质子交换膜燃料电池电堆的热力耦合封装力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池是将氢气与氧气的化学能直接转化为电能的电化学发电装置,最终主要反应产物只有水。随着能源危机和环境污染问题不断加重,燃料电池作为一种高效、清洁、环境友好的能源设备得到了广泛关注。其中,质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell, PEMFC)由于可在室温快速启动、无电解液流失以及寿命长等优点,成为目前研究最多、应用最广的燃料电池类型之一,在航空、航天、航海、移动电源和分散电站等领域都有着良好的应用前景。特别是在汽车工业中,PEMFC被认为是新型环保汽车的最佳动力源。
     实际应用中的PEMFC产品多为大型电堆结构,研究和解决PEMFC电堆在封装载荷作用下的力学问题,对推动PEMFC技术的发展,提高PEMFC的效率、可靠性及寿命等综合性能具有重要意义。其中分析温度影响、选取封装载荷以及优化设计端板结构等封装力学问题尤为关键。本文以PEMFC电堆为研究对象,以数值仿真为主要研究方法,针对上述力学问题展开一系列研究。
     本论文共分为五章,主要研究工作如下:
     第一章介绍了燃料电池的种类和研究进展,随后重点介绍了PEMFC的工作原理、结构特点和组件功能,并详细论述了PEMFC电堆封装过程中温度的影响、封装载荷的选取以及端板的优化设计等关键力学问题。
     第二章结合计算流体动力学(Computational Fluid Dynamics, CFD)与有限单元法(Finite Element Method, FEM),基于典型结构分别建立了PEMFC单电池和多级电堆的热力耦合仿真模型,依次分析和对比了两种结构在不同工作状态时温度、应力、应变及膜电极(Membrane Electrolyte Assembly, ME A)表面接触压力的分布形式和变化规律,研究了多级电堆整体及内部各级双极板的变形规律,最后讨论了工作环境散热、冷却介质流速以及冷却介质类型等散热因素对结构温度和应力分布的影响。
     第三章针对目前对大型PEMFC电堆进行整体力学性能计算耗时巨大的难题,基于等效刚度的基本思想,提出了大型PEMFC电堆整体封装的等效刚度力学模型,利用此模型可快速求得电堆系统在封装载荷作用下的力学响应,进而可以研究封装载荷、外界环境和工作温度对PEMFC电堆主要结构承载和变形规律的影响。通过将等效刚度模型与FEM进行典型PEMFC单电池结构整体刚度的对比计算,发现前者将节省至少一个量级的计算时间,同时还可给予良好的精度,为电堆封装载荷设计提供了新的设计手段。
     第四章以典型PEMFC电堆结构为研究对象,从结构强度、产品性能和温度影响等因素出发,详细论述了系统使用等效刚度模型进行封装载荷选取的完整设计过程,并将等效刚度模型的应用扩展到燃料电池结构可靠性设计领域,利用等效刚度模型分析了典型PEMFC电堆的结构可靠性。研究进一步表明,等效刚度模型的提出为电堆封装研究提供了全新的设计思路和高效的设计工具。
     第五章基于典型PEMFC电堆结构,结合FEM建立了用于端板优化设计的多目标拓扑优化模型。利用加权系数法将问题转化成单目标优化问题进行分析,并引入等效刚度模型进行了适当的简化以减少不必要的计算工作。经过拓扑优化设计后,可使端板结构达到质量轻、刚度高的相关设计要求,既节省材料成本,还可提高电堆的性能和寿命。最后讨论了封装螺栓个数、电堆设计级数以及多目标优化加权函数等设计参数对电堆优化设计的影响。
Fuel cells are electrochemical devices which directly convert the chemical energy of hydrogen and oxygen into the electrical energy, and the final reaction product is water. Since the energy crisis and the pollution situation are deteriorated at present, fuel cells have received considerable attentions as a kind of effective, clean and environmentally friendly energy equipment. As one of the most interested and useful fuel cells, proton exchange membrane fuel cell (PEMFC) has a good potential in the applications of aviation, space, navigation, mobile power sources and distributed power plants owing to the advantages of quick-start at room temperature, no loss of electrolyte, long operating lifespan and so on. Especially in the automobile industry, PEMFC has been regarded as the optimal power source in a modern car for environmental protection.
     Most PEMFC products in practice are assembled as large cell stacks, therefore it is necessary to study and solve the mechanics problems existing in the assembled PEMFC stack, and this has significant importance to the development of PEMFC technology and the improvement of PEMFC's performance, reliability and lifespan. Among those problems, the thermal influence, the assembly load determination and the optimal end plate design are especially critical. Taking PEMFC stack as the study object and numerical simulation as the study method, a series of researches on the above structure dependent mechanics problems of the PEMFC stack assembly are carried out in this dissertation.
