非导电工程陶瓷双电极同步伺服放电加工机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非导电工程陶瓷双电极同步伺服放电加工技术是本课题组新近开发出的一种新的加工方法,该方法主要是利用两极间火花放电通道的能量进行蚀除加工的,它具有生产率高、成本低、对环境无污染等优点。由于该种加工技术的材料蚀除机理复杂,其能量利用方式不同于通常的电火花加工,采用通常的电火花加工理论难以解释其放电蚀除的本质,因此,开展非导电工程陶瓷双电极同步伺服电火花加工机理的研究工作具有重要的理论意义和工程应用价值。
     本文采用理论分析与实验研究相结合的方法,开展了非导电工程陶瓷双电极同步伺服电火花加工机理及应用技术的研究工作,在放电通道形成、能量分配及其温度场分布等方面取得了一些创新性的研究成果。
     在电火花加工领域率先采用粒子模拟与蒙特卡罗相结合的方法研究了放电通道的形成机理,建立了非导电工程陶瓷双电极同步伺服电火花加工放电电离过程的模型,仿真了放电通道的微观形成过程,得到了放电过程中电子与离子的空间分布及运动状态。建立了非导电工程陶瓷双电极同步伺服电火花加工基于热传导理论的温度场模型,对陶瓷工件和正、负电极上的温度场进行了三维数值模拟,给出了脉冲宽度、放电电流对非导电工程陶瓷上温度场分布的影响关系。
     首次系统地研究了放电通道流经非导电工程陶瓷表面时的蚀除机理,在所研制的单脉冲放电及自动检测装置上,对不同脉冲宽度、放电电流和工作介质条件下陶瓷工件和正、负电极的放电蚀除特性进行了实验研究,得到了单脉冲放电坑深度和宽度的经验计算公式,建立了放电能量在工程陶瓷和正、负电极之间的分配模型。
     针对目前常见的电火花加工神经网络预测模型存在收敛速度慢、易陷于局部极小值等缺点,采用基于混合遗传学习算法的小波网络模型开发了非导电工程陶瓷双电极同步伺服电火花加工工艺效果的预测系统,该系统具有预测速度快、精度高等优点。
Electrical discharge machining with synchronous servo double electrodes is a new method developed by us. It removes the materials by spark energy and has the advantages of high efficiency, low costs, environmental pollution-free, and so on. Traditional theory of electrical discharge machining can hardly explain the mechanism of the new technology because of its complicated material erosion and unusual energy partition. For this reason, research on the mechanism and application of the technology has its important theoretical and engineering values.
     The mechanism and application of electrical discharge machining with synchronous servo double electrodes are studied by means of theoretical analysis combined with experimental research to improve the technology. Some achievements in discharge channel, heat partition, and temperature distribution are obtained
     A theoretical and computational model is presented to study the ionization of electrical discharge machining with synchronous servo double electrodes using an electromagnetic particle-in-cell plus Monte Carlo collision method. Forming process of discharge channel is simulated and the detailed information about the distribution of charged particles and electromagnetic fields are obtained.
     The heat conduction process in non-conductive engineering ceramics and double electrodes is analyzed and a relatively rational model is built. The temperature fields of engineering ceramics, anode electrode and cathode electrode are simulated in 3 dimension and relationship of crater shape and discharge parameters through simulation under different pulse duration and discharge current conditions is analyzed.
     Experiments of single pulse discharge for electrical discharge machining with synchronous servo double electrodes is designed and some corresponding experiments are done. Effects of parameters such as pulse duration, discharge current and working fluid on material removal of non-conductive engineering ceramic, anode electrode and cathode electrode are discussed. The energy partition among non-conductive engineering ceramics, anode electrodes and cathode electrode is studied through experiments. The results show that energy partition varies little with the increase of pulse duration and discharge current.
     A model based on wavelet neural network is introduced to predict the process of electrical discharge machining with synchronous servo double electrodes. The simulation system is developed and experiments are carried out to verify the validity of the developed models. The results show that the wavelet neural network model fits the experiments result better.
引文
[1]时刻,黄英,廖梓珺.纳米功能陶瓷的研究与应用.中国陶瓷, 2005, 41(1): 20-23.
    [2] Kim Hee Seung, Seo Mi Young, Kim Ik Jin. Advanced engineering ceramics for semiconductor package technology. Key Engineering Materials, 2007, 336-338 II: 1155-1158.
    [3] Basak I, Ghosh A. Machining of non-conducting materials using electrochemical discharge phenomenon - An overview. International Journal of Machine Tools and Manufacture, 2005, 45(9): 1095-1108.
