陶瓷废料用于沥青路面隔热层混合料的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国公路建设得到了迅速发展,但与此同时,高速公路沥青路面出现了较为严重的早期破坏现象。不仅造成经济损失,而且影响交通行业的社会形象和工程的可持续发展。高速公路沥青路面早期损坏现象主要表现为:水损害、松散、车辙、裂缝、泛油等。其中车辙病害可以说是最为严重,危害也是相当大的,它是沥青路面特有的一种损坏现象。分析路面车辙的成因可知,高温是车辙产生的最直接诱因——高温使得沥青变软,造成沥青混凝土的承载能力下降。目前在解决沥青路面的车辙问题时,主要是提高沥青混合料的高温稳定性。即通过提高沥青的高温性能、或采用骨架型集料级配等来提高沥青混合料的抗车辙能力。所采取的这些措施均为“被动”式的技术措施,即通过提高沥青混合料自身的高温性能“被动”地接受外界高温。但工程实践证明这些技术的应用也很难根本地解决车辙问题,且增加工程成本。
     正是基于这一问题,本文采用热物性参数较小的陶瓷沥青混合料作为道路隔热层,减弱热能在沥青混合料中的累积,降低路面的温度,提高道路的抗车辙能力。该方法的特点是避免了道路“被动”接受外界高温,而是采用“主动”的方式,降低路面温度。
     陶瓷废料沥青混凝土隔热层技术,在实现沥青路面设计理论创新的同时;也可推动陶瓷废料的废物利用,节约资源、保护环境。采用陶瓷废料修筑路面,可以减少对矿产资源的消耗,有效缓解工业生产对环境的破坏。这将有利于保证高速公路的建设质量,提高交通运输效益,减少污染,改善生态环境。进而会产生巨大的经济效益和社会效益。
     本文依据气象工程、道路工程、热能工程、材料工程等领域的理论和技术,展开了陶瓷废料沥青混合料隔热层“主动”降低路面温度技术研究。研究的内容主要包括:
     ①研究影响道路温度的主要因素。研究后发现,影响道路高温的主要因素包括两方面:(一)外界环境因素,其中包括太阳辐射,大气温度,风等外界因素。(二)道路材料的内部因素,即材料的热物性,包括导热系数、比热容等。其中外界环境因素是客观存在的,不以人的意志为转移的,是我们改变不了的。因此,要想降低路面温度,应考虑采用第二种方式,即采用热物性小的材料作为路面铺装材料,降低路面温度。
     ②研究了道路材料的热物性参数,从理论上证明采用较低热物性参数的材料实现降低道路温度是可行的;研究了热物性参数较小的陶瓷废料沥青混合料的路用性能后证实,陶瓷废料沥青混合料作为道路隔热层应用于路面磨耗层是可行的,以及通过室内试验的方法研究了陶瓷废料沥青混合料的热物性,从理论上证明陶瓷废料沥青混合料作为隔热层降低路面温度是可行性。
     ③通过对陶瓷废料沥青混凝土隔热层实际道路温度测定,证明陶瓷废料沥青混凝土隔热层具有较好的降温效果。采用陶瓷废料沥青混凝土隔热层技术,可以明显降低路面温度;采用陶瓷废料沥青混凝土隔热层可以减少路面高温作用时间;采用陶瓷废料沥青混凝土隔热层减少路面温度波动;因此应用陶瓷废料沥青混凝土隔热层大大改善了路面温度条件。
     ④利用有限元Ansys计算软件,通过参数分析法,研究陶瓷废料掺入量(陶瓷废料掺量分别为0%、20%、40%、60%、80%及100%)对道路隔热效果的影响。研究后发现,陶瓷废料掺入量越多,道路降温效果越好。但是综合考虑陶瓷废料沥青混合料降温效果及路用性能,建议在实际工程中应用时,陶瓷的掺量控制在40%~60%之间较为合适。
     通过该论文的研究表明,陶瓷废料沥青混合料隔热层不仅可以很好的降低路面温度,改善路面温度条件,提高道路抗车辙性能,且可以陶瓷废料的废物利用,节约资源、保护环境。因此,在道路建设及养护中应推广该技术的应用。
In recent years, highway construction has been developing rapidly, but at the same time, highway asphalt pavement in the early emergence of more serious damage phenomenon. Not only caused economic losses but also affected the social image of the transport sector and project sustainability. Early Damage of Asphalt Pavement mainly as follows: water damage, loose, rutting, cracking, weeping and so on. Rut one can say is the most serious damage is quite large, it is a unique damage pavement phenomenon. Analysis shows that the causes of rutting, rutting resulting temperature is the most direct incentives making asphalt softening temperature, resulting in decreased carrying capacity of asphalt concrete. Currently rutting of asphalt pavement in the settlement issue, mainly to improve high temperature stability of asphalt mixture. Through improved high temperature performance of asphalt or using skeletal aggregate gradation asphalt mixture and so to improve the rutting resistance.These measures are taken to "passive" type of technical measures to improve the mixture through the high temperature of their "passive" acceptance of outside temperature. But the project is proved that the technology is difficult to fundamentally solve the rutting problem and increase the cost of the project.