     There are five chapters in this dissertation, and the research work mainly covers the following aspects:
     In chapter 1, types and current research status of the fuel cells are introduced, especially the operating principle, structure features and component functions of the PEMFC. Moreover, some key mechanics problems during the assembly mechanics research, such as the thermal management, the assembly load determination and the optimal end plate design, are separately discussed in detail.
     In chapter 2, combining the computational fluid dynamics (CFD) and the finite element method (FEM), three-dimensional thermal-mechanical coupled numerical models for a PEMFC single cell and a multi-cell stack are respectively established on the basis of typical fuel cell structures. The corresponding distribution and variation regularity of temperature, stress, strain and the membrane electrolyte assembly (MEA) surface contact pressure under different working conditions are analyzed and compared in turn. Also the deformation roles of the whole multi-cell stack and the bipolar plates are studied. Finally, effects of several heat dissipation factors, such as heat dissipation of the working environment, velocity and selection of the coolant fluid, on the temperature and stress distributions are discussed.
     In chapter 3, a mechanical equivalent stiffness model is proposed for large PEMFC stack assembly according to the basic idea of equivalent stiffness, for the purpose of dealing with the difficulty of analyzing mechanical performance for the whole large PEMFC stacks. Using this model, mechanical responses of the stack system under the assembly load can be quickly obtained, and then influences on the main structural bearing and deformation regularity of the PEMFC stack, which are caused by the assembly load, external environment and operating temperature can be studied. Verified with FEM, it shows that the equivalent stiffness model not only saves at least one order of time but also gives good calculation accuracy when calculating the whole structual stiffness of a typical PEMFC single cell, which may provide a new methodology for designing the assembly load.
     In chapter 4, the complete assembly load design for a typical PEMFC stack using the equivalent stiffness model is introduced considering factors as structural strength, product performance and temperature effect. In addition, application field of the equivalent stiffness model is expanded into the fuel cell structural reliability design, and the structural reliability of a typical PEMFC stack is studied based on the equivalent stiffness model. It also proceeds to show that the equivalent stiffness model offers a new design solution and an efficient and convenient tool for the large PEMFC stack assembly research.
     In chapter 5, based on a typical PEMFC stack, a multi-objective topology optimization model for designing the optimal end plate is established combining with FEM. The proposed optimization model is converted into a single-objective optimization problem by means of the weighting coefficient method. Also the equivalent stiffness model is used for proper simplifications to reduce the unnecessary calculation. After topology optimization of the end plate, the corresponding design requirements such as light weight and high stiffness can be well satisfied. Therefore, not only material cost can be reduced, but also the product performance can be promoted simultaneously. In the end of this chapter, influences of several design parameters, such as the number of clamping bolts, the number of design cells, and the different weighting coefficients, on the stack optimization design are discussed.
引文
[1]衣宝廉.燃料电池—原理·技术·应用[M].北京:化学工业出版社,2003.
    [2]詹姆斯·拉米尼,安德鲁·迪克斯.燃料电池系统—原理·设计·应用[M].朱红译.北京:科学出版社,2006.
    [3]周平.燃料电池封装力学及多相微流动[D].大连:大连理工大学,2009.
    [4]Mehta V, Cooper J S. Review and analysis of PEM fuel cell design and manufacturing [J]. J. Power Sources,2003,114:32-53.
    [5]Warshay M, Prokopius P R. The fuel cell in space:yesterday, today and tomorrow [J]. J. Power Sources,1990,29:193-200.
    [6]Prater K. The renaissance of the solid polymer fuel cell [J]. J. Power Sources,1990, 29:239-250.
    [7]Choi K H, Peck D H, Kim C S, et al. Water transport in polymer membranes for PEMFC [J]. J. Power Sources,2000,86:197-201.
    [8]Sridhar P, Perumal R, Rajalakshmi N, et al. Humidification studies on polymer electrolyte membrane fuel cell [J]. J. Power Sources,2001,101:72-78.
    [9]Zhao H, Burke A F. Optimization of fuel cell system operating conditions for fuel cell vehicles [J]. J. Power Sources,2009,186:408-416.
    [10]http://www.ballard.com/About_Ballard/News_Events_Press_Room/Image_Gallery/detail s.aspx?gID=125
    [11]Radhakrishnan V, Haridoss P. Effect of cyclic compression on structure and properties of a gas diffusion layer used in PEM fuel cells [J]. Int. J. Hydrogen Energy,2010, 35:11107-11118.
    [12]Poornesh K K, Cho C D, Lee G B, et al. Gradation of mechanical properties in gas diffusion electrode. Part 1:Influence of nano-scale heterogeneity in catalyst layer on interfacial strength between catalyst layer and membrane [J]. J. Power Sources, 2010,195:2709-2717.
