导热系数测定仪若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源问题是当今社会的主要问题,节能已越来越受到人们的普遍关注。节能的主要途径之一是使用绝热材料,而材料的绝热性能是由其本身的导热系数决定的。导热系数越小,材料的绝热和保温性能就越好。导热系数测量在节能材料的研究、开发和生产中起着极为重要的作用。常见的导热系数测量方法有稳态法和瞬态法。稳态法中常用的方法是护热平板法,但现有护热平板法导热系数测定仪未能很好地解决系统的热平衡、功率补偿和自动化测量等关键技术,这就影响了测量的准确度和效率;同时,稳态法测量还具有测量时间长和测量范围小等固有缺点。
     本课题利用算法、模型修正和软件对现有护热平板法导热系数测定仪进行了改进和完善,很好地解决了其热平衡、功率补偿和自动化测量等关键技术;同时针对稳态法测量的固有缺点,利用瞬态平面热源技术初步开发了基于瞬态法的导热系数测定仪并对其传感器探头和测量电路等关键技术进行了研究。
     本论文完成的主要工作有:
     1、介绍了导热系数的基本概念和测量方法,概述了护热平板法和瞬态平面热源技术法导热系数测定仪的发展现状和存在的问题;
     2、阐述了护热平板法和瞬态平面热源技术法导热系数测定仪的测量原理;
     3、研究了护热平板法导热系数测定仪的热平衡和功率补偿等关键技术并给出了其修正方法,有效提高了测量结果的准确度;
     4、给出了护热平板法导热系数测定仪的系统稳定状态判定方法,提高了测量的效率和自动化程度。
     5、设计编写了护热平板法导热系数测定仪基于Labview平台的全套测控软件,能实现数据的采集及处理、参量控制、报表生成及打印等各种功能,并提供友好的人机交互界面;
     6、利用瞬态平面热源技术初步开发了基于瞬态法的导热系数测定仪并搭建了其样机,设计了其传感器探头和测量电路,并对相关数据处理进行了研究;
     7、对改进的护热平板法导热系数测定仪的热平衡、功率补偿和测控软件进行了实验测试并总结了其优点;对瞬态平面热源技术导热系数测定仪的传感器探头和测量电路进行了实验分析并对各种材料的导热系数进行了测量。
     8、指出了本课题存在的问题和需要改进的地方。
Today, as energy becomes one of the key issues of the world, more and more attention has been paid on energy saving. One of the main ways to save energy is the use of thermal insulation material. The material's thermal insulation property is determined by its Thermal Conductivity Coefficient (TCC). The material with low TCC normally has good heat insulation. And the measurement of TCC plays an important role in the research, development and manufacture of the thermal insulation material. There are mainly two methods to measure the TCC, the steady state method and the transient method. At present, the GHP (Guarded Hot Plate method), which belongs to steady state method, has been widely used. But its three key technologies: the thermal equilibrium, the power compensation and the automatic measurement, which can affect the measurement accuracy and efficiency, have not been well resolved; Meanwhile, the steady state method has some disadvantages such as the fixed measurement time and the narrow measurement range.
     In this study, the GHP thermal conductivity coefficient measuring instrument has been improved with the use of Labview software, optimization algorithm and model correction, and its key technologies of the thermal equilibrium, the power compensation and the automatic measurement have been intensively investigated; Besides, the transient thermal conductivity coefficient measuring instrument based on the TPS(Transient Plane Source technique) has been developed with attentions paid to the TPS senor design and the measuring circuit.
     The main work of this thesis is as follows:
     1. The basic concepts and measurement methods of TCC was introduced, the status and problem of GPH and TPS thermal conductivity coefficient measuring instrument was described.
     2. The measurement principle of GPH and TPS thermal conductivity coefficient measuring instrument was described.
     3. The correction methods of thermal equilibrium and power compensation for the GHP thermal conductivity coefficient measuring instrument system were researched, and that effectively improved the instrument's accuracy.
     4. Corresponding methods to determinate the system steady state of GHP thermal conductivity coefficient measuring instrument was provided, which greatly increased its measuring efficiency and the degree of automation.
     5. The complete set of measure and control software for GHP thermal conductivity coefficient measuring instrument system was designed, it can do the jobs of Data Acquisition and Processing, parameters controlling, measurement report generating and so on.
     6. The TPS thermal conductivity coefficient measuring instrument and its whole hardware are initially developed, then the TPS senor and the measuring and controlling circuit were designed, finally its software was developed and gave some data processing methods.
     7. Some experiments are carried out. The accuracy and feasibility of thermal equilibrium compensation method, power correction method and automatic measurement algorithm of GHP thermal conductivity coefficient measuring instrument were tested and verified; the TPS senor and the measuring and controlling circuit of TPS thermal conductivity coefficient measuring instrument were tested, some measure results of kinds of material's thermal conductivity coefficient were gave.