     Based on this problem, we use a smaller thermal parameters of asphalt as a road ceramic insulation, reduced heat accumulated in the asphalt mixture, reduce the temperature of the road and improve road rutting resistance. Characteristics of the method is to avoid the path of "passive" accept outside temperature, instead of using "active" approach to reduce the surface temperature.
     Ceramic insulating layer of asphalt concrete waste, asphalt pavement design theory in achieving innovation at the same time; also promoted the use of waste ceramic waste, conserve resources, protect the environment. Road construction with ceramic waste, can reduce the consumption of mineral resources, to effectively alleviate the damage of industrial production on the environment. This will help ensure the quality of highway construction, improving transportation efficiency, reduce pollution and improve the ecological environment. Turn will have enormous economic and social benefits.
     This article based on weather, road engineering, thermal engineering, materials engineering and other fields of theory and technology, expand the waste mixture of ceramic insulation layer "active" to reduce road surface temperature technique. Contents of the study include
     ①The temperature of the main factors affecting the road. Study found that high temperatures affect the path of two main factors: (a) the external environmental factors, including solar radiation, air temperature, wind and other external factors. (b) internal factors of road materials, the thermal properties of materials, including thermal conductivity, specific heat capacity. Which is an objective of environmental factors, not the people's will is that we not change. Therefore, to reduce the surface temperature, must adopt the second approach, that uses a small thermal properties of the material as road paving materials to reduce surface temperature.
     ②To study the way the material thermal parameters, proved theoretically that a lower thermal properties of materials to achieve lower road temperature is feasible. To study the thermal properties of ceramic waste less asphalt road performance. Study found that waste mixture of ceramic insulation used as a road surface wear layer is feasible. The laboratory test method to study the waste mixture of ceramic thermal properties obtained from waste proved ceramic insulating layer of asphalt mixture as the temperature is reduced the feasibility of the road.
     ③Through the insulating layer of ceramic waste asphalt concrete determination of the actual road temperature, heat proof ceramic waste asphalt concrete layer has a better cooling effect. Waste asphalt concrete with ceramic insulation layer, can significantly reduce the surface temperature; ceramic waste asphalt concrete pavement temperature insulating layer can reduce the duration of action; with ceramic insulation to reduce waste asphalt concrete pavement temperature fluctuations; so the application of ceramic waste asphalt concrete greatly improved insulation surface temperature conditions.
     ④Calculated using finite element software Ansys, through parameter analysis to study the incorporation of ceramic waste materials (ceramic waste ash were 0%, 20%, 40%, 60%, 80% and 100%) insulation on the road effects. Study found that, considering the ceramic waste asphalt pavement performance and cooling effect, it is recommended in practical engineering applications, ceramic content of 40% ~ 60% is more appropriate.
     Studies have shown that through the paper, ceramic waste for insulation layer of asphalt pavement can not only reduce the surface temperature of a good, improving pavement temperature conditions, enhancing road rutting resistance performance, and can use ceramic waste, conserve resources, protect the environment. Therefore, in road construction and maintenance should be the promotion of the technology.
引文
[1]中华人民共和国交通部. 2005年公路水路交通行业发展统计公报[EB]. http://www.moc.gov.cn/06tongjisj/tongjisj/tongjifx/200605/t20060518_33155.html. 2006, 5
    [2]沈金安等著.高速公路沥青路面早期损坏分析与防治对策[M].北京:人民交通出版社. 2004
    [3]Sousa,J. B., and S. L. Weissman,“Modeling Permanent Deformation of Asphalt-Aggregate Mixes,”[J]. Journal of the Association of Asphalt Paving Technologists. Association of Asphalt Paving Technologists, St. Paul, Minnesota, 1994, 63:224–256.
