用户名: 密码: 验证码:
建筑外墙外保温系统性能与质量评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑节能是国家节能减排的重要环节之一,外墙保温可以提高建筑围护结构的保温隔热性能,降低建筑能耗。但目前市场上外保温技术品种、材料及生产厂家较多,性能及质量参差不齐,因此对外墙外保温系统性能及综合质量进行深入评价研究具有一定的理论意义和工程应用价值。本文研究的内容及主要成果如下:
     1、针对胶粉聚苯颗粒、EPS聚苯板、复合灌注聚氨酯硬泡三种常用外墙外保温系统的保温隔热性能分别运用Ansys软件和Energyplus能耗模拟软件进行了分析。在冬季和夏季不同环境温度下,用Ansys软件分析外保温系统的热传递效应,表明三种外保温系统均有良好的保温隔热性能,并依次提高,以聚氨酯为最优。用Energyplus能耗模拟软件分析建筑的能耗,表明三者的建筑能耗依次降低,两种方法分析的结果具有一致性。两种分析结果还表明,所采用的保温材料的厚度是决定保温隔热性能的最主要控制因素。
     2、参照规范设定的外保温系统的耐候性试验条件,研究了三种外保温系统在耐候性试验过程中,外保温系统层间粘结强度的历时变化过程,在加热-淋水循环模拟冬季环境条件下,三者的粘结强度总体均呈平稳下降趋势。在加热-冷冻循环模拟冬季环境条件下,EPS板外保温系统的粘结强度呈明显下降趋势,表明EPS板外保温系统在寒冷地区的耐候性较差,另外两者的粘结强度下降速率变化不大,表明在寒冷地区有较好的耐候性。此外,还分析了外保温系统的防火安全性、抗震性、施工质量保障性及经济性,提出了相关的改进建议。
     3、运用系统可靠度分析的FTA方法,结合国内工业及民用建筑可靠度鉴定的方法标准,构建了外保温系统质量综合评价模型,分析了影响外保温系统质量的相关因素及其间的逻辑关系,明确了外保温系统质量缺陷或事故可能发生的路径,应控制的主要环节,并研究提出了基于FTA方法外保温系统的质量分级评价的方法和标准,对外墙外保温系统工程质量评价具有指导意义。
Building energy efficiency is an important part of the country's energy saving and emission reduction project. External wall thermal insulating technology can improve the thermal insulation properties of building envelope, and reduce building energy consumption. But in the current market there are many kinds of external wall thermal insulating technologies by using varieties of method statements and heat insulating materials which are made by different manufactures, so the property and quality of each thermal insulating technology are irregularity and have different effects. Therefore, the detailed study and evaluation on the property and overall quality of external thermal insulation system (ETIS) have certain theoretical meaning and project application value. In this thesis the research content and main achievements are as follows:
     Firstly, Ansys software and Energyplus energy simulation software were used to analyze the performances of thermal insulation of three kinds of prevailing ETIS, which are polystyrene granule mortar, expanded polystyrene (EPS) board, and polyurethane foam ETIS. Under different ambient temperature conditions in summer and winter, after analyzing the heat transfer effect of three kinds of ETIS by using Ansys software, the result indicates that they all have good heat preservation and heat insulation capabilities, and in turn improves, the best is polyurethane foam ETIS. With Energyplus energy consumption simulation software analyzed and the result shows that the energy consumption in turn reduces. The results of two methods are consistent; moreover, the results show that thickness of thermal insulation material is the key control factor for thermal insulation performance of ETIS.
     Secondly, with reference to specification of testing conditions of atmospheric exposure tests, studied the change laws of adhesive strength of three kinds of ETIS with time. With the conditions of high temperature-spraying water cycle simulating summer environment, the downtrend of adhesive strength of three kinds of ETIS were all smooth and steady. While under the conditions of heating-refrigeration cycle simulating winter environment, the downtrend of adhesive strength of EPS board ETIS decreased obviously, and this indicats that in cold areas the weatherability of EPS board ETIS is poorer than the other two ETIS, and this shows that the weatherability of EPS board of ETIS was worse than the other two ETIS in cold areas; The lowering rate of adhesive strength for the other two ETIS had a little change under heating-refrigeration cycle, and this shows that these two ETIS have better weatherability in cold areas. In addition, in this thesis also analyzed the fire safety, earthquake-resistant, constructability and economy of ETIS and finally put forward relevant suggestions for improvement.