    [4] Huang H, Liu Y C. Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding. International Journal of Machine Tools and Manufacture, 2003, 43(8): 811-823.
    [5] Singh R, Khamba J S. Ultrasonic machining of titanium and its alloys: A review. Journal of Materials Processing Technology, 2006, 173(2): 125-135.
    [6] Pham D T, Dimov S S, Petkov P V. Laser milling of ceramic components. International Journal of Machine Tools and Manufacture, 2007, 47(3-4): 618-626.
    [7] Wang J, v 257-258. Techniques for Enhancing the Cutting Performance of Abrasive Waterjets. Key Engineering Materials, 2004, 521-526.
    [8] Spur G, Uhlmann E, Holl S E. Ultrasonic assisted grinding of ceramics. Industrial Ceramics, 2001, 21(3): 177-181.
    [9] Umehara Noritsugu, Kato Koji. Magnetic fluid grinding of advanced ceramic balls. Wear, 1996, 200(1-2): 148-153.
    [10]曹凤国.先进电火花加工技术在模具制造中的应用.机械工人(冷加工) 2007, 04 14-17.
    [11] Anon. Modern machining methods. Manufacturing Engineering, 2006, 137(4): 99-109.
    [12]北京市.《金属切削理论与实践》编委会.电火花加工.北京:北京出版社, 1983.
    [13] Naotake Mohri, Yasushi Fukuzawa, Takayuki Tani, et al. Assisting electrode method for machining insulating ceramics. CIRP Annals - Manufacturing Technology, 1996, 45(1): 201-204.
    [14] Fukuzawa Yasushi, Gotoh Hiromitsu, Mohri Naotake, et al. Line swept surface generation on insulating ceramics by wire electrical discharge machining. Journal of the Australasian Ceramic Society, 2005, 4(1): 17-21.
    [15] Wuthrich R, Fascio V. Machining of non-conducting materials using electrochemical discharge phenomenon - An overview. International Journal of Machine Tools and Manufacture, 2005, 45(9): 1095-1108.
    [16] Peng W Y, Liao Y S. Study of electrochemical discharge machining technology for slicing non-conductive brittle materials. Journal of Materials Processing Technology, 2004, 149(1-3): 363-369.
    [17] Dutta A, Basak I. Electrochemical discharge : A potential tool for machining electrically non-conducting material. Journal of the Institution of Engineers (India), Part PR: Production Engineering Division, 1999, 80(2): 38-42.
    [18] Bhattacharyya B, Doloi B N, Sorkhel S K. Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials. Journal of Materials Processing Technology, 1999, 95(1-3): 145-154.
    [19] Doloi B, Bhattacharyya B, Sorkhel S K. Electrochemical discharge machining of non-conducting ceramics. Defence Science Journal, 1999, 49(4): 331-338.
    [20]黑松彰雄.新素材?難加工材のMEEC加工法.ブレス技術, 1986, 24(12): 66-68.
    [21] Muttamara Apiwat, Fukuzawa Yasushi, Mohri Naotake, et al. Probability of precision micro-machining of insulating Si3N4 ceramics by EDM. Journal of Materials Processing Technology, 2003, 140(1-3 SPEC): 243-247.
    [22] Mohri N, Fukusima Y, Fukuzawa Y, et al. Layer generation process on work-piece in electrical discharge machining. CIRP Annals - Manufacturing Technology, 2003, 52(1): 157-160.
    [23] Mohri N, Fukuzawa Y, Tani T, et al. Some considerations to machining characteristics of insulating ceramics - Towards practical use in industry. CIRP Annals - Manufacturing Technology, 2002, 51(1): 161-164.
    [24] Tani Takayuki, Fukuzawa Yasushi, Mohri Naotake. Machining phenomena in WEDM of insulating ceramics. Journal of Materials Processing Technology, 2004, 149(1-3):124-128.
    [25] Liu Yonghong, Jia Zhixin, Liu Jinchun. Study on hole machining of non-conducting ceramics by gas-filled electrodischarge and electrochemical compound machining. Journal of Materials Processing Technology, 1997, 69(1-3): 198-202.
    [26]刘永红.非导电超硬材料电加工新技术及其机理探索研究: [博士学位论文],哈尔滨工业大学,哈尔滨, 1995.
    [27] Yang C T, Song S L, Yan B H, et al. Improving machining performance of wire electrochemical discharge machining by adding SiC abrasive to electrolyte. International Journal of Machine Tools and Manufacture, 2006, 46(15): 2044-2050.
