, P. Di Girolamo, and N. Spinelli. Sensitivity Analysis of Differential Absorption Lidar Measurements in the Mid-Infrared Region. Appl. Opt. 2000, 39(36): 6847~6865
    26 V. Wulfmeyer, and C. Walther. Future Performance of Ground-Based and Airborne Water-Vapor Differential Absorption Lidar. II. Simulations of the Precision of a Near-Infrared, High-Power System. Appl. Opt. 2001, 40(30): 5321~5336
    27 V. Wulfmeyer, and C. Walther. Future Performance of Ground-Based and Airborne Water-Vapor Differential Absorption Lidar. I. Overview and Theory. Appl. Opt. 2001, 40(30): 5304~5320
    28 C. Oppenheimer, P. Francis, M. Burton, A. J. H. Maciejewski, and L. Boardman. Remote Measurement of Volcanic Gases by Fourier Transform Infrared Spectroscopy. Appl. Phys. B. 1998, 67(4): 505~515
    29 R. E. Slusher. Laser Technology. Rev. Mod. Phys. 1999, 71(2): S471~S479
    30 C. E. Wieman. Using Diode Lasers for Atomic Physics. Rev. Sci. Instrum. 1991, 62(1): 1~20
    31 T. Imasaka. Diode Lasers in Analytical Chemistry. TALANTA. 1999, 48(2): 305~320
    32 G. Winnewisser, T. Drascher, T. Giesen, I. Pak, F. Schmulling, and R. Schieder. The Tunable Diode Laser: A Versatile Spectroscopic Tool. Spectrochim. Acta A. 1999, 55(10): 2121~2142
    33 M. Feher, and P. A. Martin. Tunable Diode-Laser Monitoring of Atmospheric Trace Gas Constituents. Spectrochim. Acta A. 1995, 51(10): 1579~1599
    34 M. W. Sigrist, R. Bartlome, D. Marinov, J. M. Rey, D. E. Vogler, and H. Wachter. Trace Gas Monitoring with Infrared Laser-Based Detection Schemes. Appl. Phys. B. 2008, 90(2): 289~300
    35 P. Werle, R. Mucke, F. D'Amato, and T. Lancia. Near-Infrared Trace-Gas Sensors Based on Room-Temperature Diode Lasers. Appl. Phys. B. 1998, 67(3): 307~315
    36 P. Werle, K. Maurer, R. Kormann, R. Mucke, F. D'Amato, T. Lancia, and A. Popov. Spectroscopic Gas Analyzers Based on Indium-Phosphide, Antimonide and Lead-Salt Diode-Lasers. Spectrochim. Acta A. 2002, 58(11): 2361~2372
    37 V. P. Duraev, A. A. Marmalyuk, and A. V. Petrovskiy. Tunable Laser Diodes for the 1250-1650 nm Spectral Range. Spectrochim. Acta A. 2007, 66(4-5): 846~848
    38 J. Wagner, C. Mann, M. Rattunde, and G. Weimann. Infrared Semiconductor Lasers for Sensing and Diagnostics. Appl. Phys. A. 2004, 78(4): 505~512
    39 A. P. Astakhova, A. N. Imenkov, T. N. Danilova, V. V. Sherstnev, and Y. P. Yakovlev. InAsSb/InAsSbP Double Heterostructure Lasers for 3-4 um Spectral Range. Spectrochim. Acta A. 2007, 66(4-5): 824~831
    40 D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel. Development of a Tunable Mid-IR Difference Frequency Laser Source for Highly Sensitive Airborne Trace Gas Detection. Appl. Phys. B. 2002, 75(2-3): 281~288
    41 T. R. Meyer, S. Roy, T. N. Anderson, R. P. Lucht, R. Barron-Jimenez, and J. R. Gord. 10 kHz Detection CO2 at 4.5 um by Using Tunable Diode-Laser-Based Difference-Frequency Generation. Opt. Lett. 2005, 30(22): 3087~3089
    42 D. Marinov, J. Rey, and M. W. Sigrist. Mid-Infrared Spectroscopic Investigation of Methylamines by a Continuous-Wave Difference-Frequency Generation Based System. Appl. Opt. 2008, 47(12): 1956~1962