     Finally, the evaluation model of quality evaluation of ETIS was established based on the theory of fault tree analysis (FTA) and the reliability appraisal standards of industry and public building, and then analyzed the relevant factors influencing the quality of ETIS and their logical relation, clarified the possible reasons which causing quality defect or fault and which parts should take control measures, and proposed the evaluation method and criteria of ETIS quality grade based on FTA. The results have a significant instruction function for evaluation of ETIS quality.
引文
[1]中华人民共和国国家统计局.中国统计年鉴2009.北京:中国统计出版社,2009
    [2]徐逢祥,王庆一.我国建筑节能现状及发展.新型建筑材料,2004,(7):40-42
    [3]许志中,曹双梅,郭红.我国建筑节能技术的研究开发与发展前景探讨.工业建筑,2004,34(4):73-75
    [4]巩永忠,苑峰,孙艳.国内建筑外墙外保温材料现状与发展前景.新型建筑材料.2006,(10):42-43
    [5]建设部干部学院.实用建筑节能工程设计.北京:中国电力出版社,2008
    [6]建设部标准定额研究所.建筑外墙外保温技术导则(RISN-TG001-2005).北京:中国建筑工业出版社,2005
    [7]Taheri M, Shafie S. A case study on the reduction of energy use for the heating of buildings. Renewable Energy.1995,6(7):673-678
    [8]Paul Waide, Benoit Lebot, Mark Hinnells. Appliance energy standards in Europe. Energy and Buildings.26(1997):45-67
    [9]Gustafsson S. I. Optimal heating-system retrofits in residential buildings. Energy, 22(1997):867-874
    [10]Isaac Turiel. Present status of residential appliance energy efficiency standards-an international review. Energy and Buildings,26(1997):5-15
    [11]Alan K. Meier. Observed energy savings from appliance efficiency standards. Energy and Buildings.26(1997):11-117
    [12]Bauer M. A simplified correlation method accounting for heating and cooling loads in energy-efficient buildings. Energy and Buildings.27(1998):147-154
    [13]Ann McNicholl, Owen Lewis J. Energy efficiency and solar energy in European office buildings:a mid-career education initiative, Energy and Buildings 33(2001): 213-217
    [14]Sam C, Hui M. Low energy building design in high density urban cities. Renewable Energy 24(2001):627-640
    [15]金关标,张玲.德国新墙材发展培训考察报告.新型墙体材料与施工.2004,(3):62-64
    [16]United States Green Building Council. DOE Reaches 50 percent Milestone toward Commercial Zero-Energy Buildings. Environmental Design & Construction.2008, 11(12):26-27
    [17]Mousa S. Mohsen. Some prospects of energy savings in buildings. Energy Conversion and Management.2001(42):1307-1315
    [18]廖宏.建筑节能的多角度思考.建设科技.2008,(22):98-100
    [19]Mousa S. Mohsen. Some prospects of energy savings in buildings. Energy Conversion and Management.2001(42):1307-1315
    [20]Elisabeth Kosseeka, JanKosny. Influence of insulation configuration heating and cooling loads in a continuously used building. Energy and Buildings.2002(34): 321-331