    [28]于学文,黄涤非,金玉惠.电火花加工放电通道的探讨.电加工, 1984(03): 8-13.
    [29] Shuvra Das, Mathias Klotz, F Klocke. EDM simulation: Finite element-based calculation of deformation, microstructure and residual stresses. Journal of Materials Processing Technology, 2003, 142(2): 434-451.
    [30] Descoeudres Antoine, Hollenstein Christoph, Demellayer Rene, et al. Optical emission spectroscopy of electrical discharge machining plasma. Journal of Materials Processing Technology, 2004, 149(1-3): 184-190.
    [31]小岛弘之,国枝正典.形腔り放电加工における放电点分布の观察.精密工学会志, 1991, 57(9): 1603-1608.
    [32] Kunieda M, Xia H, Nishiwaki N. Observation of arc column movement during monopulse discharge in EDM. CIRP Annals, 1992, 41(1): 227-230.
    [33]亓利伟,楼乐明,李明辉.放电通道的波动性与电火花加工机理.上海交通大学学报, 2001, 35(7): 989-992,997.
    [34]赵伟,任延华,任中根等.电火花放电通道中带电粒子运动规律的研究.机械科学与技术, 2001, 20(5): 762-763,10.
    [35]于丽丽,刘永红,李小朋等.计算机仿真在电火花加工中的应用与展望,第11届特种加工学会学术会议论文集. 2005, 11: 104-106:重庆.
    [36] Shankar P, Jain V K, Sundararajan T. Analysis of spark profiles during EDM process. Machining Science and Technology, 1997, 1(2): 195-217.
    [37]崔景芝,王振龙.放电通道的微观模拟及其物理性能研究.电加工与模具, 2007(1):9-13.
    [38] Dawson, J M. Computer modeling of plasma: past, present and future. phys. Plasmas, 1995(2): 218-219.
    [39]熊家贵,王德武.离子引出的二维PIC-MCC模拟.物理学报, 2000, 49(12): 2420-2426.
    [40]袁忠才,时家明. PIC/MCC数值模拟四阳极直流辉光放电.核聚变与等离子体物理, 2005, 25(4): 305-310.
    [41]金晓林,杨中海.电子回旋共振放电的电离特性PIC/MCC模拟(I)-物理模型与理论方法.物理学报, 2006, 55(11): 5930-5933.
    [42]李明辉.电火花加工理论基础.北京:国防工业出版社, 1989.
    [43] Ajit Singh, Amitabha Ghosh. A thereto-electric model of material removal during electric discharge machining. International Journal of Machine Tools and Manufacture, 1999(39): 669-682.
    [44] Tamura Takeo, Kobayashi Yoshinobu. Measurement of impulsive forces and crater formation in impulse discharge. Journal of Materials Processing Technology, 2004, 149(1-3): 212-216.
    [45] B Lauwers, J EKruth, W Liu, et al. Investigation of material removal mechanisms in EDM of composite ceramic materials. Journal of Materials Processing Technology, 2004, 149: 347-352.
    [46] Beck, J. Transient temperatures in a semi-infinite cylinder heated by a disc heat source. Int. J. Heat Mass Transf, 1981, 24(10): 1631.
    [47] Beck, J.V. Large time solutions for temperatures in a semi-infinite body with a disc heat source. Int. J. Heat Mass Transf, 1981(24): 155.
    [48] A Erden, B Kaftanoglu. Therm-mathematical modeling and optimization of energy pulse forms in EDM. Int. J. Mach. Tool Des. Res, 1981, 21(1): 11-22.
    [49] P.C. Pandey, S.T. Jilani. Plasma channel growth and the resolidified layer in EDM. Precis. Eng, 1986, 8(2): 104.
    [50] S.M. Pandit, K.P. Rajurkar. Comparison of various approaches to EDM process modeling from surface roughness profiles. Ann. CIRP, 1980, 29(1): 107.
    [51] S M Pandit, K P Rajurkar. A stochastic approach to thermal modeling applied to electro-discharge machining. J. Heat Transf, 1983, 105: 555-562.
    [52] D D DiBitonto, P T Eubank, M R Patel, et al. Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model. J. Appl. Phys, 1989, 66(9): 4095-4103.
    [53] M R Patel, M A Barrufet, P T Eubank, et al. Theoretical models of the electrical discharge machining process. II. The anode erosion model. J. Appl. Phys, 1989, 66(9): 4104-4111.