    [4] Sousa, J. B., S. L. Weissman, J. L. Sackman, and C. L. Monismith,“Nonlinear Elastic Viscous with Damage Model to Predict Permanent Deformation of Asphalt Concrete Mixes,”[C]. Transportation Research Record 1384, Transportation Research Board, National Research Council, Washington, D.C., 1993.
    [5] De Beer, M., and Fisher, C. Contact Stress of Pneumatic Tires Measured with the Vehicle-road Surface Pressure Transducer Array (VRSPTA) System for the University of California at Berkeley (UCB) and the Nenada Automotive Test Center (NATC). CSIR Report CR-97/053[R]. Council for Sc. and Ind. Res. Pretoria,South Africa. 1997
    [6] Weissman, S. L. Influence of Tire-pavement Contact Stress Distribution on Development of Distress Mechanisms in Pavement[J]. Trans. Res. Rec. Transportaion Research Borad, Washington, D.C. 1999,Vol. 1655:161-167
    [7]Monismith, C. L., Harvey, J.T., Long, F., Weissman, S. Test to Evaluate the Stiffness and Permanent Deformation Characteristics of Asphalt/binder-aggregate Mixes-A Critical discussion[C]. Technical Memorandum TU-UCB-PRC-2001-1, Pvement Research Center, CAL/APT Prog., Inst of Tran. Studies, Univ. of Calif., Berkeley. 2000.
    [8]J. Hua and T. White. A Study of Nonlinear Tire Contact Pressure Effects on HMA Rutting[J]. The International Journal of Geomechanics. 2002,2, Number 3:353–376
    [9]Jianfeng Hua. Finite Element Modeling and Analysis of Accelerated Pavement Testing Devices and Rutting Phenomenon[D]. PhD Dissertation of Purdue University. 2000, 8
    [10]李明国,牛晓霞,申爱琴.山区高速公路沥青路面的抗车辙能力[J].长安大学学报(自然科学版). 2006(26), 6:19-22.
    [11]Hongbing Fang; John E. Haddock, Thomas D. White, Adam J. Hand. On the Characterization of Flexible Pavement Rutting Using Creep Model-based on Finite Element Analysis[J]. Finite Elements in Analysis and Design. 2004, 41:49-73
    [12]吕伟民.沥青稳定基层沥青混凝土路面抗剪性能的理论分析[J].公路. 2006.4:220-224
    [13]沙庆林.高速公路沥青路面早期破坏现象及预防[M].北京:人民交通出版社. 2001
    [14]Nevelt, G., and H. Thanfold. Evaluation of the Resistance to Deformation of Different Road Structures and Asphalt Mixtures Determined in the Pavement-Rutting Tester[C]. Proceedings of the Association of Asphalt Paving Technologists. 1988,57: 320–345.
    [15]Eisenmann, J., and A. Hilmer. Influence of Wheel Load and Inflation Pressure on the Rutting Effect at Asphalt-Pavements-Experiments and Theoretical Investigations[C]. Proc., Sixth International Conference on the Structural Design of Asphalt Pavements. Vol. I, University of Michigan, Ann Arbor, Mich., 1987: 392–403.
    [16]Elie Y. Hajj, Peter E. Sebaaly, Raj V. Siddharthan. Response of an Asphalt Pavement Mixture under a Slow Moving Truck[C]. Proceedings of the R. Lytton Symposium on Mechanics of Flexible Pavements. Baton Rouge, Louisiana, USA. 2005,6.
    [17]Yang H-Huang.Pavement Analysis and Design[M].Prentice-Hall Inc. 1993
    [18]Epps, J. A., C. L. Monismith, S. B. Seeds, S. H. Alavi, S. C.Ashmore, R. B. Leahy, and T. M. Mitchell,“WesTrack Full-Scale Test Track: Interim Findings,”[C]. Proceedings of the Eighth International Conference on Asphalt Pavements, Vol. 3, August 1997.
    [19]Epps, J. A., C. L. Monismith, S. B. Seeds, S. H. Alavi, S. C. Ashmore, R. B. Leahy, and T. M. Mitchell,“WesTrack Performance—Interim Findings,”[J]. Journal of the Association of Asphalt Paving Technologists, Vol. 67, Association of Asphalt Paving Technologists, St. Paul, Minnesota, 1998.