    [21]Osman, Ayet and Ries, Robert. Life-cycle impact analysis of energy systems for buildings. Journal of Infrastructure Systems, Sustainable Development and Infrastructure Systems,2004,10(3):87-97
    [22]Best R. Environmental Impact of Building. Sustainable Practices. Environment Publishing,1997,12(8):117-124
    [23]Treloar G J, Faniran D. O, etal. A hybrid life cycle assessment method for construction.Construction Management and Economics,2000, (18):5-9
    [24]Ngowi A. B. Great competitive advantage by using environment-friendly building process. Building and Environment,2001, (36):291-298
    [25]Tulay Esin. A study regarding the environmental impact analysis of the building materials production process (in Turkey). Building and Environment,007,42(11): 3860-3871
    [26]Clarke Joseph A, Cameron M, Kelly Nicolas J, etal. The role of built environment energy efficiency in a sustainable UK energy economy. Energy Policy.2008, 36(12):4605-4609
    [27]Ekins Paul, Lees Eoin. The impact of EU policies on energy use in and the evolution of the UK built environment. Energy Policy.2008,36(12):4580-4583
    [28]Herring Horace. National building stocks:addressing energy consumption or decarbonization. Building Research & Information.2009,37(2):192-195
    [29]Wilson arianne. Maximizing Energy Use. Chain Store Age.2008,84(11):83-84
    [30]Sullivan C. C, Horwitz-Bennett Barbara. High-Performance Building Systems. Building Design & Construction.2008,49(12):63-68
    [31]McLaughlin Mark. Loyola University's Green Building. Construction Digest.2008, 83(19):10-11
    [32]Grossman Andrew. Green ideas thrive at GM plant in Michigan. Waste News.2008, 14(10):20-21
    [33]Harmon Jennifer. Green Builder Focuses on Lowering Energy Consumption. National Mortgage News.2008,32(46):23-24
    [34]Laybourn, David R. From audit to implementation Saving energy in a manufacturing environment. Plant Engineering.2008,62(10):43-47
    [35]Kub Edward G. Cracking in exterior insulation and finish systems. Journal of Performance of Constructed Facilities,1993,7(1):60-66
    [36]Nelson. Joint movement of a panelized EIFS wall system. ASTM Special Technical Publication,1995:294-360
    [37]Williams. Monitoring joint movement in a panelized EIFS building. ASTM Special Technical Publication,1995:307-320
    [38]Kodah Z. H, Jarrah M. A, Shanshal N. S. Thermal characterization of foam-cane(Quseab) as an insulant material. Energy Conversion Management. 1999(40):349-367
    [39]Asan H. Investigation of wall's optimum insulation position from maximum time lag and minimum decrement factor point of view. Energy and Buildings.2000(32): 197-203
    [40]Fernando Branco, Antonio Tadeu, Nuno Simoes. Heat conduction across double brick walls via BEM. Building and Environment.2004(39):51-58