    43 M. Ohtsu, Y. Teramachi, Y. Otsuka, and A. Osaki. Analyses of Mode-Hopping Phenomena in an AlGaAs Laser. J. Quantum Electron. 1986, 22(4): 535~543
    44 Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo. Single-Mode Monolithic Quantum-Dot VCSEL in 1.3 um with Sidemode Suppression Ratio over 30 dB. Photonic. Tech. L. 2006, 18(5-8): 847~849
    45 V. Gambin, W. Ha, M. Wistey, H. Yuen, S. R. Bank, S. M. Kim, and J. S. Harris. GaInNAsSb for 1.3-1.6 um Long Wavelength Lasers Grown by Molecular Beam Epitaxy. J. Sel. Top. Quant. 2002, 8(4): 795~800
    46 L. A. Coldren. Monolithic Tunable Diode Lasers. J. Sel. Top. Quant. 2000, 6(6): 988~999
    47 R. Todt, T. Jacke, R. Meyer, and M. C. Amann. Thermally Widely Tunable Laser Diodes With Distributed Feedback. Appl. Phys. Lett. 2005, 87(2): 021103
    48 D. Barat, J. Angellier, A. Vicet, Y. Rouillard, L. Le Gratiet, S. Guilet, A. Martinez, and A. Ramdane. Antimonide-Based Lasers and DFB Laser Diodes in the 2-2.7 um Wavelength Range for Absorption Spectroscopy. Appl. Phys. B.2008, 90(2): 201~204
    49 L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Konig, and T. W. Hansch. A Compact Grating-Stabilized Diode-Laser System for Atomic Physics. Opt. Commun. 1995, 117(5-6): 541~549
    50 A. Wicht, M. Rudolf, P. Huke, R. H. Rinkleff, and K. Danzmann. Grating Enhanced External Cavity Diode Laser. Appl. Phys. B. 2004, 78(2): 137~144
    51 C. S. Fletcher, and J. D. Close. Extended Temperature Tuning of an External Cavity Diode Laser. Appl. Phys. B. 2004, 78(3-4): 305~313
    52 J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho. Quantum Cascade Laser. Science. 1994, 264(5158): 553~556
    53 A. A. Kosterev, and F. K. Tittel. Chemical Sensors Based on Quantum Cascade Lasers. J. Quantum. Elect. 2002, 38(6): 582~591
    54 A. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. K. Tittel, and R. F. Curl. Application of Quantum Cascade Lasers to Trace Gas Analysis. Appl. Phys. B. 2008, 90(2): 165~176
    55 P. Krotz, D. Stupar, J. Krieg, G. Sonnabend, M. Sornig, F. Giorgetta, E. Baumann, M. Giovannini, N. Hoyler, D. Hofstetter, and R. Schieder. Applications for Quantum Cascade Lasers and Detectors in Mid-Infrared High-Resolution Heterodyne Astronomy. Appl. Phys. B. 2008, 90(2): 187~190
    56 J. Ye, L. S. Ma, and J. L. Hall. Ultrasensitive Detections in Atomic and Molecular Physics: Demonstration in Molecular Overtone Spectroscopy. J. Opt. Soc. Am. B. 1998, 15(1): 6~15
    57 G. Somesfalean, J. Alnis, U. Gustafsson, H. Edner, and S. Svanberg. Long-Path Monitoring of NO2 with a 635 nm Diode Laser Using Frequency-Modulation Spectroscopy. Appl. Opt. 2004, 44(24): 5148~5151
    58 R. Bartlome, M. Baer, and M. W. Sigrist. High-Temperature Multipass Cell for Infrared Spectroscopy of Heated Gases and Vapors. Rev. Sci. Instrum. 2007, 78(1): 013110
    59 C. Dyroff, P. Weibring, A. Fried, D. Richter, J. G. Walega, A. Zahn, W. Freude, and P. Werle. Stark-Enhanced Diode-Laser Spectroscopy of Formaldehyde Using a Modified Herriott-Type Multipass Cell. Appl. Phys. B. 2007, 88(1): 117~123