    [54] P T Eubank, M R Patel, M A Barrufet, et al. Theoretical models of the electrical discharge machining process. III. The variable mass, cylindrical plasma model. Journal of Applied physics, 1993, 73(11): 7900-7909.
    [55] B Bozkurt, A M Gadalla, P T Eubank. Simulation of erosions in a single discharge EDM process. Materials and Manufacturing Processes, 1996, 11(4): 555-563.
    [56] Rykalin. Laser machining and welding, translated from the Russian by O.Glebov(MIR Moscow and Permon, New York, 1978).
    [57] Vinod, Yadava. Theoretical analysis of thermal stresses in electro-discharge diamond grinding. Machining Science and Technology, 2004(8): 119-140.
    [58] Schulze H P, Herms R Juhr, H Schaetzing, et al. Comparison of measured and simulated crater morphology for EDM. Journal of Materials Processing Technology, 2004, 149(1-3): 316-322.
    [59] B, Revaz. Temperature measurements and numerical analysis of the heat transfer in samples submitted to electron discharge machining (EDM). IEEE International Conference on Plasma Science, 2004, 222.
    [60] Kulkarni Anjali V, Karnik, Madhuri G. Experimental measurements and theoretical estimation of temperature in ECDM process. Proceedings-2004 International Conference on MEMS, NANO and Smart Systems, 2004: 243-247.
    [61]黄志刚,郭钟宁.单脉冲电火花加工温度场的有限元分析.广东工业大学学报, 2002, 19(4): 38-43.
    [62]徐明刚,张建华,任升峰等.气体介质电火花加工单脉冲放电温度场分析.电加工与模具, 2006(5): 14-16.
    [63] Hayakawa, Kojima, Kunieda, et al. Influence of plasma temperature in EDM process. Journal of the Japan Society for Precision Engineering, 1996, 62(5): 686-690.
    [64] Hayakawa Shinya, Kunieda Masanori. Numerical analysis of arc plasma temperature in EDM process based on magnetohydrodynamics. Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 1996, 62(600): 3171-3177.
    [65] Koenig, W, R Wertheim, Y Zvirin, et al. Material removal and energy distribution in electrical discharge machining. Annals of the CIRP, 1975, 24(1): 95-100.
    [66] Xia H, Hashimoto H, Kunieda M, et al. Measurement of energy distribution in continuous EDM process. Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 1996, 62(8): 1141-1145.
    [67] Xia H, Kunieda M, Nishiwaki H, et al. Measurement of energy distribution into electrode in EDM process. Advancement of intelligent production, 1994(5): 601-606.
    [68]田洪宇,陆纪培.电火花加工表面残余应力的理论和实验研究.电加工, 1993(1): 16-22.
    [69]于丽丽,刘永红,李小朋等,计算机仿真在电火花加工中的应用与展望,第11届特种加工学会学术会议论文集:重庆: 2005, 11: 104-106.
    [70]楼乐明,李明辉,彭颖红.电火花加工工艺效果建模.上海交通大学学报, 2000, 34(3): 299-302.
    [71]肖文芳,李明辉,彭颖红.高速走丝线切割加工工艺效果仿真系统.电加工, 1991(1): 1-4.
    [72]楼乐明,电火花加工计算机仿真研究.上海交通大学博士学位论文. 2000: 45-49.
    [73]任俊,李明辉人工智能技术在电火花线切割加工中的应用.电加工与模具, 1991(6): 1-4.
    [74]章伟,罗干英,李步青.神经网络在线切割加工中的应用.机械工业自动化, 1994, 16(4): 33-36.
    [75] Indurkhya G, Rajurkar K P. Artificial Neural Network approach in modelling of EDMprocess. St.Louis, MO, USA: ASME, Fairfield, NJ, USA, 1992: 845-850.
    [76]宋颖慧,赵锦芝,杨晓冬等. Internet环境下的电火花加工工艺效果预测.哈尔滨工业大学学报, 2002, 34(1): 22-25.
    [77]杨晓冬,赵万生.基于Web的人工神经网络电火花加工工艺预测.哈尔滨工业大学学报, 2005, 37(8): 1029-1031.
    [78] Su J C, Kao J Y, Tarng Y S. Optimisation of the electrical discharge machining process using a GA-based neural network. International Journal of Advanced Manufacturing Technology, 2004, 24(1-2): 81-90.
    [79] Mandal Debabrata, Pal Surjya K, Saha Partha. Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II. Journal of Materials Processing Technology, 2007, 186(1-3): 154-162.