     8. The problems and the further research direction of this paper are pointed out.
引文
[1]曹玉璋,邱绪光,实验传热学,北京:国防工业出版社,1998,4-3
    [2]郝丽宏,林凌,李刚等,改进的绝热材料导热系数护热平板法测控系统的设计[J].仪器仪表学报
    [3]陈则韶,葛新石,量热技术和热物性测定,合肥:中国科学技术大学出版社,1990:50-51
    [4]冯石开,俞中原,智能式导热系数测定仪,黑龙江自动化技术与应用,1992,11(3):51-55
    [5]钱滨江,伍贻文,常家芳等,简明传热手册,北京:高等教育出版社,1983:376-407
    [6]中华人民共和国国家技术监督局,GB/T 10295-1988绝热材料稳态热阻及有关特性的测定—热流计法,中华人民共和国国家标准,北京:中国标准出版社,1989-10
    [7]Parker, J.W., Jenkins, J.R., Butler, P.C. and Abbott, G.I., Flash Method of Determining Thermal Diffusivity, Heat Capacity and Thermal Conductivity, J. Appl. Phys.,32,1961:1679-1685
    [8]孔祥谦,绝热材料导热系数测定方法的发展[J],应用科技,1982,(01)
    [9]陈昭栋,平面热源法瞬态测量材料热物性的研究,电子科技大学学报,2004,33(5):551-554
    [10]李保春,董有尔.热线法在导热系数测量中的应用[J],物理测试,2005,院(04):32-34
    [11]于帆,张欣欣.热带法测量材料导热系数的实验研究[J],计量学,2005,26(1):27-29
    [12]任世铮,传热学[M],北京:冶金工业出版社,2007,10-22
    [13]GB/T10294-1988,绝热材料稳态热阻及有关特性的测定-护热平板法[S]
    [14]陈如冰,吴向东,导热系数测试仪校准方法研究[J],计量学报,2007,28(3A)
    [15]Fried, E., Thermal Conduction Contribution to Heat Transfer at Contacts, Thermal Conductivity,1969(2)
    [16]S.E. Gustafsson, B. Suleiman, N.S. Saxena, I. ul Haq, High Temp.-High Press. 23(1991)289-293
    [17]王强,戴景民,张虎,Hot Disk建模及模型精度分析,中国计量学院学报[J],2008,19(4):310-312
    [18]THD-4005型低温恒温槽硬件说明书,宁波天恒仪器厂
    [19]WeiLin, Roger., Viadero Jr. Brian E., Reed, Electronic and Metal Finishing and Processing, Water Environ Res,1998(4):646-652
    [20]王田,宋炜琳,Lab View在测试系统和通信中的应用[J],工业控制计算机,2002,(07)
    [21]黄犊子,樊栓狮,采用HOTDISK测量材料热导率的实验研究[J],化工学报,2003,(S1)
    [22]王魁汉,温度测量实用技术,北京:机械工业出版社,2006
    [23]International Organization for Standardization, ISO/DIS 22007-1, Plastics—Determination of thermal conductivity and thermal diffusivity—Part 1:General principles,2008
    [24]姜忠良,温度的测量与控制,北京:清华大学出版社,2005
    [25]韦靖,浅谈蒸汽压力式温度计和气体压力式温度计的原理,使用与校正,计量技术,2005,1(2):37-39
    [26]L.G.Rubin, B.L.Brandt, H.H.Sample,宋德华,低温测温学近代发展评论(Ⅱ)(续)[J],低温与电气,1984(03):23-28
    [27]彭珍,声学法温度场检测技术研究[D],2008,(02)
    [28]锁凯声,标准石英频率温度计[J],计量技术,1999,(04)
    [29]唐韬,辐射测温法及其在落管测温中的应用研究[D],2005,(04)
    [30]陈浩,邓忠华,余红梅,热电偶测温系统原理及应用[J],制造业自动化,2004,(09)
    [31]林鹏,张庆庚,毛玉柱,王振华,国产铂钴电阻温度计的电阻-温度特性[J低温工程,1994,(02)
    [32]王征,标准铂电阻温度计检定中的数据处理[J],上海计量测试,2000,(06)
    [33]杜建通,张荣玲,吴裕远,微型硅半导体低温温度计的特性与制作工艺[J],低温与超导,1998,(02)
    [34]黄犊子,樊栓狮,采用HOTDISK测量材料导热系数的实验研究[J],化工学报,2003,(54):67-70
    [35]International Organization for Standardization, ISO/DIS 22007-2, Plastics-Determination of thermal conductivity and thermal diffusivity-Part 2: Transient plane heat source (hot disc) method,2008
    [36]王松武,赵旦峰等,常用电路模块分析与设计指导,北京:清华大学出版社,2007
    [37]汪贵平,武宝会,增益可编程仪用放大器AD625工作原理及应用[J],集成电路及其应用,1993,(03)
    [38]USB-7360型数据采集卡硬件说明书,北京中泰研创科技有限公司

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700