    60 M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, and D. M. Sonnenfroh. Ultrasensitive Dual-Beam Absorption and Gain Spectroscopy - Applications For Near-Infrared and Visible Diode-Laser Sensors. Appl. Opt. 1995, 34(18): 3240~3249
    61 P. Hobbs. Ultrasensitive laser measurements without tears. Appl. Opt. 1997, 36(4): 903-920
    62 F. D'Amato, and M. De Rosa. Tunable Diode Lasers and Two-tone Frequency Modulation Spectroscopy Applied to Atmospheric Gas Analysis. Opt. Laser Eng. 2002, 37(5): 533~551
    63 J. M. Supplee, E. A. Whittaker, and W. Lenth. Theoretical Description of Frequency-Modulation and Wavelength Modulation Spectroscopy. Appl. Opt. 1994, 33(27): 6294~6302
    64 P. Kluczynski, J. Gustafsson, A. Lindberg, and O. Axner. Wavelength Modulation Absorption Spectrometry - an Extensive Scrutiny of the Generation of Signals. Spectrochim. Acta B. 2001, 56(8): 1277~1354
    65 H. Abitan, H. Bohr, and P. Buchhave. Correction to the Beer-Lambert-Bouguer Law for Optical Absorption. Appl. Opt. 2008, 47(29): 5354~5357
    66 M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman. Einstein A-Coefficients and Statistical Weights for Molecular Absorption Transitions in the HITRAN Database. J. Quant. Spectrosc. Radiat. Transf. 2006, 98(1): 130~155
    67 L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J. M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi. The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation): 1996 Edition. J. Quant. Spectrosc. Radiat. Transf. 1998, 60(5): 665~710
    68 J. Reid, and D. Labrie. Second-Harmonic Detection With Tunable Diode Lasers - Comparison of Experiment and Theory. Appl. Phys. B. 1981, 26: 203~210
    69 J. A. Silver. Frequency-Modulation Spectroscopy for Trace Species Detection: Theory and Comparison among Experimental Methods. Appl. Opt. 1992, 31(6): 707~717
    70 L. C. Philippe, and R. K. Hanson. Laser Diode Wavelength-ModulationSpectroscopy for Simultaneous Measurement of Temperature, Pressure, and Velocity in Shock-Heated Oxygen Flows. Appl. Opt. 1993, 32(30): 6090~6102
    71 P. Kluczynski, and O. Axner. Theoretical Description Based on Fourier Analysis of Wavelength-Modulation Spectrometry in terms of Analytical And Background Signals. Appl. Opt. 1999, 38(27): 5803~5815
    72 L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner. The HITRAN 2004 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. 2005, 96(2): 139~204
    73 U. Platt. Air Monitoring by Spectroscopic Techniques. Wiley, New York. 1994: 27~84
    74 F. Xu, Z. Lv, Y. G. Zhang, G. Somesfalean, and Z. G. Zhang. Concentration Evaluation Method Using Broadband Absorption Spectroscopy for Sulfur Dioxide Monitoring. Appl. Phys. Lett. 2006, 88(23): 231109
    75 F. Xu, Y. G. Zhang, G. Somesfalean, H. S. Wang, S. H. Wu, and Z. G. Zhang. Broadband Spectroscopic Sensor for Real-Time Monitoring of Industrial SO2 Emissions. Appl. Opt. 2007, 46(13): 2503~2506