    [13]Wang L, Yi B L, Zhang H M, et al. Novel multilayer Naf ion/SPI/Naf ion composite membrane for PEMFCs [J]. J. Power Sources,2007,164:80-85.
    [14]Wu J, Yuan X Z, Martin J J, et al. A review of PEM fuel cell durability:Degradation mechanisms and mitigation strategies [J]. J. Power Sources,2008,184:104-119.
    [15]Schulze M, Knori T, Schneider A, et al. Degradation of sealing for PEFC test cells during fuel cell operation [J]. J. Power Sources,2004,127:222-229.
    [16]Zhou P, Wu C W, Ma G J. Contact resistance prediction and structure optimization of bipolar plates [J]. J. Power Sources,2006,159:1115-1122.
    [17]Zhou P, Wu C W, Ma G J. Influence of clamping force on the performance of PEMFCs [J]. J. Power Sources,2007,163:874-881.
    [18]Zhou P, Wu C W. Numerical study on the compression effect of gas diffusion layer on PEMFC performance [J]. J. Power Sources,2007,170:93-100.
    [19]Ahmed D H, Sung H J, Bae J. Effect of GDL permeability on water and thermal management in PEMFCs Ⅱ:Clamping force [J]. Int. J. Hydrogen Energy,2008,33:3786-3800.
    [20]Lee W K, Ho C H, Van Zee J W, et al. The effects of compression and gas diffusion layers on the performance of a PEM fuel cell [J]. J. Power Sources,1999,84:45-51.
    [21]Ihonen J, Mikkola M, Lindbergh G. Flooding of gas diffusion backing in PEFCs:physical and electrochemical characterization [J]. J. Electrochem. Soc.,2004,151:1152-1161.
    [22]Ge J, Higier A, Liu H T. Effect of gas diffusion layer compression on PEM fuel cell performance [J]. J. Power Sources,2006,159:922-927.
    [23]Chang W R, Hwang J J, Weng F B, et al. Effect of clamping pressure on the performance of a PEM fuel cell [J]. J. Power Sources,2007,166:149-154.
    [24]Park Y H, Caton J A. Development of a PEM stack and performance analysis including the effects of water content in the membrane and cooling method [J]. J. Power Sources, 2008,179:584-591.
    [25]Wang X, Song Y, Zhang B. Experimental study on clamping pressure distribution in PEM fuel cells [J]. J. Power Sources,2008,179:305-309.
    [26]Nitta I, Himanen O, Mikkola M. Contact resistance between gas diffusion layer and catalyst layer of PEM fuel cell [J]. Electrochem. Commun.,2008,10:47-51.
    [27]Jang J H, Chiu H C, Yan W M, et al. Effects of operating conditions on the performances of individual cell and stack of PEM fuel cell [J]. J. Power Sources,2008,180:476-483.
    [28]Wen C Y, Lin Y S, Lu C H. Experimental study of clamping effects on the performances of a single proton exchange membrane fuel cell and a 10-cell stack [J]. J. Power Sources, 2009,192:475-485.
    [29]Su Z Y, Liu C T, Chang H P, et al. A numerical investigation of the effects of compressing force on PEM fuel cell performance [J]. J. Power Sources,2008,183: 182-192.
    [30]Lee S J, Hsu C D, Huang C H. Analysis of the fuel cell stack assembly pressure [J]. J. Power Sources,2005,145:353-361.
    [31]Kusoglu A, Karlsson A M, Santare M H, et al. Mechanical response of fuel cell membranes subjected to a hydro-thermal cycle [J]. J. Power Sources,2006,161:987-996.
    [32]Kusoglu A, Karlsson A M, Santare M H, et al. Mechanical behavior of fuel cell membranes under humidity cycles and effect of swelling anisotropy on the fatigue stresses [J]. J. Power Sources,2007,170:345-358.
    [33]Tang Y, Kusoglu A, Karlsson A M, et al. Mechanical properties of a reinforced composite polymer electrolyte membrane and its simulated performance in PEM fuel cells [J]. J. Power Sources,2008,175:817-825.
    [34]Bograchev D, Gueguen M, Grandidier J C, et al. Stress and plastic deformation of MEA in fuel cells stress generated during cell assembly [J]. J. Power Sources,2008,180: 393-401.
    [35]Liu D, Peng L, Lai X. Effect of dimensional error of metallic bipolar plate on the GDL pressure distribution in the PEM fuel cell [J]. Int. J. Hydrogen Energy,2009, 34:990-997.