    [20]Thomas D. White, John E. Haddock, Adam J. T. Hand, Hongbing Fang. NCHRP Report 468-Contribution of Pavement Structural Layers to Rutting of Hot mix Asphalt Pavement[R]. National Academy Press, Washington, D.C. 2002
    [21]候芸,田波,邴文山.季节性冰冻地区路基内温度场、湿度场藕合计算.同济大学学报.2002, 30(3):296-301
    [22]Moorty, S. and Roeder, C.W Temperature dependent bridge movements, Journal ofStructural Engineering, ASCE. 2002, 118(4):1090-1105
    [23]Miramhell, E. Design temperature differences for concrete bridges, Proceedings of the Institution of Civil Engineers; Structural & Buildings.1997,122(8): 281-292
    [24]章熙民,任泽霈等.传热学(第四版).中国建筑工业出版社.2001:123-126
    [25]葛绍岩,那鸿恍.热辐射性质及其测量.科学出版社.1989:224-241
    [26]F.Kehlbeck.太阳辐射对桥梁结构的影响.:中国铁道出版社. 1981:25-31
    [27]周淑贞.气象学与气候学(第三版).高等教育出版社.1997:42-47
    [28]严作人.层状路面温度场分析.研究生论文. 1982: 84-96
    [29]严作人.层状路面体系的温度场分析.同济大学学报.1984,13(6):210-214
    [30]吴赣昌.层状路面体系的温度场分析.中国公路学报.1992,5(4):110-112
    [31]景天然,严作人.水泥路面温度状况的研究.同济大学学报.1980,(3):12-16
    [32]Barber, F. S. Caculatiou of Maximum Pavement Temperature from Weather .Reports.H. R. B. Bull. 1957,23(5): 124-135
    [33]韩子东.道路结构温度场研究.长安大学硕士论文.2001:24-26
    [34]Barker F S. Calculation of maximun pavement temperature from weather reports. H R B Bull, 1957, 13(4):102-112
    [35]《民用建筑节能设计标准JGJ26-95》标准.建筑工业出版社.2001:12-13
    [36]姜培学等.空气在多孔介质中对流换热的数值模拟.工程热物理学报. 2001, 22(5),610-612
    [37]贾璐.沥青路面高温温度场数值分析和实验研究.湖南大学硕士论文.2004:25-54
    [38]Khaled K.,Cenk.Y Assessment of Temperature Fluctuations in Pavements Due to Thermal Environmental Conditions Using A Two-Dimensional Transient Finite Difference Approach, MPC Report .2002:100-120
    [39]B.Landro, P.G..McCormick.Effect of surface characteristics and atmospheric conditions on radiative heat loss to a clear sky. International Journal of Heat Mess Transfer.1980, (6):201-230
    [40]Minhoto Manuel JC,Pais Jorge C,Pereira Paulo A,etal Prediction of asphalt pavement temperature using 3-D finite element method.Transportation Research Record.2005,1919(184):96-110
    [41]陈则韶,葛新石,顾毓沁.量热技术和热物性测定.中国科学技术大学出版社.1990:135-146
    [42]Chris Marshall, Roger LET.Meier, Michael. Seasonal TemperatureEffects on Flexible PavementsTennessee.Transportation Research. 2001, (33):111-125
    [43]Kim, Y.Richard, and Yung-Chien Lee. Temperature Correction of Deflections and Backcalculated Asphalt Concrete Moduli. InTransportation Research Record 1473, TRB, National Research Council,Washington, D. C.1995:55-62
    [44]Baltzer, S. and J. M. Jansen. Temperature Correction of Asplialt-Moduli for Measurements. Proceedings, International Conference on the Bearing Capacity of Roads and Airfields, Trondheim. 1994:754-768
    [45]Button, J.W., Little, D.N., Kim, Y., and Ahmed, J. Mechanistic Evaluationof Selected Asphalt Additives, Proceedings of the Association of the AsphaltPaving Technologists.1987:25-45