    76 F. Xu, Z. Lv, X. T. Lou, Y. G. Zhang, and Z. G. Zhang. Nitrogen Dioxide Monitoring Using a Blue LED. Appl. Opt. 2008, 47(29): 5337~5340
    77 H. Edner, S. Svanberg, L. Uneus, and W. Wendt. Gas-Correlation Lidar. Opt. Lett. 1984, 9(11): 493~495
    78 J. Sandsten, H. Edner, and S. Svanberg. Gas Imaging by Infrared Gas-Correlation Spectrometry. Opt. Lett. 1996, 21(23): 1945~1947
    79 J. Sandsten, P. Wiebring, H. Edner, and S. Svanberg. Real-Time Gas-Correlation Imaging Employing Thermal Background Radiation. Opt. Express. 2000, 6(4): 92~103
    80 T. V. Ward, and H. H. Zwick. Gas Cell Correlation Spectrometer: GASPEC. Appl. Opt. 1975, 14: 2896~2904
    81 A. Cheung, W. Johnstone, and D. Moodie. Gas Detection Based on Optical Correlation Spectroscopy Using a Single Light Source. Meas. Sci. Technol.2006, 17(5): 1107~1112
    82 J. P. Dakin, H. O. Edwards, and B. H. Weigl. Progress with Optical Gas Sensors Using Correlation Spectroscopy. Sens. Actuators B 1995, 29: 87~93
    83 J. P. Dakin, M. J. Gunning, P. Chambers, and Z. J. Xin. Detection of Gases by Correlation Spectroscopy. Sens. Actuators B. 2003, 90: 124~131
    84 A. C. Vandaele, P. C. Simon, J. M. Guilmot, M. Carleer, and R. Colin. SO2 Absorption Cross-Section Measurement in the UV Using a Fourier-Transform Spectrometer. J. Geophys. Res. 1994, 99(D12): 25599~25605
    85 D. W. Allan. Statistics of Atomic Frequency Standards. Proc. IEEE. 1966, 54(2): 221~230
    86 P. Werle, R. Miicke, and F. Slemr. The Limits of Signal Averaging in Atmospheric Trace-Gas Monitoring by Tunable Diode-Laser Absorption Spectroscopy (TDLAS). Appl. Phys. B. 1993, 57: 131~139
    87 L. Croize, D. Mondelain, C. Camy-Peyret, M. Delmotte, and M. Schmidt. Precise Measurements of the Total Concentration of Atmospheric CO2 and 13CO2/12CO2 Isotopic Ratio Using a Lead-Salt Laser Diode Spectrometer. Rev. Sci. Instrum. 2008, 79(4): 043101
    88 L. Joly, C. Robert, B. Parvitte, V. Catoire, G. Durry, G. Richard, B. Nicoullaud, and V. Zeninari. Development of a Spectrometer Using a Continuous Wave Distributed Feedback Quantum Cascade Laser Operating at Room Temperature for the Simultaneous Analysis of N2O and CH4 in the Earth's Atmosphere. Appl. Opt. 2008, 47(9): 1206~1214
    89 J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, and J. Orphal. Atmospheric Remote-Sensing Reference Data from GOME: Part I. Temperature-Dependent Absorption Cross-Sections of NO2 in the 231-794 nm Range. J. Quant. Spectrosc. Radiat. Transf. 1998, 60(6): 1025~1031
    90 J. M. Supplee, and E. A. Whittaker. Theoretical Modeling of Multimode Laser Frequency-Modulation Spectroscopy. J. Opt. Soc. Am. B. 1991, 8(4): 719~725
    91 A. M. Yacomotti, L. Furfaro, X. Hachair, F. Pedaci, M. Giudici, J. Tredicce, J. Javaloyes, S. Balle, E. A. Viktorov, and P. Mandel. Dynamics of Multimode Semiconductor Lasers. Phys. Rev. A. 2004, 69(5): 053816
    92 C. Roller, A. Fried, J. Walega, P. Weibring, and F. Tittel. Advances in Hardware, System Diagnostics Software, and Acquisition Procedures for HighPerformance Airborne Tunable Diode Laser Measurements of Formaldehyde. Appl. Phys. B. 2006, 82(2): 247~264