    [36]Zhou Y, Lin G, Shih A J, et al. Multiphysics modeling of assembly pressure effects on proton exchange membrane fuel cell performance [J]. J. Fuel Cell Sci. Technol. 2009,6/041005:1-7.
    [37]Mikkola M, Tingelof T, Ihonen J K. Modeling compression pressure distribution in fuel cell stacks [J]. J. Power Sources,2009,193:269-275.
    [38]Akiki T, Charon W, Iltchev M C, et al. Influence of local porosity and local permeability on the performance of a polymer electrolyte membrane fuel cell [J]. J. Power Sources,2010,195:5258-5268.
    [39]Serincan M F, Pasaogullary U. Mechanical behavior of the membrane during the polymer electrolyte fuel cell operation [J]. J. Power Sources,2011,196:1303-1313.
    [40]Serincan M F, Pasaogullary U. Effect of gas diffusion layer anisotropy on mechanical stresses in a polymer electrolyte membrane [J]. J. Power Sources,2011,196: 1314-1320.
    [41]Goebel S G. Evaporative cooled fuel cell [P]. US Patent 6,960,404,2005.
    [42]Shimoi R, Masuda M, Fushinobu K, et al. Visualization of the membrane temperature field of a polymer electrolyte fuel cell [J]. J. Energy Resour. Technol.,2004,126: 258-261.
    [43]Lampinen M, Fomino M. Analysis of free energy and entropy changes for half cell reactions [J]. J. Electrochem. Soc.,1997,140:3537-3546.
    [44]Kandlikar S G, Lu Z. Thermal management issues in a PEMFC stack-A brief review of current status [J]. Appl. Therm. Eng.,2009,29:1276-1280.
    [45]Yan W, Chen F, Wu H, et al. Analysis of thermal and water management with temperature-dependent diffusion effects in membrane of proton exchange membrane fuel cells [J]. J. Power Sources,2004,129:127-137.
    [46]Ju H, Wang C Y, Cleghrn S, et al. Nonisothermal modeling of polymer electrolye fuel cells [J]. J. Electrochem. Soc.,2005,152:A1645-A1653.
    [47]Tsushima S, Teranishi K, Hirai S. Magnetic resonance imaging of the water distribution within a polymer electrolyte membrane in fuel cells [J]. Electrochem. Solid-State Lett.,2004,7:A269-A272.
    [48]Wang C Y. Fundamental models for fuel cell engineering [J]. Chem. Rev.,2004,104: 4727-4766.
    [49]Choi J, Kim Y H, Lee Y, et al. Numerical analysis on the performance of cooling plates in a PEFC [J]. J. Mech. Sci. Technol.,2008,22:1417-1425.
    [50]Yu S H, Sohn S, Nam J H, et al. Numerical study to examine the performance of multi-pass serpentine flow-fields for cooling plates in polymer electrolyte membrane fuel cells [J]. J. Power Sources,2009,194:697-703.
    [51]Wen C Y, Huang G W. Application of a thermally conductive pyrolytic graphite sheet to thermal management of a PEM fuel cell [J]. J. Power Sources,2008,178:132-140.
    [52]Yu L, Chen W, Qin M, et al. Experimental research on water management in proton exchange membrane fuel cells [J]. J. Power Sources,2009,108:882-887.
    [53]Kandlikar S G. Micro-scale and macro-scale aspects of water management challenges in PEM fuel cells [J]. Heat Transfer Eng.,2007,29:575-587.
    [54]Webber A Z, Newman J. Coupled thermal and water management in polymer electrolyte fuel cells [J]. J. Electrochem. Soc.,2006,153:A2205-A2214.
    [55]Maggio G, Recupero V, Mantegazza C. Modeling of temperature distribution in a solid polymer electrolyte fuel cell stack [J]. J. Power Sources,1996,62:167-174.
    [56]Faghri A, Guo Z. Challenges and opportunities of thermal management issues related to fuel cell technology and modeling [J]. Int. J. Heat Mass Transfer,2005,48: 3891-3920.
    [57]Zawodzinski T A, Radzinski S, Sherman R J, et al. Water uptake by and transport through Nafion 117 membranes [J]. J. Electrochem. Soc.,1993,140:1041-1047.
    [58]Li H, Tang Y, Wang Z, et al. A review of water flooding issues in the proton exchange membrane fuel cell [J]. J. Power Sources,2008,178:103-117.
    [59]Zong Y, Zhou B, Sobiesiak A. Water and thermal management in a single PEM fuel cell with non-uniform stack temperature [J]. J. Power Sources,2006,161:143-159.
    [60]Matamoros L, Bruggemann D. Simulation of the water and heat management in proton exchange membrane fuel cells [J]. J. Power Sources,2006,161:203-213.