    [41]Oak Ridge National Laboratory. New building insulation to combat wet, warm, wall worries. Engineered Systems.2007,24(10):84-85
    [42]Zimmer Christine, Deress David. Moisture Infiltration in Exterior Wall Systems. Buildings.2007,101(5):58-60
    [43]EIFS Industry Members Association. Industry Teams to Determine Optimal EIFS Solution. Buildings.2004,98(11):18-19
    [44]张喜明,旷玉辉,于立强.瑞典及我国建筑节能现状与发展.建筑热能通风空调.2001(2):65—67
    [45]Bojie M, Yik F, Leung W. Thermal insulation of cooled spaces in high rise residential buildings in Hong Kong. Energy Conversion and Management. 2002(43):165-183
    [46]王素霞.美德国家如何实现建筑节能.山西能源与节能.2006(2):62-63
    [47]刘明明.加拿大建筑节能的规范与应用.上海建设科技.2003(6):41—42
    [48]Akbrai H, Konopacki S. Calculating energy-saving potentials of heat-island reduction strategies. Energy and Buildings,2005(33):721-756
    [49]Sebastian Herkel, Martina Jaschke. Design of passive cooling by night ventilation: evaluation of a parametric model and building simulation with measurements. Energy and Buildings,2005(35):1129-1143
    [50]Mikael Lundin, Staffan Andersson, Ronny Ostin. Further validation of a method aimed to estimate building performance parameters. Energy and Building,2005(37): 867-871
    [51]Ben Larbi A. Statistical modeling of heat transfer for thermal bridges of buildings. Energy and Buildings,2005(37):945-951
    [52]Frank Th. Climate change impacts on building heating and cooling energy demand in Switzerland. Energy and Buildings,2005(37):1175-1185
    [53]中华人民共和国建设部.JG149-2003膨胀聚苯板薄抹灰外墙外保温系统.北京:中国建筑工业出版社,2003
    [54]中华人民共和国建设部.JG158-2004胶粉聚苯颗粒外墙外保温系统.北京:中国建筑工业出版社,2004
    [55]中华人民共和国建设部.JGJ 144-2004外墙外保温工程技术规程.北京:中国建筑工业出版社,2005
    [56]林燕成.外墙外保温系统技术标准现状分析.建筑技术.2007,38(10):731-734
    [57]杨嗣信,吴琏.关于外墙保温技术的现状及发展建议.建筑技术.2007,38(10):729-731
    [58]仁民.结构自保温体系推广应用的研究与实践.建设科技,2008,(22):5—9
    [59]石国柱.建筑节能措施及应用.安阳工学院学报,2006,(4):21-22
    [60]贾伟,卢立平.EPS外墙外保温节能体系的概念设计与应用.山西建筑,2005,31(1)
    [61]陈旭伟,章宏,施安平等.墙体保温和建筑节能.浙江建筑,2006,23(9)
    [62]岳爱国,刘振河,王庆辉.无槽EPS板现浇混凝土外墙外保温应用技术.建设科技,2008,(8):56-62
    [63]吕佳丽.当前国内墙体保温体系浅析.建材工业信息,2004,(12):32-33
    [64]鲍宇清,周宇,钱选青等.外保温系统粘贴饰面砖安全性研究.建设科技,2008,(8):23-28
    [65]刘晖,余恒鹏,金洁等.夏热冬冷地区饰面砖在外墙外保温系统上应用探讨.建设科技,2008,(8):29-37
    [66]武海坤.钢丝网架聚苯板外保温上瓷砖饰面粘结强度的研究[硕士学位论文].北京:北京工业大学图书馆.2004
    [67]崔向贵,张发生,邵伟等.居住建筑夹心墙节能与结构一体化热工分析.建设科技,2008,(22):34—37
    [68]李云峰,李军,张亚琴.CL结构体系特点及应用.建设科技,2008,(8):79-83
    [69]李云峰.CL结构体系应用技术研究与探讨.建设科技,2008,(22):59-61
    [70]孙增桂,郭志,宋杨.加强CL结构体系推广促进建筑节能工作.建设科技,2008,(22):70-71
    [71]马铁虎,郭二增.CL建筑体系的应用实例.建设科技,2008,(22):38-40
    [72]仁民.结构自保温体系推广应用的研究与实践.建设科技,2008,(22):5—9
    [73]曲萍,徐嘉城.自保温混凝土房屋结构体系的技术研究与成果转化.建设科技,2008,(22):24—27