    93 P. Werle, P. Mazzinghi, F. D'Amato, M. De Rosa, K. Maurer, and F. Slemr. Signal Processing and Calibration Procedures for in situ Diode-Laser Absorption Spectroscopy. Spectrochim. Acta A. 2004, 60(8-9): 1685~1705
    94 D. S. Baer, R. K. Hanson, M. E. Newfield, and N. K. J. M. Gopaul. Multiplexed Diode-Laser Sensor System for Simultaneous H2O, O2, and Temperature Measurements. Opt. Lett. 1994, 19(22): 1900~1902
    95 C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Konigstedt, G. W. Harris, J. Lelieveld, and H. Fischer. Applications of Quantum Cascade Lasers for Sensitive Trace Gas Measurements of CO, CH4, N2O and HCHO. Appl. Phys. B. 2008, 92(3): 419~430
    96 D. B. Oh, M. E. Paige, and D. S. Bomse. Frequency Modulation Multiplexing for Simultaneous Detection of Multiple Gases by Use of Wavelength Modulation Spectroscopy with Diode Lasers. Appl. Opt. 1998, 37(12): 2499~2501
    97 B. L. Upschulte, D. M. Sonnenfroh, and M. G. Allen. Measurements of CO, CO2, OH, and H2O in Room-Temperature and Combustion Gases by Use of a Broadly Current-Tuned Multisection InGaAsP Diode Laser. Appl. Opt. 1999, 38(9): 1506~1512
    98 K. Boylan, V. Weldon, D. McDonald, J. O'Gorman, and J. Hegarty. Sampled Grating DBR Laser as a Spectroscopic Source in Multigas Detection at 1.52-1.57 um. IEE Proc. Optoelectron. 2001, 148(1): 19~24
    99 C. Peng, H. Q. Le, R. Q. Yang, and C. J. Hill. Multiwavelength Discrimination and Measurements of a Two-Gas Mixture by Use of a Broadly Tunable Mid-Infrared Semiconductor Laser. Appl. Opt. 2006, 45(6): 1275~1287
    100 J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult. Cavity Enhanced Absorption Spectroscopy of Multiple Trace Gas Species Using a Supercontinuum Radiation Source. Opt. Express. 2008, 16(14): 10178~10188
    101 R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman. Diode-Laser Absorption Measurements of CO2, H2O, N2O, and NH3 near 2.0 um. Appl. Phys. B. 1998, 67(3): 283~288
    102 C. S. Burke, J. P. Moore, D. Wencel, A. K. McEvoy, and B. D. MacCraith. Breath-by-breath Measurement of Oxygen Using a Compact Optical Sensor. J Biomed Opt. 2008, 13(1): 014027
    103 C. Kolle, W. Gruber, W. Trettnak, K. Biebernik, C. Dolezal, F. Reininger, and P. OLeary. Fast Optochemical Sensor for Continuous Monitoring of Oxygen in Breath-Gas Analysis. Sens. Actuators B. 1997, 38(1-3): 141~149
    104 J. H. Lee. Review on Zirconia Air-Fuel Ratio Sensors for Automotive Applications. J Mater Sci. 2003, 38(21): 4247~4257
    105 R. Moos, W. Menesklou, H. J. Schreiner, and K. H. Hardtl. Materials for Temperature Independent Resistive Oxygen Sensors for Combustion Exhaust Gas Control. Sens. Actuators B. 2000, 67(1-2): 178~183
    106 E. Ivers-Tiffee, K. H. Hardtl, W. Menesklou, and J. Riegel. Principles of Solid State Oxygen Sensors for Lean Combustion Gas Control. Electrochim Acta. 2001, 47(5): 807~814
    107 L. Sandstrom, and D. Malmberg. On-Line and in situ Monitoring of Oxygen Concentration and Gas Temperature in a Reheating Furnace Utilizing Tunable Diode-Laser Spectroscopy. Spectrochim. Acta A. 2002, 58(11): 2449~2455