    [61]Anderson R, Zhang L, Ding Y, et al. A critical review of two-phase flow in gas flow channels of proton exchange membrane fuel cells [J]. J. Power Sources,2010,195: 4531-4553.
    [62]Dumercy L, Glises R, Louahlia-Gualous H, et al. Thermal management of a PEMFC stack by 3D nodal modeling [J]. J. Power Sources,2006,156:78-84.
    [63]Koh J, Hsu A T, Akay H U, et al. Analysis of overall heat balance in self-heated proton exchange membrane fuel cells for temperature predictions [J]. J. Power Sources,2005, 144:122-128.
    [64]Hu G, Fan J. Transient computation fluid dynamics modeling of a single proton exchange membrane fuel cell with serpentine channel [J]. J. Power Sources,2007,165:171-184.
    [65]Shan Y, Choe S Y, Choi S H. Unsteady 2D PEM fuel cell modeling for a stack emphasizing thermal effects [J]. J. Power Sources,2007,165:196-209.
    [66]Lee C I, Chu H S. Effects of temperature on the location of the gas-liquid interface in a PEM fuel cell [J]. J. Power Sources,2007,171:718-727.
    [67]Meng H. Numerical investigation of transient responses of a PEM fuel cell using a two-phase non-isothermal mixed-domain model [J]. J. Power Sources,2007,171: 738-746.
    [68]Kuo J K, Yen T H, Chen C K. Three-dimensional numerical analysis of PEM fuel cells with straight and wave-like gas flow fields channels [J]. J. Power Sources,2008, 177:96-103.
    [69]Baca C M, Travis R, Bang M. Three-dimensional, single-phase, non-isothermal CFD model of a PEM fuel cell [J]. J. Power Sources,2008,178:269-281.
    [70]Cho S A, Lee P H, Han S S, et al. Heat transport characteristics of flow fields in proton exchange membrane fuel cells [J]. J. Power Sources,2008,178:692-698.
    [71]Harvey D, Pharoah J G, Karan K. A comparison of different approaches to modeling the PEMFC catalyst layer [J]. J. Power Sources,2008,179:209-219.
    [72]Wang Y, Basu S, Wang C Y. Modeling two-phase flow in PEM fuel cell channels [J]. J. Power Sources,2008,179:603-617.
    [73]Le A D, Zhou B. A general model of proton exchange membrane fuel cell [J]. J. Power Sources,2008,182:197-222.
    [74]Shi Z, Wang X. A numerical study of flow crossover between adjacent flow channels in a proton exchange membrane fuel cell with serpentine flow field [J]. J. Power Sources,2008,185:985-992.
    [75]Boddu R, Marupakula U K, Summers B, et al. Development of bipolar plates with different flow channel configurations for fuel cells [J]. J. Power Sources,2009,189: 1083-1092.
    [76]Kang K, Ju H. Numerical modeling and analysis of micro-porous layer effects in polymer electrolyte fuel cells [J]. J. Power Sources,2009,194:763-773.
    [77]He G, Yamazaki Y, Abudula A. A three-dimensional analysis of the effect of anisotropic gas diffusion layer (GDL) thermal conductivity on the heat transfer and two-phase behavior in a proton exchange membrane fuel cell (PEMFC) [J]. J. Power Sources,2010, 195:1551-1560.
    [78]Berning T, Odgaard M, Kaer S K. A study of multi-phase flow through the cathode side of an interdigitated flow field using a multi-fluid model [J]. J. Power Sources,2010, 195:4842-4852.
    [79]Pharoah J G, Burheim 0 S. On the temperature distribution in polymer electrolyte fuel cells [J]. J. Power Sources,2010,195:5235-5245.
    [80]Le A D, Zhou B. A numerical investigation on multi-phase transport phenomena in a proton exchange membrane fuel cell stack [J]. J. Power Sources,2010,195:5278-5291.
    [81]Qu S, Li X, Ke C, et al. Experimental and modeling study on water dynamic transport of the proton exchange membrane fuel cell under transient air flow and load change [J]. J. Power Sources,2010,195:6629-6636.
    [82]Cho E A, Ko J J, Ha H Y, et al. Characteristics of the PEMFC repetitively brought to temperatures below 0 ℃ [J]. J. Electrochem. Soc.,2003,150:A1667-A1670.
    [83]Cho E A, Ko J J, Ha H Y, et al. Effects of water removal on the performance degradation of PEMFCs repetitively brought to    [84]Tajiri K, Tabuchi Y, Wang C Y, et al. Isothermal cold start of polymer electrolyte fuel cells [J]. J. Electrochem. Soc.,2007,154:B147-B152.