    [46]Marasteanu, M.O.D.A. Anderson,Time-Temperature Dependency of Asphalt Binders-An Improved Model, Proceedings of the Association of Asphalt Paving Technology. 1996,(65):408-4418
    [47]李兴海.沥青混合料热物特性研究.哈尔滨工业大学硕士学位论文.2007:6-10,36-45
    [48]曾令可,罗民华,张守梅.绿色建材陶粒.佛山陶瓷,2001,11(7):8
    [49]龚洛书.轻集料混凝土技术的发展与展望.混凝土,2002,(2):13-14
    [50]范锦忠.论陶粒及陶粒制品的优势.房材与应用,1997,(5):42
    [51]龚洛书.对我国陶粒工业的几个问题探讨.房材与应用,1996,(4):5-9
    [52]范锦忠,王根元,李南生.我国轻集料及其制品的现状及发展方略.第六届全国轻骨料及轻骨料混凝土学术讨论会论文集,2000:13-15
    [53]关淑君,宋淑敏,陈烈芳.我国轻集料及轻集料混凝土的现状和展望.绿色建材的研究与运用,2004:77-39
    [54]陈烈芳,宋淑敏.抓住机遇促进我国轻骨料及轻骨料硅的健康稳步发展.全国轻骨料及轻骨料混凝土生产、应用、技术研讨会论文集,2002:2-3
    [55]南雪峰,王莹,高明.超薄磨耗层组成材料选择标准的研究.北方交通,2008,(4)43
    [56]程永春,付极,刘寒冰等.超薄磨耗层沥青混合料路用性能试验研究.公路,2008,3(3)
    [57]Zou Guilian,Yuan Yan,Zhang Xiaoning.Effect of Fillers on the Pavement Performanceof Asphalt Binder.Journal of South China University of Technology(Natural Science Edition),2005,33(1):52-56
    [58] Mogawer W S,Stuart K D.Effects of mineral fillers on properties of stone matrix asphalt mixtures.Transportation Research Record,1996,1530:86-94
    [59] Harris B M,Stuart K D.Analysis of mineral filler sand mastic used in stone matrix asphalt.Proceedings Association of Asphalt Paving Technologists,1995,64(1):211-234·
    [60]曹卫东,沈建荣,韩恒春.超薄沥青混凝土面层技术研究及其应用简介.石油沥青[J].2005(4):1,56-58
    [61]王旭东,严卫兵.超薄沥青混凝土抗滑表层技术研究.2002年道路工程学会学术交流会论文集[M].人民交通出版社,2002:100-120
    [62]史建.超薄磨耗层沥青混凝土路用性能试验研究.吉林大学硕士学位论文.2007:1-2,25-30
    [63]梁满杰.沥青路面光热效应机理及热反射涂层技术研究.哈尔滨工业大学硕士学位论文.2006:4,43-50
    [64]伍石生,贺海萍.陕西省高速公路沥青路面车辙形成原因及对策.公路交通技术,2005,(2):34-36
    [65]Monismith, C. L., R. G. Hicks, F. M. Finn, J. Sousa, J. Harvey, S. Weissman, J. Deacon, J. Coplantz, and G. Paulsen,“Permanent Deformation Response of Asphalt Aggregate Mixes,”[C]. SHRP-A-415, Strategic Highway Research Program, Transportation Research Board, National Research Council, Washington, D.C., 1994.
    [66]Simpson, A. L., J. F. Daleiden, and W. O. Hadley,“Rutting Analysis From a Different Perspective,”[C]. Transportation Research Record 1473, Transportation Research Board, National Research Council, Washington, D.C., 1995. 2005(25),2:123-127
    [67]Silvino Dias Capit?o, Luís Picado-Santos. Assessing Permanent Deformation Resistance of High Modulus Asphalt Mixtures[J]. Journal of Transportation Engineering. 2006,5:394-401
    [68]Kavianipour, A., Thermal Property Estimation Utilizing the Laplace Transform with Application to Asphaltic Pavement, International Journal of Heat and Mass Transfer. 1967,(20):259-267
    [69]Baltzer, S. H.J. Ertman-Larson,E.O. Lukanen,R.N. Stubstad. Prediction of AC Mattemperature for Routine Load, Deflection Measurement. Proceedings, fourth International Conference on the Bearing Capacity of Roads and Airfields. 1990, (11):401- 412
    [70]Raanjevic K. Handbook of Thermodynamic Tables and Charts, Hemisphere,1976:213-231
    [71]Saal, R.N.J., "Physical Properties of Asphalt Bitumen," The Properties of Asphaltic Bitumen, ed. J.P. Pfeiffer, Elsevier Publishing Company, Inc. 1950: 93-96.