    108 R. Ramamoorthy, P. K. Dutta, and S. A. Akbar. Oxygen Sensors: Materials, Methods, Designs and Applications. J Mater Sci. 2003, 38(21): 4271~4282
    109 B. B. Stephens, P. S. Bakwin, P. P. Tans, R. M. Teclaw, and D. D. Baumann. Application of a Differential Fuel-Cell Analyzer for Measuring Atmospheric Oxygen Variations. J. Atmos. Ocean. Tech. 2007, 24(1): 82~94
    110 R. P. Kovacich, N. A. Martin, M. G. Clift, C. Stocks, I. Gaskin, and J. Hobby. Highly Accurate Measurement of Oxygen Using a Paramagnetic Gas Sensor. Meas. Sci. Technol. 2006, 17(6): 1579~1585
    111 M. Kroll, J. A. McClintock, and O. Ollinger. Measurement of Gaseous Oxygen Using Diode Laser Spectroscopy. Appl. Phys. Lett. 1987, 51(18): 1465~1467
    112 H. Riris, C. B. Carlisle, L. W. Carr, D. E. Cooper, R. U. Martinelli, and R. J. Menna. Design of an Open-Path near-Infrared Diode-Laser Sensor - Application to Oxygen, Water, and Carbon-Dioxide Vapor Detection. Appl. Opt. 1994, 33(30): 7059~7066
    113 Y. Arita, R. Stevens, and P. Ewart. Multi-mode Absorption Spectroscopy of Oxygen for Measurement of Concentration, Temperature and Pressure. Appl.Phys. B. 2008, 90(2): 205~211
    114 D. M. Bruce, and D. T. Cassidy. Detection of Oxygen Using Short External Cavity GaAs Semiconductor Diode Lasers. Appl. Opt. 1990, 29(9): 1327~1332
    115 Q. V. Nguyen, R. W. Dibble, and T. Day. High-Resolution Oxygen Absorption-Spectrum Obtained with an External-Cavity Continuously Tunable Diode-Laser. Opt. Lett. 1994, 19(24): 2134~2136
    116 C. Corsi, M. Gabrysch, and M. Inguscio. Detection of Molecular Oxygen at High Temperature Using a DFB-Diode-Laser at 761 nm. Opt. Commun. 1996, 128(1-3): 35~40
    117 V. Weldon, J. OGorman, J. J. PerezCamacho, D. McDonald, J. Hegarty, J. C. Connolly, N. A. Morris, R. U. Martinelli, and J. H. Abeles. Laser Diode Based Oxygen Sensing: A Comparison of VCSEL and DFB Laser Diodes Emitting in the 762 nm Region. Infrared Phys. Techn. 1997, 38(6): 325~329
    118 J. Wang, S. T. Sanders, J. B. Jeffries, and R. K. Hanson. Oxygen Measurements at High Pressures with Vertical Cavity Surface-Emitting Lasers. Appl. Phys. B. 2001, 72(7): 865~872
    119 P. Vogel, and V. Ebert. Near Shot Noise Detection of Oxygen in the A-band with Vertical-Cavity Surface-Emitting Lasers. Appl. Phys. B. 2001, 72(1): 127~135
    120 H. P. Zappe, M. Hess, M. Moser, R. Hovel, K. Gulden, H. P. Gauggel, and F. M. di Sopra. Narrow-Linewidth Vertical-Cavity Surface-Emitting Lasers for Oxygen Detection. Appl. Opt. 2000, 39(15): 2475~2479
    121 A. G. Berezin, O. V. Ershov, and A. I. Nadezhdinskii. Trace Complex-Molecule Detection Using Near-IR Diode Lasers. Appl. Phys. B. 2002, 75(2-3): 203~214
    122 E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, and V. Ebert. Diode Laser Based in situ Detection of Alkali Atoms: Development of a New Method for Determination of Residence-Time Distribution in Combustion Plants. Appl. Phys. B. 2002, 75(2-3): 237~247

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700