    [85]Mao L, Wang C Y, Tabuchi Y. A multiphase model for cold start of polymer electrolyte fuel cells [J]. J. Electrochem. Soc.,2007,154:B341-B351.
    [86]Meng H. A PEM fuel cell model for cold-start simulations [J]. J. Power Sources,2008, 178:141-150.
    [87]Kandliar S G, Lu Z. Fundamental research needs in combined water and thermal management within a proton exchange membrane fuel cell stack under normal and cold-start conditions [J]. J. Fuel Cell Sci. Technol.,2009,6/044001:1-13.
    [88]Pinton E, Fourneron Y, Rosini S, et al. Experimental and theoretical investigation on a proton exchange membrane fuel cell starting up at subzero temperatures [J]. J. Power Sources,2009,186:80-88.
    [89]Nadal M, Barbir F. Development of a hybrid fuel cell/battery powered electric vehicle [J]. Int. J. Hydrogen Energy,1996,21:497-505.
    [90]Sundaresan M, Moore R M. Polymer electrolyte fuel cell stack thermal model to evaluate sub-freezing startup [J]. J. Power Sources,2005,145:534-545.
    [91]Khandelwal M, Lee S, Mench M M. One-dimensional thermal model of cold-start in a polymer electrolyte fuel cell stack [J]. J. Power Sources,2007,172:816-830.
    [92]Oszcipok M, Zedda M, Riemann D, et al. Low temperature operation and influence parameters on the cold start ability of portable PEMFCs [J]. J. Power Sources,2006, 154:404-411.
    [93]Ge S H, Wang C Y. Cyclic voltammetry study of ice formation in the PEFC catalyst layer during cold start [J]. J. Electrochem. Soc.,2007,154:B1399-B14O6.
    [94]Andreasen S J, Kaer S K. Dynamic model of the high temperature proton exchange membrane fuel cell stack temperature [J]. J. Fuel Cell Sci. Technol.,2009,6/041006:1-8.
    [95]Wang C P, Chu H S, Yan Y Y, et al. Transient evolution of carbon monoxide poisoning effect of PBI membrane fuel cells [J]. J. Power Sources,2007,170:235-241.
    [96]Qi Z, Buelte S. Effect of open circuit voltage on performance and degradation of high temperature PBI-H3PO4 fuel cells [J]. J. Power Sources,2006,161:1126-1132.
    [97]Scholta J, Messerschmidt M, Jorissen L, et al. Externally cooled high temperature polymer electrolyte membrane fuel cell stack [J]. J. Power Sources,2009,190:83-85.
    [98]Zhang J, Xie Z, Zhang J, et al. High temperature PEM fuel cells [J]. J. Power Sources, 2006,160:872-891.
    [99]Bernardi D M, Verbrugge M W. A mathematical model of the solid-polymer-electrolyte fuel cell [J]. J. Electrochem. Soc.,1992,2477-2491.
    [100]Savadogo O. Emerging membranes for electrochemical systems:Part Ⅱ. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications [J]. J. Power Sources,2004,127:135-161.
    [101]Li X, Sabir I. Review of bipolar plates in PEM fuel cells:Flow-field designs [J] Int. J. Hydrogen Energy,2005,30:359-371.
    [102]Q Z, H C, Kaufman A. Effect of CO in the anode fuel on the performance of PEM fuel cell cathode [J]. J. Power Sources,2002,111:239-247.
    [103]Ahn S Y, Shin S J, Ha H Y, et al. Performance and lifetime analysis of the kW-class PEMFC stack [J]. J. Power Sources,2002,106:295-303.
    [104]Gasteiger H A, Panels J E, Yan S G. Dependence of PEM fuel cell performance on cataly loading [J]. J. Power Sources,2004,127:162-171.
    [105]Bonville L J, Kunz H R, Song Y, et al. Development and demonstration of a higher temperature PEM fuel cell stack [J]. J. Power Sources,2005,144:107-112.
    [106]Peng J, Shin J Y, Song T W. Transient response of high temperature PEM fuel cell [J] J. Power Sources,2008,179:220-231.
    [107]Woodman A, Anderson E, Jayne K, et al. Development of corrosion-resistant coating for fuel cell bipolar plates [J/OL]. Physical Science Inc. Home Page,1999, http://www.psicorp.com/HTML/PUBS/SUBJECTS/FUELCELL
    [108]Collier A, Wang H, Yuan X Z, et al. Degradation of polymer electrolyte membranes [J] Int. J. Hydrogen Energy,2006,31:1838-1854.
    [109]Vielstich W, Gasteiger H A, Lamm A. Handbook of fuel cells:Fundamentals technology and applications [M]. John Wiley & Sons Ltd., New York,2003.