    [80] Panda Deepak Kumar, Bhoi Rajat Kumar. Artificial neural network prediction of material removal rate in electro discharge machining. Materials and Manufacturing Processes, 2005, 20(4): 645-672.
    [81] Li X P, Liu Y H, Yu L L, et al. Effects of Electrical Parameters on Electrical Discharge Grinding of Non-conductive Engineering Ceramics. International Technology and Innovation Conference, Hangzhou, 2006, 11: 129-131.
    [82]刘永红,李小朋,苗春彦等.非导电超硬材料电火花磨削主轴电机变频调速电路设计.组合机床与自动化加工技术, 2006(1): 73-75.
    [83]刘永红.双极性电加工工具:中国, 01261619.2[P]. 2002-07-17.
    [84] Bogaerts Annemie, De Bleecker Kathleen, Kolev Ivan, et al. Modeling of gas discharge plasmas: What can we learn from it? Surface and Coatings Technology, 2005, 200(1-4 SPEC ISS): 62-67.
    [85]刘大刚,祝大军,周俊等. 3维电磁粒子模拟程序设计.强激光与粒子束, 2006, 18(1): 110-114.
    [86]朱建清.电磁波工程.北京:国防科技大学出版社, 2000.
    [87]王秉中.计算电磁学.北京:科学出版社, 2000.
    [88]王长清,祝西里.电磁场计算中的时域有限差分法.北京:北京大学出版社, 1994.
    [89]李泉凤.电磁场数值计算与电磁铁设计.北京:清华大学出版社, 2002.
    [90] M Surendra, D B Graves, G M Jellum. Self-consistent model of a Direct-current Glow Discharge: Treatment of Fast Electrons. Phys. Rev. A., 41 (1990) 1112.
    [91] V Vahedi, M Surendra. A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges. Computer Physics Communications, 1995, 87: 179-198.
    [92] M, Loic, A new approach to octree~based hexahedral meshing, in proceedings of 10th international meshing roundtable. 2001: Newport Beach. p. 209-221.
    [93] M, Muller Hannemann. Quadrilateral surface meshes without self-intersecting dual cycles for hexahedral mesh generation. Computational geometry, 2002, 22(3): 75-97.
    [94] A, Rassineux. Generation and optimization of tetrahedral meshs by advancing front technique. International journal for numerical methods in engineering, 1998, 41(4): 651-674.
    [95]于丽丽,刘永红,李小朋等.有限元法在电火花加工中的应用.电加工与模具, 2006, 4(20-22).
    [96] P Madhu, V K Jain, T Sundarajan, et al. Finite element analysis of EDM process. Processing of Advanced Materials 1991(1): 161-173.
    [97]戴锅生.传热学.第二版.北京:高等教育出版社, 1998.
    [98]署恒木,仝兴华.工程有限单元法.东营:石油大学出版社, 2003: 139-140.
    [99]叶大伦,胡建华.实用无机物热力学数据手册.北京:冶金工业出版社, 2002.
    [100]张家荣,赵廷元.工程常用物质的热物理性质手册.北京:新时代出版社, 1987.
    [101] Tsai K. M, Wang P. J. Predictions on surface finish in electrical discharge machining based upon neural network models. International Journal of Machine Tools and Manufacture, 2001, 41(10): 1385-1403.
    [102] Tsai K. M, Wang P. J. Comparisons of neural network models on material removal rate in electrical discharge machining. Journal of Materials Processing Technology, 2001, 117(1-2): 111-124.
    [103] Zhang Qinghua, Benveniste. A Wavelet Network. IEEE Trans on Neural Networks, 1992, 3(6): 889-898.
    [104]陈哲,冯天瑾,陈刚.一种基于BP算法学习的小波神经网络.青岛海洋大学学报, 2001, 31(1): 122-128.
    [105]张登峰,廉士国,王执锉.一种小波神经网络的优化构造及其应用.兵工学报(北京), 2004, 25(4): 436-440.
    [106]王彩华,朱湿东.多目标优化的模糊解法中目标权重的处理方法.重庆大学学报, 1992, 15(6): 92-97.
    [107] Rohou E, Bodin F, Eisenbeis C. Handling Global Constraints in Compiler Strategy. International Journal of Parallel Programming, 2000, 28(4): 325-345.
    [108] Dekhtyar M, Dikovsky A, Dudakov S, et al. Maximal state independent approximations to minimal real change. Annals of Mathematics and Artificial Intelligence, 2001, 22(2): 157-204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700