    [74]姚谦峰,杨增科,张荫.密肋复合墙住宅建筑综合节能技术应用与研究.建设科技,2008,(8):96-98
    [75]姚谦峰.密肋复合墙节能技术研究与应用.建设科技,2008,(22):56—58
    [76]冯葆纯.保温砌模现浇钢筋混凝土网格剪力墙承重体系技术与应用.建设科技,2008,(8):89—95
    [77]付佩儒,孙合祥.保温小型砌块模块成型机械的开发与研究.建设科技,2008,(22):82-84
    [78]慕苏庆.保温砌块现浇混凝土网格剪力墙建筑试点工程的施工.建设科技,2008,(22):85-88
    [79]娄霓,张兰英,张昕.新型节能复合砌块的性能研究.建设科技,2008,(22):17-20
    [80]蒋勤俭,刘若南.预制混凝土节能外墙技术与工程应用.建设科技,2008,(22):17-20
    [81]徐有邻.聚苯模板混凝土墙结构与应用.建设科技,2008,(22):68—69
    [82]李珠,张文芳,郝培亮等.建筑抗震加固与节能改造的一体化研究.建设科技,2008,(22):62-65
    [83]胡平放,胡幸生.热桥对居住建筑外墙传热性能的影响分析.华中科技大学学报(城市科学版),2003(22):31-33
    [84]钱稼茹.保温砌模现浇网格墙建筑结构设计方法.建设科技,2008,(8):84-88
    [85]张芳,周汉万.冬冷夏热地区内外综合保温复合墙体的应用探讨.施工技术,2007,36(10):62-64
    [86]韦延平,刘晖,于忠等.从西南地区的实践看外墙外保温隔热工程技术的综合性能评价及优化选择.建设科技,2008,(8):13-17
    [87]Glicksman L. R, Marge A. L, Moreno J. D. Radiation heat transfer in cellular foam insulation. in:Developments in Radiation Heat Transfer, ASME, HTD, vol.203, 1992:45-54
    [88]Schuetz M. A, Glicksman L. R. A basic study of heat transfer through foam insulation. Journal of Cellular Plastics,1984,20(2):114-121
    [89]郁文红,杨昭.节能建筑复合墙体热桥的二维非稳态传热.工业建设与设计,2009,(10):40-43
    [90]马保国,黄祥,穆松,等.基于ANSYS的烧结多孔砖热模拟研究.砖瓦,2009,(12):14—16
    [91]振利.外墙外保温系统温度场温度应力及耐候性等级研究.住宅产业,2008,(7):70-74
    [92]薄海涛.建筑外墙外保温系统耐久性及评价研究[博士学位论文].武汉:华中科技大学土木工程与力学学院,2009
    [93]河南省标准定额研究所.DBJ41/T073-2008复合灌注聚氨酯外墙外保温规范.北京:中国建筑工业出版社,2009
    [94]柴保双.寒冷地区建筑能耗分析与预测[博士学位论文].北京:华北电力大学,2007
    [95]周清.夏热冬冷地区外墙外保温系统节能比较研究[硕士学位论文].武汉:华中科技大学土木工程与力学学院,2008.
    [96]中华人民共和国建设部.JGJ110-2008建筑工程饰面砖粘结强度检验标准.北京:中国建筑工业出版社,2008
    [97]季广其,朱春玲.保温砂浆提高外墙体系防火能力.城市住宅,2008,(2):62-65
    [98]明晓曦,肖建庄.外墙外保温系统的抗火问题研究.城市道桥与防洪,2010,(8):247-251
    [99]宋长友,陈丹林,季广其.外墙外保温系统防火技术现状.建筑技术,2007,38(5):385-386
    [100]杨宗煜,杨玉楠,华校生.从CCTV火灾看中国建筑节能工程中的严重火灾隐患和防火安全的误区与对策.建筑节能,2009,37(219):1-7
    [101]顾同曾.外墙外保温防火的重点在哪里.建筑节能,2009,(12):32-35
    [102]李引擎,季广其,朱春玲.建筑外保温的防火问题探讨.28-31
    [103]宋长友,刘祥枝,陈丹林等.外墙外保温防火构造应用经济性分析.住宅产业,2008,(5):68-71
    [104]季广其,朱春玲,高展.硬泡聚氨酯外保温体系构造的防火特性.消防技术与产品信息,2007(12):39-45
    [105]季广其,朱春玲.硬泡聚氨酯外墙外保温系统防火性能研究.建设科技,2010,(7):28-33
    [106]张德信.建筑保温隔热材料.北京:化学工业出版社.2006
    [107]宋长友,陈丹利,黄振利等.高层建筑耐火外墙外保温系统技术研究.建筑科学,2008,24(2):93—104
    [108]林敏,王立群.浅议墙体外保温防火措施.科技创新导报,2010,(20):50-51
    [109]刘晖,张剑峰.汶川地震破坏建筑墙体保温调查.建设科技,2008,(21):62-65
    [110]汪俊峰,外墙外保温问题图解.北京:机械工业出版社.2008
    [111]梅启智,廖炯生,孙惠中.系统可靠性工程基础.北京:科学出版社.1992
    [112]索丰平,王苏芳.事故树分析应用研究.山西建筑,2007,33(20):214-215
    [113]邓伟,赵博.关于电力系统故障树分析中两个问题的探讨.核安全,2009,(3):21-19
    [114]卜全民,王涌涛,汪德等.事故树分析法的应用研究.西南石油大学学报,2007,29(4):141-144
    [115]郑仲金,吕凤明.船用空压机典型故障的事故树分析.中国修船,2008,21(4):27-19
    [116]李建华.基于故障树分析分析的长输管道定量风险评价方法研究[博士学位论文].兰州:兰州理工大学,2008
    [117]吴静.深基坑支护结构事故预警系统研究[硕士学位论文].武汉:华中科技大学,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700