    [72]Turner, William C. and Malloy, John F., Thermal Insulation Handbook, Robert E.Krieger Publishing Company, Malabar, Florida.1981:499-519
    [73]Jordan, P.G. and Thomas,M.E., Prediction of Cooling Curves for Hot-Mix Paving Materials by a Computer Program,Transport and Road Research Laboratory Report. 1976,125-136
    [74]景天然,严作人.水泥路面温度状况的研究[J].同济大学学报.1980.3.44-46
    [75]吴赣昌.半刚性路面温度应力分析[M].科学出版社.1995.10.180-181
    [76]周生金.沥青路面荷载与温度耦合作用疲劳特性研究[学位论文].西安.长安大学.2005.112-113
    [77]沈肇基.用有限元法解不稳定温度场.长沙铁道学院学报.1979,(4):34-37
    [78]谭建国.使用ANSYS6.0进行有限元分析.北京大学出版社,2002:278-281
    [79]王国强.实用工程数值模拟技术及其在ANSYS上的实践.西北工业大学出版社.2000:1-7.
    [80]孔祥谦.有限单元法在传热学中的应用.科学出版社.1998:119-131
    [81]刘兴法.混凝土结构的温度应力分析.人民交通出版社.1991:112-124.
    [82]李全林日照下混凝土箱梁温度场和温度应力研究.湖南大学硕士论文.2004: 20-41
    [83]许晓峰,陈斌译.混凝土箱型梁桥的温度和应力分布.国外桥梁.1994(2): 109-118
    [84]韩先科.斜拉桥桥塔温度场的有限元分析及其影响评价.哈尔滨工业大学硕士论文.2002: 35-50
    [85]郝超,丁润贤,柳世强.钢桥温度场分布的数值模拟.世界桥梁.2002,(3):25-28
    [86]王效通.预应力混凝土箱梁温度场计算的有限元法.西南交通大学学报.1985,(3):123-126
    [87]何文中.钢筋混凝土屋盖日照温度应力计算与控制研究.湖南大学硕士学位论文.1999:54-61.
    [88]Dilger, W.H., Ghali, A., Chan, M., Cheung, M.S. and Maes, M.A. Temperature Stresses in Composite Box Girder Bridges. Journal of Structural Engineering, ASCE.2003, 109(7):l460-1478.
    [89]Mamdouth M. Elbadry and Amin Ghali, Temperature Variations in ConcreteBridges, Journal of Structural Engineering, ASCE.1983, 109(16):2355-2374.
    [90]孙景宇.高速公路车辙原因分析与防治.公路工程与运输(交通标准化),2007,(1)
    [91]伍石生,贺海萍.陕西省高速公路沥青路面车辙形成原因及对策.公路交通技术,2005,(2):34-36
    [92]华南理工大学道路工程研究所等.沥青路面车辙病害分析与处理对策研究[R]. 2005
    [93]郑健龙,周志刚,张起森.沥青路面抗裂设计理论与方法.人民交通出版社.2003:75-81;
    [94]P. Serfass, P. Bense, P. Pellevoisin. Properties and New Developments of High Modulus Asphalt Concrete[C]. From the Lecture Serious of Eighth International Conference on Asphalt Pavement. Held at University of Washington, Seattle, 1997.
    [95]Okan Sirin, Hong-Joong Kim, Mang Tia, Bouzid Choubane. Comparison of Rutting Resistance of Unmodified and SBS-modified Superpave Mixtures by Accelerated Pavement testing[J]. Construction and Building Materials. 2006, 08:1-9
    [96]Brown, E. R., and S. A. Cross,“A National Study of Rutting in Hot Mix Asphalt (HMA) Pavements,”NCAT Report 92-5[R]. National Center for Asphalt Technology, Auburn, Alabama, 1992.
    [97]张舒,许永明,李宏志.沥青抗滑表层的技术性能研究.西安公路交通大学学报,1999,(3):1
    [98]邓景纹,张荫济.从国外轻骨料和轻骨料硅的发展看我国发展的思考.第六届全国轻骨料及轻骨料混凝土学术讨论会论文集,2000:187-191
    [99]中华人民共和国交通部.《公路工程沥青及沥青混合料试验规程》(JTJ 052- 2000)[S].北京:人民交通出版社. 2004
    [100]沈金安.沥青及沥青混合料路用性能.北京:人民交通出版社,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700