    [110]Wu J F, Yuan X Z, Martin J J, et al. Proceedings of Hydrogen & Fuel Cell, Vancouver, Canada,2007 [C],448-458.
    [111]Huang X, Solasi R, Zou Y, et al. Mechanical endurance of polymer electrolyte membrane and PEM fuel cell durability [J]. J. Polym. Sci.,2006,16:2346-2357.
    [112]Zhou Y, Lin G, Shih A J, et al. Assembly pressure and membrane swelling in PEM fuel cells [J]. J. Power Sources,2009,192:544-551.
    [113]Karvonen S, Hottinen T, Ihonen J, et al. Modeling of polymer electrolyte membrane fuel cell stack end plates [J]. J. Fuel Cell Sci. Technol.,2008,5/041009:1-9.
    [114]Kim J S, Park J B, Kim Y M, et al. Fuel cell end plates:a review [J]. Int. J. Precision Eng. Manuf.,2008,9:39-46.
    [115]叶红玲.连续体结构静力拓扑优化方法与软件开发[D].北京:北京工业大学,2005.
    [116]杨妹.复杂机械结构拓扑优化若干问题研究[D].大连:大连理工大学,2007.
    [117]Cheng G. Some aspects on truss topology optimization [J]. Struct. Optim.,1995,10: 173-179.
    [118]Rozvany G I N, Bendsee M P, Kirsch U. Layout output optimization of structures [J]. Appl. Mech. Rev.,1996,48:41-118.
    [119]Ruy W S, Yang Y S. Selection strategies in a structural design support system [J]. Struct. Optim.,2001,21:69-79.
    [120]王跃方,孙焕纯.多工况多约束下离散变量桁架结构的拓扑优化设计[J].力学学报,1995,27:365-369.
    [121]柴山,石连栓,孙焕纯.包含两类变量的离散变量桁架结构拓扑优化设计[J].力学学报,1999,31:574-584.
    [122]程耿东,顾元宪,王健.我国机械优化研究与应用的综述与展望[J].机械强度,1995,17:68-74.
    [123]Bendsoe M P. Optimization of structure topology, shape and material [M]. Berlin: Springer,1997.
    [124]Bendsoe M P, Sigmund 0. Topology optimization:Theroy, methods and applications [M]. New York:Springer,2003.
    [125]王石刚.组合结构优化理论、方法及工程应用研究[D].武汉:华中科技大学,1993.
    [126]左孔天.连续体结构拓扑优化理论与应用研究[D].武汉:华中科技大学,2004.
    [127]Adzakpa K P, Ramousse J, Dube Y, et al. Transient air cooling thermal modeling of a PEM fuel cell [J]. J. Power Source,2008,179:164-176.
    [128]Versteeg H K, Malalasekera W. An introduction to computational fluid dynamics:The finite volume method [M]. Wiley, New York,1995.
    [129]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [130]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [131]Flercher C A J. Computational techniques for fluid dynamics, Vol. Ⅰ and Ⅱ [M]. Springer-Verlag, Berlin,1990.
    [132]Bradshaw P, Cebeci T, Whitelaw J H. Engineering calculation methods for turbulent flow [M]. Academic Press, London,1981.
    [133]Piller M, Nobile E, Thomas J. DNS study of turbulent transport at low Prandtl numbers in a channel flow [J]. J. Fluid Mech.,2002,458:419-441.
    [134]Wissink J G. DNS of separating low Reynolds number flow in a turbine cascade with incoming wakes [J]. Int. J. Heat Fluid Flow,2003,24:626-635.
    [135]Launder B E, Spalding D B. Lectures in mathematical models of turbulence [M]. Academic Press, London,1972.
    [136]苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学出版社,1997.
    [137]李进良,李承曦,胡仁喜等.精通FLUENT6.3流场分析[M].北京:化学工业出版社,2009.
    [138]Patankar S V, Spalding D B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows [J]. Int. J. Heat Mass Transfer,1972, 15:1787-1806.
    [139]庄茁,由小川,廖剑晖等.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009.
    [140]王虎.内燃机缸套失圆研究[D].合肥:合肥工业大学,2010.
    [141]Berning T, Djilali N. A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell [J]. J. Electrochem. Soc.,2003,150:A1589-A1598.
    [142]Gloaguen F, Durand R. Simulations of PEFC cathodes:an effectiveness factor approach [J]. J. Appl. Electrochem.,1997,27:1029-1035.
    [143]Eikerling M. Water management in cathode catalyst layers of PEM fuel cells:a structure-based model [J]. J. Electrochem. Soc.,2006,153:E58-E70.
    [144]http://www.engineeringtoolbox.com
    [145]http://www.fuelcell.com/techsheets/TORAY-TGP-H.pdf
    [146]Timoshenko S P, Goodier J N. Theroy of elasticity, second ed. [M]. McGraw-Hill, New York,1951.
    [147]刘鸿文.材料力学第三版上册[M].北京:高等教育出版社,1992.
    [148]Bouzidane A, Thomas M. Equivalent stiffness and damping investigation of a hydrostatic Journal bearing [J]. Tribology Transactions,2007,50:257-267.
    [149]洛马宁柯,库里科夫.低温阀[M].沈士良译.北京:机械工业出版社,1986.
    [150]Williamson J B P. Proceedings of 4th International Conference on Electrical Contact Phenomena, Swansea,1968 [C],30-34.
    [151]Mishra V, Yang F, Pitchumani R. Measurement and prediction of electrical contact resistance between gas diffusion layers and bipolar plate for applications to PEM fuel cells [J]. J. Fuel Cell Sci. Technol.,2004,1:2-9.
    [152]Wang H, Sweikart M A, Turner J A. Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells [J]. J. Power Sources,2003,115:243-251.
    [153]Ihonen J, Jaouen F, Lindbergh G, et al. A novel polymer electrolyte fuel cell for laboratory investigations and in-situ contact resistance measurements [J]. Electrochim. Acta,2001,46:2899-2911.
    [154]Cindrella L, Kannan A M, Lin J F, et al. Gas diffusion layer for proton exchange membrane fuel cells-A review [J]. J. Power Sources,2009,194:146-160.
    [155]Hobbs J W, Burguete R L, Heyes P F, et al. The effect of eccentric loading on the fatigue performance of high-tensile bolts [J]. Int. J. Fatigue,2000,22:531-538.
    [156]Tanrioven M, Alam M S. Reliability modeling and assessment of grid-connected PEM fuel cell power plants [J]. J. Power Sources,2005,142:264-278.
    [157]Tanrioven M. Reliability and cost-benefits of adding alternate power sources to an independent micro-grid community [J]. J. Power Sources,2005,150:136-149.
    [158]Harel F, Francois X, Candusso D, et al. PEMFC durability test under specific dynamic current solicitation linked to a vehicle road cycle [J]. Fuel Cells,2007,2:142-152.
    [159]Wieland C, Schmid 0, Meiler M, et al. Reliability computing of polymer elelctrolyte membrane fuel cell stacks through Petri nets [J]. J. Power Sources,2009,190:34-39.
    [160]金伟娅,张康达.可靠性工程[M].北京:化学工业出版社,2005.
    [161]芮延年,傅戈雁.现在可靠性设计[M].北京:国防工业出版社,2007.
    [162]张伟主编.结构可靠性理论与应用[M].北京:科学出版社,2008.
    [163]汪荣鑫.数理统计[M].西安:西安交通大学出版社,1986.
    [164]Bremicker M, Kikuchi N, Chirehdast M, et al. Integrated topology and shape optimization in structural design [J]. Mech. Struct. Mach.,1991,19:551-587.
    [165]Olhoff N, Bends(?)e M P, Rasmussen J. On CAD-intergrated structural topology and design optimization [J]. Comp. Meths. Appl. Mech. Eng.,1991,89:259-279.
    [166]Eschenauer H A, Olhoff N. Topology optimization of continuum structures:A review [J]. Appl. Mech. Rev.,2001,54:331-390.
    [167]Bends(?)e M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method [J]. Comp. Meths. Appl. Mech. Eng.,1988,71:197-224.
    [168]Sigmund O. Design of material structures using topology optimization [D]. Denmark: Technical University of Denmark,1994.
    [169]程耿东.连续体结构优化设计[M].大连:大连理工大学出版社,1989.
    [170]隋允康.建模·变换·优化—结构综合方法新进展[M].大连:大连理工大学出版社,1996.
    [171]Sigmund O. A 99 line topology optimization code written in Matlab [J]. Struct. Multidisc. Optim.,1999,21:120-127.
    [172]Bends(?)e M P, Sigmund O. Material interpolations in topology optimization [J]. Arch. Appl. Mech.,1999,69:635-654.
    [173]Marler R T, Arora J S. Survey of multi-objective optimization methods for engineering [J]. Struct. Multidisc. Optim.,2004,26:369-395.
    [174]杨荣山.轿车底盘平台开发中多目标优化方法的研究及应用[D].广州:华南理工大学,2009.
    [175]Zeleny M. Multiple criteria decision making [M]. New Yokr:McGraw Hill,1982.
    [176]Horn J. Handbook of evolutionary computation [M]. Bristol (UK):Institute of Physics Publishing,1997.
    [177]Chen T Y, Wu S C. Multiobjective optimal topology design of structures [J]. Comput. Mech.,1998,21:483-492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700